Random Sorting Networks

Alexander Holroyd (UBC & Microsoft)

with: Omer Angel Dan Romik Balint Virag Vadim Gorin

To get from 1...n to n...1 requires N:= $\binom{n}{2}$ nearest-neighbour swaps

<u>A Sorting Network</u> = any route from 1...n to n...1 in exactly $N:= \binom{n}{2}$ nearest-neighbour swaps

Theorem (Stanley 1984).
of n-particle sorting networks =
$$\binom{n}{2}!$$

 $1^{n-1}3^{n-2}5^{n-3}\cdots(2n-3)^1$

<u>Uniform Sorting Network (USN)</u>: choose an n-particle sorting network uniformly at random.

E.g. n=3: $P(\underbrace{\times}) = P(\underbrace{\times}) = \frac{1}{2}$

swap locations

swap locations

particle trajectory

∃ efficient simulation algorithm for USN...

Swap locations, n=100

swap locations

$S_1 S_2 S_3 S_4 S_5 S_6$ = = = = = = = 1 2 3 1 2 1

<u>Theorem(Angel,H,Romik,Virag,2007)</u> For USN:

- 1. Sequence of swap locations $(s_1,...,s_N)$ is stationary
- 2. Scaled first swap location
 - $\frac{s_1}{n} \stackrel{dist}{\rightarrow}$ semicircle random variable
 - as n $\rightarrow\infty$

∀n

- 3. Scaled swap process
 - $\stackrel{dist}{\Rightarrow} \text{ semicircle} \times \text{Lebesgue} \quad as n \rightarrow \infty$ (Note: not true for *all* sorting networks,
 - e.g. bubble sort)

 $(s_1,...,s_N) \mapsto (s_2,...,s_N,n-s_1)$ is a bijection from {sorting networks} to itself.

So for USN:

$$(s_2,\ldots,s_N) \stackrel{d}{=} (s_1,\ldots,s_{N-1})$$

Selected trajectories, n=2000

Scaled trajectory of particle *i*: $T_i:[0,1] \rightarrow [-1,1]$

 $\frac{Conjecture}{trajectories} (AHRV)$ $trajectories \rightarrow random Sine curves:$ $\max_{i,t} |T_i(t) - A_i^n \sin(\pi t + \Theta_i^n)| \xrightarrow{Prob}{\to} 0$ $(random) \quad as n \rightarrow \infty$

Theorem (AHRV) scaled trajectories have subsequential limits which are Hölder($\frac{1}{2}$) with prob 1 as $n \rightarrow \infty$

Half-time permutation matrix, n=2000

animation

Conjecture (AHRV) scaled permutation $d \Rightarrow d$ Archimedes matrix at time N/2 $\Rightarrow d$ measure measure projection of surface area measure on sphere $S^2 \subset \mathbb{R}^3$ onto \mathbb{R}^2 (unique circularly symmetric measure with uniform linear projections; ${dx \, dy \over 2\pi \sqrt{1-x^2-y^2}}$ on x²+y²<1) scaled permutation $d \\ \Rightarrow \begin{pmatrix} 1 & 0 \\ \cos \pi t & \sin \pi t \end{pmatrix} \circ \frac{\text{Arch.}}{\text{meas.}}$

 $\frac{\text{Theorem (AHRV)}}{\text{scaled permutation matrix at time tN}}$ is supported within a certain octagon
with prob $\rightarrow 1$ as $n \rightarrow \infty$

Tools in proofs: 1. Bijection (Edelman-Greene 1987) {sorting networks} ↔ {standard staircase Young tableaux}

(jeu de taquin algorithm)

2. New result for limiting profile of random staircase Young tableau (from similar result for square tableaux, Pittel-Romik)

Why do we believe the conjectures?

The permutahedron: embedding of Cayley graph (S_n, n.n. swaps) in \mathbb{R}^n : $\sigma \mapsto \sigma^{-1} = (\sigma^{-1}(1), ..., \sigma^{-1}(n)) \in \mathbb{R}^n$

embeds in (n-2)-sphere

1...n and n...1 are antipodal

<u>Conjecture</u> (AHRV) USN lies close to some great circle on the permutahedron with prob $\rightarrow 1$

as n $ightarrow\infty$

e.g. o(n) in $| \rangle_{\infty}$

In fact simulations suggest more like $O(\sqrt{n})$!

(Again, not true for *every* sorting network, e.g. bubble sort)

Analagous (much easier) fact: random shortest route 1^{st} St & 1^{st} Ave to n^{th} St & n^{th} Ave \approx straight line as $n \rightarrow \infty$

<u>Theorem (AHRV)</u> If a (non-random) sorting network lies close to some great circle, then: $(o(n) in | |_{\infty})$

- 1. Trajectories \approx Sine curves
- 2. Half-time permutation \approx Archimedes measure
- 3. Swap process \approx semicircle x Lebesgue

close to great circle \Rightarrow \approx Sine trajectories (up to a time change) \Leftrightarrow \approx rotating disc picture

projections uniform $\Rightarrow \approx$ Archimedes

swap rate uniform \Rightarrow rotation uniform \Rightarrow no time change

calculation \Rightarrow semicircle law

Geometric Sorting Networks

Geometric Sorting Networks

Goodman, Pollack (1980):

- all 4-item sorting networks are geometric
- but not all 5-item ones:

Goodman, Pollack (1980):

- all 4-item sorting networks are geometric
- but not all 5-item ones:

Great circle conjecture says: USN is " \approx geometric" as $n \rightarrow \infty$

but:

 $\frac{Theorem}{P(USN is geometric)} \rightarrow 0 \text{ as } n \rightarrow \infty$

<u>Proof</u>: in fact: P(USN contains fixed swap pattern) > 1-e^{-cn}

e.g. Goodman-Pollack counterexample

Random Subnetworks

Take an n-item USN. Choose m out of the n items uniformly at random, indep. of USN.

```
\begin{array}{l} \mbox{Great circle conjecture} \Rightarrow \\ m \mbox{fixed, n} \rightarrow \infty; \\ random \\ m \mbox{-out-of-n network} \end{array} \stackrel{d}{\rightarrow} \begin{array}{l} \mbox{geom. network of} \\ m \mbox{indep. points from} \\ \mbox{Archimedes distn.} \end{array}
```


<u>Conjecture</u> (Warrington, 2009)

$P(\substack{\text{random} \\ 4 \text{-out-of-n} \in \{\text{geom. networks} \\ \text{with 1 point in} \\ \text{network} \end{pmatrix} =$

for all n !

<u>Theorem</u> (Angel,H 2009) Warrington's conjecture is true.

Moreover, $\forall j < m \le n$, random E(# swaps in location j in m-out-of-n) j_{j+1}

does not depend on n

and =
$$\frac{(j - \frac{1}{2}) \cdots \frac{753}{222} \times (m - j - \frac{1}{2}) \cdots \frac{753}{222}}{(j - 1)! \times (m - j - 1)!}$$

consistent with Archimedes distribution conjecture about $n{\rightarrow}\infty$ limit

Ingredients of proof $P(s_1=k) = P(k-1 \text{ white balls added})$ in first n-2 in Polya urn $1^{st} \text{ swap location}$ $1^{st} \text{ swap location}$ $1^{1} USN$ $1^{\frac{1}{2}}W, 1^{\frac{1}{2}}B$

Stationarity of USN *Exchangeability* of Polya urn P(wwwbb) = P(wbwbw)

Compute P(given space-time point in USN \Rightarrow swap at location j in subnetwork)

Uniform swap model...

Angel,H,Romik 2008 Amir,Angel,Valko

(But this permutation is very unlikely).

Staircase Young diagram:

(E.g. n=5)

N cells

Standard staircase Young tableau:

1	2	4	8
3	5	6	
7	10		
9		-	

Fill with 1,...,N so each row/col increasing

1. Remove largest entry

1. Remove largest entry

2. Replace with larger of neighbours $\uparrow \leftarrow$

2. Replace with larger of neighbours $\uparrow \leftarrow$

2. Replace with larger of neighbours $\uparrow \leftarrow$...repeat

2. Replace with larger of neighbours $\uparrow \leftarrow$...repeat

3. Add 0 in top corner

4. Increment

5. Repeat everything...

Edelman-Greene Theorem:

After N steps, get swap process of a sorting network!

Edelman-Greene Theorem:

After N steps, get swap process of a sorting network

And this is a bijection!

And can explicitly describe inverse!

<u>Theorem (Pittel-Romik)</u>: For a uniform random $n \ge n \le quare$ tableau, \exists limiting shape with contours:

$$h_{\alpha}(u) = \frac{2}{\pi} [u \tan^{-1}(u/R) + \tan^{-1}R]$$

where
$$R = \frac{\sqrt{\alpha(2-\alpha) - u^2}}{1-\alpha}$$

<u>Corollary (AHRV)</u>: For uniform random staircase tableau, limiting shape is half of this. (Proof uses Greene-Nijenhuis-Wilf Hook Walk) <u>Proof of LLN</u> (swap process \Rightarrow semic. x Leb.) Swaps in space-time window [an,bn]x[0, ϵ N] come from entries >(1- ϵ)N in tableau:

pprox area under contour pprox semicircle

Proof of octagon and Holder bounds

Inverse Edelman-Greene bijection (\approx RSK algorithm) \Rightarrow

entries <k in 1st row

≥ longest × subseq. of swaps by time k

- furthest any particle moves up
 by time k
 - So can bound this using limit shape.

Angel, H, Virag (in prepatation):

