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To get from 1Ln to nL1
requires

N:=

nearest-neighbour swaps
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any route from 1Ln to nL1
in exactly

N:=

nearest-neighbour swaps

A Sorting Network =

E.g. n=4:



Theorem (Stanley 1984).  
# of n-particle sorting networks =

Uniform Sorting Network (USN):
choose an n-particle sorting network
uniformly at random.

E.g. n=3:
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locations
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particle
trajectory

2
3
4
1permutation matrix

(at half-time)

9 efficient simulation algorithm for USN...

1  2  3  4



Swap locations, n=100



Swap locations, n=2000
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=
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Theorem(Angel,H,Romik,Virag,2007) For USN: 

1. Sequence of swap locations
(s1,...,sN) is stationary

2. Scaled first swap location

3. Scaled swap process

as n!1

as n!1

8 n

(Note: not true for all sorting networks,
e.g. bubble sort) 



Proof of stationarity:
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Proof of stationarity:
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(s1,...,sN) a (s2,...,sN,n-s1) is a bijection
from {sorting networks} to itself.

So for USN:



Selected trajectories, n=2000



Scaled trajectory of particle i:
Ti:[0,1]![-1,1]

i 

0 1
-1

1



Conjecture (AHRV) 
trajectories ! random Sine curves: 

as n!1

Theorem (AHRV)
scaled trajectories have subsequential
limits which are Hölder(½) with prob 1

as n!1

(random)



Half-time permutation matrix, n=2000

animation

sortdemo.exe


Conjecture (AHRV)
scaled permutation 
matrix at time N/2

Archimedes
measure

projection of surface area measure
on sphere S2 ½ R

3
onto R2

(unique circularly symmetric measure
with uniform linear projections;

on x2+y2<1 )

scaled permutation 
matrix at time tN

Arch.
meas.



Theorem (AHRV)
scaled permutation matrix at time tN
is supported within a certain octagon
with prob ! 1 as n!1

(1-½p3-e)n



Tools in proofs:
1. Bijection (Edelman-Greene 1987)
{sorting networks} $ {standard staircase

Young tableaux}

2. New result for limiting profile of random
staircase Young tableau 

(from similar result for 
square tableaux, 
Pittel-Romik)
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(jeu de taquin
algorithm)



Why do we believe the conjectures?

The permutahedron: 
embedding of Cayley graph 
(Sn, n.n. swaps) in Rn :

sa s-1=(s
-1
(1),...,s

-1
(n))2Rn

n=4:

embeds in
(n-2)-sphere

n=5

1…n and n…1
are antipodal 

permutohedron5.html


Conjecture (AHRV) 
USN lies close to some great circle on the 
permutahedron with prob ! 1

as n!1

e.g. o(n) in |  |1

In  fact simulations suggest more like O(pn) !

(Again, not true for every sorting network,
e.g. bubble sort)



Analagous (much easier) fact:
random shortest route 
1st St & 1st Ave to nth St & nth Ave
¼ straight line as n!1



Theorem (AHRV) If a (non-random) sorting
network lies close to some great circle, then:

1. Trajectories ¼ Sine curves

2. Half-time permutation ¼ Archimedes
measure

3. Swap process ¼ semicircle x Lebesgue

Simulation

(o(n) in |  |1 )

sortdemo.exe


circle10K.gif


Proof of Theorem:

close to great circle )
¼ Sine trajectories (up to a time change)

, ¼ rotating disc picture

calculation ) semicircle law

swap rate uniform ) rotation uniform 

) no time change

projections uniform ) ¼ Archimedes



Geometric Sorting Networks
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Geometric Sorting Networks

1234



Goodman, Pollack (1980):
- all 4-item sorting networks are geometric
- but not all 5-item ones:



Goodman, Pollack (1980):
- all 4-item sorting networks are geometric
- but not all 5-item ones:
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Great circle conjecture says:
USN is “¼ geometric” as n!1

but:
Theorem (Angel,H,Gorin, in prep)

P(USN is geometric) ! 0 as n!1

Proof: in fact:
P(USN contains fixed swap pattern) > 1-e-cn

e.g. Goodman-Pollack
counterexample 

1
.
.
.
n

n
.
.
.
1



Subnetworks

1

2

3

4

5

5

4

3

2

1



Subnetworks

1

2

3

4

5

5

4

3

2

1



Subnetworks

1

2

4

4

2

1



Subnetworks

1

2

4

4

2

1



Subnetworks

1

2

3

3

2

1



Random Subnetworks

Take an n-item USN.  Choose m out of the n
items uniformly at random, indep. of USN. 

Great circle conjecture )
m fixed, n ! 1:  

geom. network of
m indep. points from
Archimedes distn. 

drandom
m-out-of-n network

!



Conjecture (Warrington, 2009)

random
4-out-of-n
network

{geom. networks
with 1 point in
hull(other 3) }

for all n   !



Moreover, 8 j < m · n,

E( in )

does not depend on n

random
m-out-of-n

network

# swaps in
location j

j
j+1

Theorem (Angel,H 2009)
Warrington’s conjecture is true.

consistent with Archimedes distribution
conjecture about n!1 limit 

and =



Ingredients of proof

P(s1=k) = P(k-1 white balls added 
in first n-2 in Polya urn)

1st swap location
in USN initially 

1½W, 1½B

Stationarity of USN
Exchangeability of Polya urn   P(wwwbb) = P(wbwbw)

Compute 
P(given space-time point in USN 

) swap at location j
in subnetwork)



Uniform swap model... 
Angel,H,Romik 2008
Amir,Angel,Valko

…



circle10K.gif


N.B. Not every sorting network lies close to
a great circle!  E.g. typical network through

n/2
...
1
n
...

n/2+1 

1
...

n/2
n/2+1

...
n

n
...

n/2+1
n/2
...
1

USN

USN

(But this permutation is very unlikely).



Staircase Young diagram:

n-1

N cells

(E.g. n=5)



Standard staircase Young tableau:

1 2

5 6

84

3

9

7 10

Fill with 1,L,N so each row/col increasing



Edelman-Greene algorithm:

1 2

5 6

84
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7 10

1. Remove largest entry



Edelman-Greene algorithm:
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Edelman-Greene algorithm:
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2. Replace with larger of neighbours " Ã
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Edelman-Greene algorithm:

1 2

5 6

84

3

9

7

2. Replace with larger of neighbours " Ã
...repeat



Edelman-Greene algorithm:

1

2

5 6

84
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7

2. Replace with larger of neighbours " Ã
...repeat



Edelman-Greene algorithm:

1

2

5 6

84
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3. Add 0 in top corner

0



Edelman-Greene algorithm:
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4. Increment

1



Edelman-Greene algorithm:
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Edelman-Greene algorithm:
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Edelman-Greene algorithm:
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Edelman-Greene algorithm:

4

5

8 9

7

6

10

5. Repeat everything...

3

21



Edelman-Greene algorithm:
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Edelman-Greene algorithm:



Edelman-Greene algorithm:

etc



Edelman-Greene Theorem:

After N steps,

45o



Edelman-Greene Theorem:

After N steps,
get swap process
of a sorting network!

1  1  1  1  4  4  4  4  5  5  5

2  2  4  4  1  1  5  5  4  4  4

3  4  2  2  2  5  1  2  2  2  3

4  3  3  5  5  2  2  1  1  3  2

5  5  5  3  3  3  3  3  3  1  1



Edelman-Greene Theorem:

After N steps,
get swap process
of a sorting network

And this is a bijection!

And can explicitly describe inverse!



Theorem (Pittel-Romik): For a uniform random
n x n square tableau, 9 limiting shape 
with contours:

Corollary (AHRV): For uniform random 
staircase tableau, limiting shape is half 
of this.

(Proof uses Greene-Nijenhuis-Wilf
Hook Walk)



Proof of LLN (swap process ) semic. x Leb.) 

Swaps in space-time window [an,bn]x[0,eN]

come from entries >(1-e)N in tableau:

an

bn

entries exiting in [an,bn]

µ

µ

# ¼ area under contour ¼ semicircle



Proof of octagon and Holder bounds

Inverse Edelman-Greene bijection
(¼ RSK algorithm) )

# entries <k in 1st row

¸ longest % subseq. of swaps 
by time k

¸ furthest any particle moves up
by time k

So can bound this using
limit shape.



Angel,H,Virag (in prepatation):

Process of first k swaps
in positions cn...cn+k

as n!1
not depending on c2(0,1)

! random limit


