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Continuous analogues of Szemerédi’s theorem

Given a “finite configuration” in Rn (a fixed set of k points, e.g. a
3-term arithmetic progression or an equilateral triangle), can we
find a similar copy of that configuration in every set E ⊂ Rn that is
sufficiently regular (e.g. closed or Borel) and, in some sense,
sufficiently large?

This is trivial if E has positive n-dimensional Lebesgue measure, by
the Lebesgue density theorem.

The interesting case is when E is a fractal set, of Lebesgue
measure 0 but Hausdorff dimension sufficiently close to n.
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A continuous analogue: finite patterns in sets of measure
zero

Let A ⊂ R be a finite set, e.g. A = {0, 1, 2}. If a set E ⊂ [0, 1] has
Hausdorff dimension α sufficiently close to 1, must it contain an
affine copy of A?

I Keleti 1998: There is a closed set E ⊂ [0, 1] of Hausdorff
dimension 1 (but Lebesgue measure 0) which contains no
affine copy of {0, 1, 2}.

I Keleti 2008: In fact, given any sequence of triplets {0, 1, αn}
with αn 6= 0, 1, there is a closed set E ⊂ [0, 1] of Hausdorff
dimension 1 which contains no affine copy of any of them.

I But there are positive results under additional conditions on E .
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Theorem ( L-Pramanik, 2008)

Let E ⊂ [0, 1] compact. Assume that E supports a probability
measure µ such that:

I µ((x , x + r)) ≤ C1r
α (in particular, dim(E ) ≥ α),

I |µ̂(k)| ≤ C2(1 + |k |)−β/2 for all k ∈ Z and some β > 2/3,
where

µ̂(k) =

∫ 1

0
e−2πikxdµ(x).

If α is close enough to 1 (depending on C1,C2), then E contains a
non-trivial 3-term arithmetic progression.

(We will be seeking more general results of this type.)
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About the assumptions

The assumption µ((x , x + r)) ≤ C1r
α is a dimensionality condition:

by Frostman’s Lemma, for any α < dimH(E ) there is a measure µ
supported on E that satisfies this.

The Fourier decay condition is more difficult to satisfy. Most
constructions of measures with such decay are randomized, e.g.
random constructions of Salem sets due to Salem, Kahane, Bluhm,
 L-Pramanik, Shmerkin-Suomala, ...

Shmerkin 2015: the dependence of α on C1,C2 is necessary
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Inspiration: Szemerédi-type theorems in sparse sets

I In general, Szemerédi’s theorem fails for sufficiently sparse
sets, e.g. A ⊂ {1, . . . ,N}, |A| ≥ N1−ε for some small ε > 0
(Salem-Spencer, Behrend, Rankin).

I But there are also positive results under additional
“pseudorandomness” conditions, e.g.,
Kohayakawa- Luczak-Rödl on subsets of random sets (1985),
Green 2003, Green-Tao 2004 on arithmetic progressions in the
primes.

I The concept of “pseudorandomness” depends on the problem
under consideration. For 3-term APs, pseudorandomness
conditions are Fourier-analytic.
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Proof: the trilinear form

Idea from additive combinatorics: for functions f : R→ C, define
the trilinear form

Λ(f ) =
1

2

∫∫
f (x)f (y)f (

x + y

2
)dxdy

=

∫
f̂ (ξ)2 f̂ (2ξ)dξ

I This “counts the number of 3-APs” in the support of f .

I The Fourier-analytic form still makes sense if f is replaced by
a measure µ. In this case, we can again interpret Λ(µ) as
counting 3-APs in suppµ.
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Proof: the decomposition of µ

More ideas from additive combinatorics: decompose µ = µ1 + µ2,
where

I µ1 is absolutely continuous with bounded density,

I µ2 is a signed measure with very small Fourier coefficients.

Then

I Prove a lower bound on Λ(µ1), depending only on ‖dµ1‖∞.

I The “random” part µ2 contributes only small errors.

(Similar to the “transference principle” in the work of Green,
Green-Tao, etc.)
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Multidimensional Szemerédi theorem

Furstenberg-Katznelson (1978): subsets of Zn of positive relative
density contain homothetic copies of any given k-point
configuration.

I Quantitative proofs: Gowers and Nagle-Rödl-Schacht-Skokan
(2004), via hypergraph regularity lemma.

I Fourier-analytic proof for triangles in dimension 2: Shkredov
2005, 2006.

I Multidimensional Szemerédi theorem in the primes:
Cook-Magyar-Titichetrakun (2013), Tao-Ziegler (2013)

We are interested in results of this type for fractal sets in Rn.
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I Multidimensional Szemerédi theorem in the primes:
Cook-Magyar-Titichetrakun (2013), Tao-Ziegler (2013)

We are interested in results of this type for fractal sets in Rn.

Izabella  Laba Polynomial configurations in fractal sets



Multidimensional results: the setup

Let A = (A1, . . . ,Ak) be a system of n ×m matrices, with m ≥ n.
Let E ⊂ Rn compact (we are interested in sets of n-dim Lebesgue
measure 0).

We will say that E is rich in A-configurations if

I (Existence) There exist x ∈ Rn and y ∈ Rm such that
{x , x + A1y , . . . , x + Aky} ⊂ E .

I (Non-triviality) The y above can be chosen so as to avoid
lower-dimensional subspaces of Rm leading to “trivial”
configurations (with two or more points overlapping)

In addition to assumptions on E , we need a “non-degeneracy”
condition on the matrices Aj .
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Example: Triangles in the plane

Let a, b, c ∈ R2 distinct. Then a triangle 4a′b′c ′ similar to 4abc
can be represented as a′ = x , b′ = x + A1y , c ′ = x + A2y , where
x ∈ R2, y ∈ R2 \ {0}, and

A1 = I , A2 =

(
λ cos θ −λ sin θ
λ sin θ λ cos θ

)
.

θ ∈ (0, π] is the angle at a, and λ > 0 is the ratio of the lengths of
the sides adjacent to that angle.

We exclude the subspace y = 0 to ensure that the three points do
not coincide.
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Multidimensional setup: polynomial configurations

Let A = (A1, . . . ,Ak) be a system of n ×m matrices, with m ≥ n.
Let also Q(y) be a polynomial in m variables such that Q(0) = 0
and the Hessian of Q does not vanish at 0.

We will want to prove that certain types of sets E are rich in
configurations

{x , x + A1y , . . . , x + Ak−1y , x + Aky + Q(y)en},

in the same sense as for the linear case.

Izabella  Laba Polynomial configurations in fractal sets



Polynomial configurations: examples

Example 1. Configurations in R2 given by[
x1
x2

]
,

[
x1 + y1
x2 + y2

]
,

[
x1 + y3

x2 + y21 + y22 + y23

]
.

can be represented by matrices that satisfy our assumptions. Note
the polynomial term in the last entry. We want non-trivial
configurations in the sense that y1, y2, y3 are not all 0.

Example 2. But we cannot get configurations x , x + y , x + y2 in
R. Not enough degrees of freedom.
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Linear case (Chan- L-Pramanik 2013); this version due to
H LP 2015

Theorem. Let n,m, k ≥ 1 such that n|m and k−1
2 n < m < kn.

Assume that the system (A1, . . . ,Ak) is non-degenerate. Let
E ⊂ Rn compact. Assume that there is a probability measure µ
supported on E such that for some α, β ∈ (0, n)

I µ(B(x , r)) ≤ C1r
α for all x ∈ Rn, r > 0,

I |µ̂(ξ)| ≤ C2(1 + |ξ|)−β/2 for all ξ ∈ Rn.

If α > n − ε, with ε > 0 sufficiently small (depending on all other
parameters), then E is rich in configurations

(x , x + A1y , . . . , x + Aky), x ∈ Rn, y ∈ Rm.
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Example: Triangles in the plane

Corollary: Let a, b, c ∈ R2 distinct. If E ⊂ R2 satisfies the
assumptions of the theorem, it must contain three distinct points
x , y , z such that 4xyz is a similar copy of 4abc.

I The acceptable range of α depends on a, b, c .

I The conclusion can fail without the Fourier decay assumption,
even if dimH(E ) = 2 (Maga 2010)

I Compare to Greenleaf-Iosevich 2010: if E ⊂ R2 compact,
dimH(E ) > 7/4, then the set of triangles spanned by points of
E has positive 3-dim measure.
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More examples

Parallelograms in Rn: Let n ≥ 2, and suppose that E ⊂ Rn

satisfies the assumptions of the theorem. Then E contains a
parallelogram {x , x + y , x + z , x + y + z}, where the four points
are all distinct.

Colinear triples in Rn: Let a, b, c ∈ Rn distinct and colinear.
Suppose that E ⊂ Rn satisfies the assumptions of the theorem.
Then E must contain three distinct points x , y , z that form a
similar image of the triple a, b, c .
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Polynomial case (Henriot- L-Pramanik 2015)

Theorem. Let n,m, k ≥ 2 such that (k − 1)n < m < kn, and
assume that the system (A1, . . . ,Ak) is non-degenerate. Let
E ⊂ Rn compact. Assume that there is a probability measure µ
supported on E such that for some α, β ∈ (0, n)

I µ(B(x , r)) ≤ C1r
α for all x ∈ Rn, r > 0,

I |µ̂(ξ)| ≤ C2(1 + |ξ|)−β/2 for all ξ ∈ Rn.

If α > n − ε, with ε > 0 sufficiently small (depending on all other
parameters), then E is rich in configurations

(x , x +A1y , . . . , x +Ak−1y , x +Aky +Q(y)en), x ∈ Rn, y ∈ Rm.
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Proof: Multilinear form and transference principle

Define a counting multilinear form Λ, similar to the case of 3-term
progressions in R.

Fourier analysis extends the definition of Λ to singular measures,
and we can use it to count A-configurations in suppµ.

To prove that Λ(µ, . . . , µ) > 0, decompose µ = µ1 + µ2 as before,
with µ1 abs. cont. and µ2 “random”. The main term comes from
µ1 while µ2 contributes small errors.
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New issue: geometry

Our counting form is

Λ(µ, . . . , µ) = C

∫
S

k∏
j=0

µ̂(ξj) dσ(ξ1, · · · , ξk),

where S is a lower-dimensional subspace of Rnk (determined by the
matrices Aj), and σ is the Lebesgue measure on S .

I WIth no assumptions on Aj , the decay of µ̂(ξj) in the ξj
variables does not imply decay along S .

I Nondegeneracy conditions: S is in “general position” relative
to the subspaces {ξj = 0} along which the factors µ̂(ξj) do
not decay.

I This is a recurring issue at every step of the proof.
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Polynomial case: additional issues

I The configuration form includes the oscillatory integral

J(ξ) =

∫
Rm

e
[
(AT ξ) · y + ξknQ(y)

]
ψ(y)dy ,

e(x) = e2πix and ψ is a cut-off function. This is controlled by
stationary phase estimates.

I The “continuous estimates” are more difficult than in the
linear case. We use a version of the regularity lemma and
number-theoretic diophantine estimates. This is the part of
the proof where Q must be a polynomial (not just a smooth
function with non-zero Hessian).
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Less Fourier decay required

Recall: we assume that |µ̂(ξ)| ≤ C2(1 + |ξ|)−β/2 for all ξ ∈ Rn,
some β > 0.

I Originally ( LP, C LP) we needed β to be sufficiently large. For
3-APs, we had β > 2/3.

I With our current methods, any β > 0 will do, at the cost of
pushing α in the ball condition closer to n. This is due to
more efficient use of restriction estimates.

I This is very far from “Salem sets.” There are natural
examples of fractal measures that have some but not optimal
Fourier decay, e.g. Bernoulli convolutions for almost all
contraction ratios.
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Thank you!
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