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Cellular automaton:

- regular lattice of cells
- cell can be in finite number of possible states

(e.g. alive/dead, full/empty)
- local rule for updating states

Idealized models of real-world systems

Easy to describe

(Sometimes) astonishing behaviour...

Mathematical analysis challenging and surprising...



Cells:

empty (water 
vapour)

full (ice)

Packard’s snowflake models (1984)

Triangular lattice

Start with one
full cell

Update rule:
full ! full
empty ! full if has 1,4,5 or 6 full neighbours
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Cells:

empty (water 
vapour)

full (ice)

Packard’s snowflake models (1984)

Triangular lattice

Start with one
full cell

Update rule:
full ! full
empty ! full if has 1,4,5 or 6 full neighbours

More! (Mirek’s Cellebration)
1,3,5 or 6
1,5 or 6  etc.

(16 interesting
rules)

mcell\snow1456.mcl


Source: Janko Gravner



“An elementary schoolchild could look at any of the 
gorgeous pictures of computer screens in Packard’s 
collection and instantly identify it as a snowflake.”
– Steven Levy

“Simulation by computer may be the only way to predict
how certain complicated systems evolve. [. . .] The only 
practical way to generate the [Packard snowflake] 
pattern is by computer simulation.” – Stephen Wolfram

Questions:
behaviour as time ! 1 ?
shape of outer boundary ?
internal holes?



Let S = set of eventually full cells (in the infinite lattice)

Guess (from simulations):
S1456 = S1346 =  the entire lattice
S1345, S156 have holes (etc.)

S1346 = entire lattice

S1345, S156 have holes...

Theorem (Gravner and Griffeath, 2006)
S1456 has holes!! (but not within distance 

109=10000000000 of the origin!)

but:



Theorem (Gravner and Griffeath)
The density

exists for all the models, and

r13=r135=5/6,   r134=r1345=21/22,   r135=r1356=r1346=r13456=1,

r1=0.635§0.001,    r14 ,r145 =0.969§0.001,
r15=0.803§0.001,   r16=0.740§0.001,   r156=0.938§0.001,

0.995 < r146 < 1,  0.9999994 < r1456 < 1.



Cells x such that:

time when x becomes full = distance from O to x 

Key tool in proof:



Bootstrap Percolation Model



square lattice (Z2)

Cells: full
empty

Update rule:
full ! full
empty ! full if has ¸ 2 full neighbours
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square lattice

Cells: full
empty

Update rule:
full ! full
empty ! full if has ¸ 2 full neighbours

Random starting state:
Fix 0 < p < 1.  Start with each cell:

full with probability p
empty with probability 1-p

independently for different cells.Simulations

mcell\bootstrap20.mcl


Guess: for some pcrit ¼ 0.04,

if p > pcrit, every cell eventually full
if p < pcrit, not every cell eventually full 

but

Theorem (Van Enter 1987) For any p > 0,

P(every cell eventually full) = 1.



Proof: One way to fill everything:

For p>0,    (1-p)3+(1-p)5+(1-p)7+L < 1,
so P(fill everything) > 0.

P(fill everything) ¸ P(this) = p5 [(1-(1-p)3)(1-(1-p)5)(1-(1-p)7)L]4



Theorem (Zero-One Law): For any translation-invariant
event A on the space of p-coin flips on the lattice Zd,

P(A) = 0 or 1.  

E.g.  {the origin is initially full}
not translation-invariant 

{every cell is eventually full}
is translation-invariant

not affected by  
translating all coins
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Theorem (Zero-One Law): For any translation-invariant
event A on the space of p-coin flips on the lattice Zd,

P(A) = 0 or 1.  

E.g.  {the origin is initially full}
not translation-invariant 

{every cell is eventually full}
is translation-invariant

So  P(every cell eventually full) = 0 or 1
but P(every cell eventually full) > 0 (from before)

so P(every cell eventually full) = 1.

not affected by  
translating all coins



Proof of Zero-One Law

For any event A, any e > 0, can find an approximation 
Ae depending only on coins in a box of size n = n(e):

P(A D Ae) < e

so P(TnA D TnAe) < e.

symmetric differencetranslation by n

Independence: P(Ae Å TnAe) – P(Ae) P(TnAe) = 0

so |P(A Å TnA) – P(A) P(TnA)| < 4e.

But A translation-invariant, so TnA = A !

|P(A) - P(A)2| < 4e

P(A) - P(A)2 = 0

P(A) = 0 or 1.



Consider model on an L by L square. L=5

Going further:



Consider model on an L by L square. L=5

Theorem (Aizenman and Lebowitz, 1989)
Let p!0 and L = ea/p.

If a > C     then   P(fill square) ! 1;
if  a < c     then   P(fill square) ! 0. 

Going further:



Consider model on an L by L square. L=5

Theorem (Holroyd, 2003)
Let p!0 and L = ea/p.

If a > l then   P(fill square) ! 1;
if  a < l then   P(fill square) ! 0,

where l = p2/18.

Simulation prediction (Adler, Stauffer, Aharony 1989):
l = 0.245 § 0.015

but        p2/18 = 0.548311...  !

Going further:



1 / log L

p: P(fill)=1/2

Slope
0.245

L=28000L=1020

“crossover?”

Slope
p2/18



P(this) = p5 [(1-(1-p)3)(1-(1-p)5)(1-(1-p)7)L]4

) p2/18



Theorem (Gravner, Holroyd, 2008)
Let p!0 and L = ea/p.

If a(L) > l - c/plog L then   P(fill square) ! 1;
if  a     < l then   P(fill square) ! 0,

where l = p2/18.

And further...
Understanding the slow convergence:

1/p log 28000 = 0.31...
1/p log 1020 = 0.15... 

Need L a L4 to halve the “error”!





Each cell of Z2 contains:
North-facing car (")

or East-facing car (!)

or empty space (0).

At odd time steps, each " tries to move one unit North
(succeeds if there is a 0 for it to move into).

At even time steps, each ! tries to move one unit East 
(succeeds if there is a 0 for it to move into).

Biham-Middleton-Levine 
traffic model (1992)
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Random initial configuration:

0 < p < 1

Each cell of Z2 contains:
North-facing car (") with probability p/2
East-facing car (!) with probability p/2
empty space (0) with probability 1 – p

independently for different sites.

Simulation

mcell\b30.mcl


Conjecture.  For some 0 < pJ < 1,
p > pJ:   every car eventually stuck
p < pJ:   no car eventually stuck 

Conjecture.  For 0 < pF < 1,
p < pF:  every car eventually free flowing
p > pF:  no car eventually free flowing

Question.   pF = pJ ?

Intermediate behaviour on finite torus  ?
(D’Souza 2005) 



Theorem (Angel, Holroyd, Martin 2005).
For some p1 < 1, 

if p > p1 then P(all cars eventually stuck) = 1.

In fact, for p > p1, some cars never move...

Only rigorous result:



"!

Easy case: p = 1.
Any car is blocked an infinite chain of others:

!
! !

"
"
!

Argument does not work for p < 1.
Chain will be broken by an empty space.

0
You

Proof



Another way for a car to be blocked:

!
"

"

"
! !

!You Blocked (never moves)
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!You Blocked (never moves)

If this never moves,
you are blocked



Another way for a car to be blocked:
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"
! !

!You Blocked (never moves)

If this does move....
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!
Still
Blocked! Blocked (never moves)



Another way for a car to be blocked:

!
"

"

"!

!
Still
Blocked! Blocked (never moves)

!
"

"

"
! !

!
So 2 blocking paths...



Blocking paths (both types) for one car when p = 1.

For p close to 1, some will survive.



Proof uses percolation theory:

delete a small fraction of connections
at random from the lattice.

In ¸ 2 dimensions, infinite paths remain.

(But not in 1 dimension.)




