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Fractals:
“random” vs. “structured”
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Example: Ternary Cantor set

Dimension (similarity and Hausdorff) log 2
log 3 . If we rescale the set by

1/3, we get 1/2 of it.
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Example: Random ternary Cantor set

Choose the same number of intervals, but at random. Dimension
(Hausdorff) still log 2

log 3 , but the set is no longer self-similar.
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Fractals in nature
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Random or not?

Intuitively, we’d like to say that most fractals found in nature are
“random.” How should our mathematics reflect that? What does
it mean for a deterministic set to be “random”? What features or
characteristics should we look for?

It turns out to be easier to say what a random set should not look
like.
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Human activity: “structured” fractals
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Structure vs. randomness

“Structured” fractals might have:

I Preferred directions or length units, on many scales.

I Many large segments that are exact (not just approximate)
translates of each other.

I Exact correlations or resonances between different scales.

Absence of such features suggests randomness.
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Pseudorandomness vs. additive structure

In additive combinatorics, pseudorandomness quantifies the
absence of additive structure in discrete sets. For a set A ⊂ Z, it
might mean:

I A does not correlate well with long arithmetic progressions.

I A has small intersections with its own translates.

I Additive equations such as a + b = c + d have the “expected”
(based on probability) number of solutions with a, b, c , d ∈ A.

I A + A is much larger than A.

We are looking for something similar in a fractal setting.
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Fourier decay
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Fourier analysis on fractals

The Fourier transform of a measure µ on Rd is

µ̂(ξ) =

∫
e−2πiξ·xdµ(x), ξ ∈ Rd .

Usually, µ will be either the surface measure on a smooth
manifold, or the natural measure on a Cantor set.

Measure µ on a Cantor set: if E =
⋂∞

j=1 Ej via Cantor iteration,

let µj = 1
|Ej |1Ej

dx (normalized Lebesgue densities), then µj
converge weakly to µ, a probability measure on E .
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Fourier decay, first for smooth manifolds

If µ is the Lebesgue measure on the surface of a smooth manifold,
when do we have an estimate |µ̂(ξ)| ≤ C (1 + |ξ|)−β/2 for some
β > 0?

I Yes if the manifold is curved, e.g. the sphere in Rd (via
stationary phase, with β = d − 1).

I Not possible if µ supported on a hyperplane of dimension less
than d .

I Note that a hyperplane has more additive structure than a
sphere. (Contains long arithmetic progressions, has more
translational invariance.)
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Fourier decay for fractals

Fourier decay of µ depends on specifics of construction.

I Structured case: let µ be the middle-third Cantor measure,
then µ̂(3) = µ̂(32) = · · · = µ̂(3j) = . . . , hence no pointwise
decay. (Analogous to flat surfaces.)

I Random Cantor sets typically have Fourier decay. (They
behave like curved hypersurfaces such as spheres.)

I Salem measures: have optimal Fourier decay. Most
constructions (Salem, Kahane, Bluhm,  Laba-Pramanik,...) are
probabilistic, but deterministic examples are also known
(Kaufman, Hambrook).
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Is Fourier decay a useful measure of randomness?

Marstrand’s projection theorem, special case: If E ⊂ R2 has
Hausdorff dimension α < 1, then the projected set πθ(E ) has
dimension α for Lebesgue-almost all θ.
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Is Fourier decay a useful measure of randomness?

In general, there can be exceptional directions for which the
projected set has lower dimension.

But this does not tend to happen for random sets.
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Is Fourier decay a useful measure of randomness?

For Salem sets (optimal rate of Fourier decay), the projected set
has dimension α for all directions. Also partial results if Fourier
decay holds for some exponent (not necessarily optimal). In this
context, Fourier decay does emulate randomness.

Similar arguments apply to many other questions about
projections, arithmetic sumsets, distance sets, etc.
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Other criteria?

There are situations where even the best possible pointwise Fourier
decay is not sufficient. There are also sets where we do not have
Fourier decay but nonetheless expect random-like behaviour. Other
criteria?

I Continue with Fourier analysis, but use it differently.
(Example: restriction estimates, next slide.)

I Alternatively, look for pseudorandomness criteria that are
based directly on additive structure, without using the Fourier
transform. (Example: the “correlation conditions” used to
prove a differentiation theorem for fractals,  Laba-Pramanik.)

There is ongoing work in both directions.
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Restriction estimates
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Restriction estimates

Fix a probability measure µ on Rd . Define

f̂dµ(ξ) =

∫
f (x)e−2πiξ·xdµ(x).

Looking for estimates of the form

‖f̂dµ‖Lp(Rd ) ≤ Cp,q‖f ‖Lq(µ) ∀f ∈ Lq(µ)

with p <∞. (The case p =∞, q = 1 is trivial.)

I No need for pointwise decay estimates on |f̂dµ(ξ)|, global Lp

bounds are sufficient.

I But we want them for f̂dµ, not just for µ̂. For example, we
could take f = 1F , where F is a very small subset of suppµ.
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Restriction for manifolds

Large body of work in classical harmonic analysis (Stein, Tomas,
Fefferman, Bourgain, Tao, Wolff, Christ, Vargas, Carbery, Seeger,
Bak, Oberlin, Guth, ...).

I No such estimates possible for “flat” manifolds such as
hyperplanes.

I For the surface measure on the sphere in Rd , restriction holds
with q = 2, p ≥ 2d+2

d−1 (Stein-Tomas). Proof is based on
Fourier decay. Similar results for other curved manifolds.

I Here, we focus on q = 2. (Improvements for q > 2 more
difficult, require Kakeya-type geometric information.)
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Range of restriction exponents for manifolds

If µ is the surface measure on the sphere, the Stein-Tomas range
of exponents is optimal. Seen from Knapp example: f is the
characteristic function of a small spherical cap.

The sphere is curved, but small spherical caps are almost flat.
Same happens for other smooth manifolds.
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Restriction exponents for fractal measures

The Stein-Tomas L2 restriction theorem can be extended to more
general measures with Fourier decay, including fractal measures
(Mockenhaupt, Mistis, Bak-Seeger). The range of exponents for
fractals matches the Stein-Tomas range for surfaces with the same
dimension and rate of Fourier decay (where this makes sense).

But for fractal measures, the Stein-Tomas exponent range is not
always the best possible. Restriction estimates and Fourier decay
capture different types of information.
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“Knapp examples” for fractals

Restriction with exponents better than Stein-Tomas cannot be
proved using only Fourier decay. Random Cantor sets can contain
much smaller subsets that are additivelly structured (multiscale
arithmetic progressions). Fourier decay still holds, but restriction
fails beyond Stein-Tomas range.

(Hambrook- Laba, Chen)
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Random sets with small structured subsets
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Improved restriction for fractal measures

Best possible range for α-dimensional measures on Rd is p ≥ 2d/α
(better than Stein-Tomas). To attain that range, µ cannot contain
“structured” parts, however small.

I Regularity of convolutions: If α = d/k for k ∈ {2, 3, . . . } and
the k-fold convolution µ ∗ · · · ∗ µ is absolutely continuous,
restriction holds for all p ≥ 2d/α. (Chen, Chen-Seeger,
Shmerkin-Suomala)

I Multiscale Λ(p) sets: Use Bourgain’s theorem on Λ(p) sets as
single-scale optimal restriction estimate, construct a
multiscale version using the decoupling method of
Bourgain-Demeter. Works for all α but without the endpoint
p = 2d/α. ( Laba-Wang)

I Such measures might or might not have optimal Fourier decay.
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Why restriction?

We have a new tool to investigate fractal sets, inspired by classical
harmonic analysis for manifolds, but displaying new features in the
current setting. What can we do with it?

I Fractal analogues of results from additive combinatorics:
restriction estimates are useful in proving Szemerédi-type
theorems. (Chen, Henriot,  Laba, Pramanik)

I Applications to dynamical systems are forthcoming.
(Example: Dyatlov-Zahl used additive combinatorics to prove
estimates on spectral gaps for hyperbolic surfaces. Follow-up
work requires more harmonic analysis on fractals.)
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Thank you!
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