Is seeing believing?
Cellular automata in theory and experiment
Alexander E. Holroyd, University of British Columbia

CUMC 2008 * g A0 7aT

mmmmm

b8
T
: f;;é(k}’} :
A
R

ol

.\:-\.:l_.{_._‘:_..-::_ -.
Ii‘.:; k:‘:’_-\'."_ 1.

s,
.
I':;'P:-”" e

A
oy

S

Cellular automaton:

- regular lattice of cells

- cell can be in finite number of possible states
(e.g. alive/dead, full/empty)

- local rule for updating states

Idealized models of real-world systems
Easy to describe
(Sometimes) astonishing behaviour...

Mathematical analysis challenging and surprising...

Packard's snowflake models (1984)

Triangular lattice

Cells:

Q empty (water
vapour)

Q full (ice)

Start with one
full cell

Update rule:
full — full
empty — full if has 1,4,5 or 6 full neighbours

Packard's snowflake models (1984)

Triangular lattice

Cells:

Q empty (water
vapour)

Q full (ice)

Start with one
full cell

Update rule:
full — full
empty — full if has 1,4,5 or 6 full neighbours

Packard's snowflake models (1984)

Triangular lattice

Cells:

Q empty (water
vapour)

Q full (ice)

Start with one
full cell

Update rule:
full — full
empty — full if has 1,4,5 or 6 full neighbours

Packard's snowflake models (1984)

Triangular lattice

Cells:

Q empty (water
vapour)

Q full (ice)

Start with one
full cell

Update rule:
full — full
empty — full if hasw full neighbours

1350ré6 (16 interesting

More!l (Mirek's Cellebration) 150r6 etc. rules)

mcell\snow1456.mcl

Source: Janko Gravner

"An elementary schoolchild could look at any of the
gorgeous pictures of computer screens in Packard's
collection and instantly identify it as a snowflake.”
- Steven Levy

“Simulation by computer may be the only way to predict
how certain complicated systems evolve. [. ..] The only
practical way to generate the [Packard snowflake]
pattern is by computer simulation.” - Stephen Wolfram

Questions:
behaviour as time — oo ?
shape of outer boundary ?
internal holes?

Let S = set of eventually full cells (in the infinite lattice)

Guess (from simulations):
51456 - 51346 - The en‘l‘ir'e IGTTice
Si3a5, S5, have holes (etc.)

but:

Theorem (Gravner and Griffeath, 2006)

Si454 has holes!! (but not within distance
10°=10000000000 of the originl)

Si34¢ = entire lattice

Si345, S15¢ have holes...

Theorem (Gravner and Griffeath)
The density 4(S N [=n, n]2)

= |lim
P nToe T #[—n,n)2

exists for all the models, and

P13=P135=9/6, P134=P1345-21/22, P135=P1356=P1346=P13456=1,

p1=0.635:+0.001, pyy pras=0.969+0.001,
05=0.803+£0.001, py=0.740-£0.001, pys,=0.938-0.001,

0995 < P146 < 1, 09999994 < Prase € 1

0 son Lown b on § vn L
‘hﬂ,i il) X

% PO A
*a.-.¢.~l-vwd

- - .,\f«rtt\l\tA'tra.. A
A‘a-a—«w‘irx.\i.a. AARAATERRMERFEEENY

YA,..\..A.-r.).(‘lA.A.\.

f

in proo

Key tool

Cells x such that

time when x becomes full = distance from O to x

Bootstrap Percolation Model

square lattice (Z?)

] Cells: [full
empty
Update rule:
full — full

empty — full if has > 2 full neighbours

square lattice

Cells: [full
empty

Update rule:
full — full
empty — full if has > 2 full neighbours

square lattice

Cells: [full
empty

Update rule:
full — full
empty — full if has > 2 full neighbours

square lattice

Cells: [full
empty

Update rule:
full — full
empty — full if has > 2 full neighbours

square lattice

Cells: [full
empty

Update rule:
full — full
empty — full if has > 2 full neighbours

square lattice

Cells: [full
empty

Update rule:
full — full
empty — full if has > 2 full neighbours

square lattice

Cells: [full
empty

Update rule:
full — full
empty — full if has > 2 full neighbours

square lattice

Cells: [full
empty

Update rule:
full — full
empty — full if has > 2 full neighbours

Random starting state:
FixO<p<1 Start with each cell:
full with probability p
empty with probability 1-p
Simulations independently for different cells.

mcell\bootstrap20.mcl

Guess: for some p..;; =~ 0.04,

if p>p..i every cell eventually full
if p < p..i+, Not every cell eventually full

but

Theorem (Van Enter 1987) For any p > O,

P(every cell eventually full) = 1.

Proof: One way to fill ZVZPYThiHQ:

P(fill everything) > P(this) = p5 [(1-(1-p)3)(1-(1-p)8)(1-(1-p)7)---]/

For O <an <1,

o0 oo
I] (1 —an) >0 if and only if > an < co.

n=1 n=1

For p>0, (1-p)’+(1-p)>+(1-p)7+--- < oo,
so P(fill everything) > O.

Theorem (Zero-One Law): For any translation-invariant
event A on the space of p-coin flips on the lattice Z9,

P(A)=0orl. not affected by
translating all coins

E.g. {theoriginis initially full}

o : O
not translation-invariant s
m -
{every cell is eventually full} al
is translation-invariant

Theorem (Zero-One Law): For any translation-invariant
event A on the space of p-coin flips on the lattice Z9,

P(A)=0orl. not affected by
translating all coins

E.g. {theoriginis initially full} 4
not translation-invariant 55 -
=
. O
{every cell is eventually full} -
is translation-invariant

Theorem (Zero-One Law): For any translation-invariant
event A on the space of p-coin flips on the lattice Z9,

P(A)=0orl. not affected by
translating all coins

E.g. {theoriginis initially full}

T . O
hot translation-invariant - .
. O
{every cell is eventually full} .* O
IS translation-invariant

Theorem (Zero-One Law): For any translation-invariant
event A on the space of p-coin flips on the lattice Z9,

P(A)=0orl. not affected by
translating all coins

E.g. {theoriginis initially full} 4
not translation-invariant B 1
. 0
{every cell is eventually full} i
is translation-invariant

So P(every cell eventually full) =0 or 1
but P(every cell eventually full) >0 (from before)

so P(every cell eventually full) = 1.

Proof of Zero-One Law

For any event A, any € > 0, can find an approximation
A, depending only on coins in a box of size n = n(g):

translation by n _\ P(A A)<

symmetric difference

So P(T"A A ThA) < &.

Independence: P(A,.nTA)-P(A)P(T"A) =0
so IP(A N ThA) - P(A) P(TnA)]| < 4e.

But A translation-invariant, so T"A =

Al

IP(A) - P(A)?| < 4¢

P(A) - P(A)? =
P(A)= 0 or 1,

0

Going further:
Consider model on an L by L square.

Going further:
Consider model on an L by L square.

Theorem (Aizenman and Lebowitz, 1989)
Let p—0and L = ev/>,

If a>C then P(fill square) — 1
if a<c then P(fill square) — O.

Going further:
Consider model on an L by L square.

Theorem (Holroyd, 2003)
Let p—0 and L = ev/P,

Ifa>)x then P(fill square) — 1,
if a<i then P(fill square) — O,

where \ = 12/18.

Simulation prediction (Adler, Stauffer, Aharony 1989).
A =0.245 + 0.015

but n?/18 = 0.548311... |

0.2 - p: P(fill)=1/2 Slope
i n2/18
0,181
' Slope
0.245
0.12-:
* "crossover?"
Q.06 -
0 | ‘ | ‘ | 0.12 | | | C)T# T | | 0]6 | |

L=10% L=28000 1/loglL

P(this) = p [(1-(1-p))(1-(1-pY)(1-(1-pY)-— J¢

log P(this)

Q

Q

&

5logp+4 > log[l — (1 —p)*"*1]

4 i log[1 — (e P)?"]
n=1

0

n=1

1 o0
4—f log(1 —e™ ™) dx

(p small)

And further...
Understanding the slow convergence:

Theorem (Gravner, Holroyd, 2008)
Let p—0 and L = ev/P,

Ifa(l)>2-c/\/loglL then P(fill square) — 1;
if a <A then P(fill square) — O,

where \ = 12/18.

Need L — L* to halve the “error"!

Biham-Middleton-Levine
traffic model (1992)

Each cell of Z2 contains:
North-facing car (1)

or East-facing car (=)
or empty space (0).

At odd time steps, each 1 tries to move one unit North
(succeeds if there is a O for it to move into).

At even time steps, each — tries to move one unit East
(succeeds if there is a O for it to move into).

Random initial configuration:
O<p<1

Each cell of Z2 contains:

North-facing car (1) with probabi
East-facing car (=) with probabi
empty space (0) with probabi

independently for different sites.

Simulation

ity p/2
ity p/2
ity 1-p

mcell\b30.mcl

. For some O < p;<1,
p>py every car eventually stuck
p<psy ho car eventually stuck

. For O<pg<1,
p < pe: every car eventually free flowing
p > pr: ho car eventually free flowing

Pr=Ps ?
Intermediate behaviour on finite torus ?
(D'Souza 2005)

Only rigorous result:

Theorem (Angel, Holroyd, Martin 2005).
For some p;< 1,
if p > p;then P(all cars eventually stuck) = 1.

In fact, for p > p;, some cars never move...

Easy case: p = 1.
Any car is blocked an infinite chain of others:

Q"

You — 7

- =0
— =1

Argument does not work for p < 1.
Chain will be broken by an empty space.

Another way for a car to be blocked:

You

_)

_)

_)
T
_)
T

4
*
‘Q

T;_

' Blocked (never moves)

Another way for a car to be blocked:

You _ T:_' Blocked (never moves)

o .
N "~ If this never moves,

you are blocked

Another way for a car to be blocked:

You

' Blocked (never moves)

If this does move....

Another way for a car to be blocked:

You

' Blocked (never moves)

Another way for a car to be blocked:

4
*
‘Q

You T;_' Blocked (never moves)

_)
T
- = 1t =

Another way for a car to be blocked:

Still
Blocked!

N

_)

_)

_)
T
T

4
*
‘Q

T;_

' Blocked (never moves)

Another way for a car to be blocked:

Still
Blocked!

N

_)

_)

_)
T
T

4
*
‘Q

T;_

' Blocked (never moves)

So 2 blocking paths...

T
:J’;, A

e
5

f“ ‘:-"::; =IE
#!ﬂr

Blocking paths (both types) for one car when p = 1.

For p close to 1, some will survive.

Proof uses percolation theory:

delete a small fraction of connections
at random from the lattice.

In > 2 dimensions, infinite paths remain.

(But not in 1 dimension.)

