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Abstract. Singular and oscillatory integral estimates such as maximal theorems and
restriction estimates for measures on hypersurfaces have long been a central topic in
harmonic analysis. We discuss the recent work by the author and her collaborators
on the analogues of such results for singular measures supported on fractal sets. The
common thread is the use of ideas from additive combinatorics. In particular, the additive-
combinatorial notion of “pseudorandomness” for fractals turns out to be an appropriate
substitute for the curvature of manifolds.
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1. Introduction

A recurring theme in Euclidean harmonic analysis is the connection between Fourier-
analytic properties of measures and geometric characteristics of their supports. The
best known classical results of this type concern estimates on singular and oscilla-
tory integrals associated with surface measures on submanifolds of Rd, with ranges
of exponents depending on geometric features of the submanifold in question such
as its dimension, smoothness and curvature.

Our focus here is on more recent lines of research that dispense with the regu-
larity assumptions. Instead of surface measures on smooth manifolds, we will be
concerned with fractal measures supported on sets of possibly non-integer dimen-
sion. This includes in particular the case of ambient dimension 1, where there are
no non-trivial lower-dimensional submanifolds but many interesting fractal sets.
It turns out that the dichotomy between flatness and curvature for manifolds in
higher dimensions has useful analogues in dimension one. Specifically, ”random”
fractals (in a sense that will be made precise later) often behave like curved hy-
persurfaces such as spheres, whereas fractals exhibiting arithmetic structure (e.g.
the middle-third Cantor set) behave like flat surfaces.

∗The author was supported in part by an NSERC Discovery Grant.
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The goal of this paper is to provide an exposition of the recent work by the
author and her collaborators on three specific questions of this type: restriction
estimates, differentiation estimates, and Szemerédi-type results. In the context of
fractal sets, the first two lines of investigation can be dated back to Mockenhaupt’s
restriction theorem [37] (see also Mitsis [36]) and the work of Aversa and Preiss [1],
[2]. However, our work was also influenced by ideas from additive combinatorics
(see [53]), where the study of ”randomness” and ”arithmetic structure” in sets of
integers was a key part of recent major advances such as Gowers’s “quantitative”
proof of Szemerédi’s theorem [16] and the Green-Tao theorem on arithmetic pro-
gressions in the primes [18]. In the last section, we present Szemerédi-type results
for fractal sets, motivated by number-theoretic results from additive combinatorics
but also drawing on harmonic analytic techniques.

2. Fractal sets and Fourier decay

Throughout this article, we will refer to certain types of fractal sets of non-integer
dimension. We now provide the pertinent definitions and examples.

For a set E ⊂ Rd, we will use dimH(E) to denote its Hausdorff dimension.
The following characterization of the Hausdorff dimension, provided by Frostman’s
lemma, will suffice for our purposes instead of a definition; we refer the reader
to [13], [35], [56] for more background. Let M(E) be the set of all probability
measures supported on E. We will say that a measure µ ∈ M(E) obeys the ball
condition with exponent α if there is a constant C(α) such that

µ(B(x, ε)) ≤ C(α)εα for all x ∈ Rd, ε > 0, (1)

where B(x, ε) denotes the open ball of radius ε centered at x.

Lemma 2.1. (Frostman) Let E ⊂ Rd be a compact set. Then

dimH(E) = sup {α ∈ [0, d] : ∃µ ∈M(E) s.t. (1) holds for some C(α) > 0} (2)

If E is a smooth submanifold of Rd, then its Hausdorff dimension coincides
with its topological dimension: for instance, the sphere Sd−1 ⊂ Rd has Hausdorff
dimension d− 1. However, there are also many sets whose Hausdorff dimension is
non-integer. The following basic examples will be important in the sequel.

Example 2.2. (Self-similar Cantor sets.) Construct a set E ⊂ [0, 1] via the
following iteration. Fix integers N, t such that 1 < t < N . Divide [0, 1] into N
intervals of equal length, and choose t of them. This is our first iteration E1 of the
Cantor set,

E1 =
⋃
a∈A

[
a

N
,
a+ 1

N

]
where A is a subset of {0, 1, . . . , N − 1} of cardinality t. We now iterate the
construction in a self-similar manner, dividing each interval of E1 into N congruent
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subintervals and choosing k of them according to the same pattern, etc. We thus
get a decreasing sequence of sets E1, E2, . . . , where En consists of tn intervals of
length N−n:

En =
⋃

a1,...,an∈A

[
n∑
i=1

ai
N i

,

n∑
i=1

ai
N i

+
1

Nn

]
Let E =

⋂∞
n=1En, then E is a compact set of Lebesgue measure 0. If N = 3, t = 2

and A = {0, 2}, then E is the usual middle-thirds Cantor set. It is easy to see that

dimH(E) =
log t

logN
. (3)

Furthermore, the measure µ ∈ M(E) constructed as the weak limit of the abso-
lutely continuous measures with densities

φn =
1

|En|
1En

=
Nn

tn
1En

(4)

obeys (1) with this value of α. (We use 1X to denote the characteristic function
of a set X.) We will refer to such µ as the “natural” measure on E.

Example 2.3. (Generalized Cantor sets.) We modify the procedure from Example
2.2. As before, we start by dividing [0, 1] into N congruent intervals and choosing
t of them to form E1. Suppose that we have constructed En, consisting of tn

intervals Ij of length N−n each. We subdivide each Ij into N congruent intervals
and choose t of these; however, this does not need to be the same choice as for
E1 or any other preceding steps, nor do we have to use the same pattern for all
intervals of En. This again produces a decreasing sequence of sets converging
to a compact set E of Hausdorff dimension α = (log t)/(logN), and a natural
probability measure µ = w− limφn on E, where φn are defined as in (4). However,
such sets and measures are no longer self-similar, and can display a much wider
range of behaviours than those from Example 2.2. Of particular importance will be
“random” and “quasirandom” Cantor sets, where the choices of intervals at each
step are made through some randomized procedure within specified constraints.
An example of this is given in [31], Section 6.

Further modifications are possible. For instance, instead of keeping the values
of N and t fixed, one could repeat the last construction with a slowly increasing
sequence of Nn and tn such that log tn

logNn
→ α as n→∞; this produces Cantor sets

of arbitrary dimension 0 ≤ α ≤ 1, not just of the form log t
logN with t,N integer.

Analytic properties of fractal sets and measures (such as those described above)
depend very strongly on their arithmetic structure, in a manner that is reminiscent
of the relation between the geometry of a submanifold of Rd and its Fourier-analytic
properties. One indicator of the arithmetic structure, or lack thereof, of a measure
µ on Rd is the decay of its Fourier transform. Let

µ̂(ξ) =

∫
e−2πiξ·xdµ(x).



4 Izabella  Laba

We will be interested in pointwise estimates of the form

|µ̂(ξ)| ≤ C(β)(1 + |ξ|)−β/2 for all ξ ∈ Rd. (5)

The relation between Hausdorff dimension and estimates such as (5) is as follows.
Let E ⊂ Rd be compact. It is well known that

dimH(E) = sup{β ∈ [0, d] : ∃µ ∈M(E) s.t. Iβ(µ) <∞}, (6)

where

Iβ(µ) =

∫
Rd

|µ̂(ξ)|2 |ξ|−(d−β)dξ (7)

Thus for any β < dimH(E), there are measures supported on E that obey (5) “on
average.” On the other hand, (5) cannot hold with β > dimH(E).

We will say that a measure µ is a Salem measure if it obeys (5) for all β <
dimH(suppµ). (As indicated above, this is the best possible range of β except
possibly for the endpoint.) An easy example is provided by the Lebesgue measure
on the sphere Sd−1 ⊂ Rd, or more generally on a bounded (d − 1)-dimensional
smooth manifold with non-vanishing Gaussian curvature. In this case, the estimate
(5) with β = d− 1 follows from well known stationary phase estimates. It is more
difficult to produce Salem measures with supports of non-integer dimension. The
first such construction was given by Salem in [44]; for other examples, see Kaufman
[24], Kahane [23], Bluhm [4], [5].

The property of being a Salem measure (and indeed any pointwise estimate
such as (5) with β > 0) is deeper than average decay as in (6), and indicative of
the level of the arithmetic structure of the measure in question. Roughly speak-
ing, “random” fractal measures often obey (5), whereas “structured” ones do not.
For example, the self-similar Cantor measure µ in Example 2.2 has the Fourier
transform

µ̂(ξ) =

∞∏
j=1

(
1

|A|
∑
a∈A

e2πiaξ/N
j

)

and, since A ⊂ Z, we have µ̂(N j) = µ̂(1) for all j ∈ N, so that (5) does not hold
for any β > 0. On the other hand, the more general construction in Example 2.3
can be randomized so that µ obeys (5) for all β < dimH(E) (see [31]). We will see
that those measures that obey (5) for some β > 0, and those that do not, behave
very differently from the harmonic analytic point of view.

3. Restriction estimates

We define the Fourier transform of a function f : Rd → C by

f̂(ξ) =

∫
f(x)e−2πix·ξdx.
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This maps the Schwartz space of functions S to itself. By the Hausdorff-Young
inequality, the Fourier transform extends to a bounded operator from Lp(Rd) to
Lp
′
(Rd) if 1 ≤ p ≤ 2 and 1

p + 1
p′ = 1.

Let µ be a finite, compactly supported measure of Rd. We are particularly
interested in the case when µ is a singular measure, supported on a set E ⊂ Rd of

d-dimensional Lebesgue measure 0. We also write f̂dµ(ξ) =
∫
f(x)e−2πix·ξdµ(x).

Question 3.1. (Restriction problem) For what values of p, q do we have an esti-
mate

‖f̂dµ‖Lp(Rd) ≤ C‖f‖Lq(Rd,dµ), f ∈ S? (8)

Here and below, C and other similar constants may depend on the dimension
d, the measure µ, and the exponents p, q, but not on f . Whenever we use the
notation Lp(X) without indicating the measure, the latter is assumed to be the
Lebesgue measure on X.

The restriction problem takes its name from the dual formulation, which we
state now.

Question 3.2. (Restriction problem, dual version) For what values of p′, q′ do we
have an estimate

‖f̂‖Lq′ (Rd,dµ) ≤ C‖f‖Lp′ (Rd), f ∈ S? (9)

It is not difficult to see that (8) and (9) are equivalent if p, p′ and q, q′ are pairs
of dual exponents: 1

p + 1
p′ = 1

q + 1
q′ = 1. Informally, Question 3.2 can be stated in

terms of restricting the Fourier transform of an Lp
′

function f to the set E. This
is trivial if p′ = 1 and q′ =∞, since then f̂ is continuous and bounded everywhere.
On the other hand, no such result is possible if p′ = 2. This is because the Fourier
transform maps L2 onto L2, so that we are not able to say anything about the
behaviour of f̂ on a set of measure 0. For the intermediate values of p′ ∈ (1, 2) (or,
equivalently, for p > 2 in (8)), the answer depends on the geometric and arithmetic
pproperties of µ, as we will see in the rest of this section.

We now specialize to q = 2, in which case we have the following theorem.

Theorem 3.3. Let µ be a compactly supported positive measure on Rd such that
for some α, β ∈ (0, d) we have

µ(B(x, r)) ≤ C1r
α for all x ∈ Rd and r > 0, (10)

|µ̂(ξ)| ≤ C2(1 + |ξ|)−β/2 for all ξ ∈ Rd. (11)

Then for all p such that

p ≥ pd,α,β :=
2(2d− 2α+ β)

β
(12)

there is a C(p) > 0 such that

‖f̂dµ‖Lp(Rd) ≤ C(p)‖f‖L2(dµ) (13)

for all f ∈ L2(dµ).
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The classical Stein-Thomas theorem [54], [55], [48], [49] asserts this in the
prototype case when µ is the surface measure on the unit sphere Sd−1 in Rd,
so that α = β = d − 1. First proved by Stein for a smaller range of p (1967,
unpublished), it was then extended to q > 2d+2

d−1 by Tomas [54], [55], and finally
the endpoint estimate was proved by Stein [48].

We note here that the Stein-Tomas theorem exploits the curvature of Sd−1

via the estimate (11), and that the same result holds (for the same reasons) for
more general (d−1)-dimensional hypersurfaces in Rd with non-vanishing Gaussian
curvature. On the other hand, it is easy to see that there can be no estimates
such as (13) (or more generally, such as (8)) with p < ∞ if E is contained in
a hyperplane. For manifolds whose Gaussian curvature vanishes at some points,
such as cones or polynomial surfaces of higher order, there is a range of nontrivial
restriction estimates with exponents depending on the geometry of the manifold.

In the case of the sphere (and more generally, hypersurfaces with non-vanishing
Gaussian curvature), the range of exponents in (12) is known to be optimal, in the
sense that (13) fails for all p < 2d+2

d−1 . This is seen from the so-called Knapp
example, where (13) is tested on characteristic functions of small spherical caps
(see e.g. [49], [56]).

Theorem 3.3 as stated above, with exponents as above except for the endpoint,
was proved by Mockenhaupt [37] (see also Mitsis [36]), and the endpoint estimate is
due to Bak and Seeger [3]. Mockenhaupt’s argument follows closely Tomas’s proof
of the non-endpoint Tomas-Stein theorem for the sphere. The point of Mocken-
haupt’s work is that estimates such as (13) can also hold for less regular measures
obeying (10) and (11), including fractal measures with α, β not necessarily integer.
This shifts the emphasis from properties generally associated with differentiable
manifolds, such as smoothness and curvature, to arithmetic properties that may
hold for more general measures.

The question of the optimality of the estimate (13) for fractal sets appears to
be more complicated than for hypersurfaces. The question of sharpness of the
exponent in Theorem 3.3 for measures on R was only settled recently in [19], [11].

Theorem 3.4. Let 0 < β ≤ α < 1. Then there is a probability measure µ on [0, 1]
supported on a set E of dimension α and obeying (10) and (11), and a sequence of
functions {f`}`∈N on [0, 1] (characteristic functions of finite unions of intervals),
such that the restriction estimate (13) fails for the sequence {f`} and for every
1 ≤ p < p1,α,β, in the sense that

‖f̂`dµ‖Lp(R)

‖f`‖L2(dµ)
→∞ as `→∞. (14)

This is due to Hambrook and the author [19] in a slightly weaker form (which
already demonstrates that the dependence of p on α, β in (12) cannot be improved
for Salem measures), and to Chen [11] as stated.

The main idea, due to [19], is that, while Salem sets behave like random sets
overall, they may nonetheless contain much smaller sets that are highly structured.
Specifically, we construct a set E of dimension α = log t

logn via a randomized Cantor
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iteration as in Example 2.3, following the procedure from [31] to ensure that (11)
holds for all β < α. At the same time, we also modify the construction so that
each iteration En contains a much smaller subset Fn, where Fn is constructed
as in Example 2.2 with A an arithmetic progression. This can be done without
destroying the estimate (11) as long as |A| ≤

√
t. If A has the maximal allowed size√

t, the set F =
⋂
Fn is a highly structured Cantor set of dimension α/2. In the

language of additive combinatorics, the endpoints of each finite iteration Fn lie in a
generalized arithmetic progression of the lowest possible dimension. The functions
fn are then defined as the characteristic functions of Fn. The construction in [11]
follows the main steps of that in [19], but with N, t varying between different stages
of the iteration, allowing more flexibility with dimensions and exponents.

In a sense, this may be viewed as a one-dimensional analogue of Knapp’s coun-
terexample. The latter is based on the fact that an “almost flat” spherical cap
is contained in the curved sphere, or equivalently, that the sphere is tangent to a
flat hyperplane. Here, the set E may be thought of as random but nonetheless
“tangent” to the arithmetically structured set F .

We also note that our lower bound on ‖f̂`dµ‖p relies on arithmetic arguments,
specifically on counting solutions to linear equations in the set of endpoints of the
Cantor intervals in the construction. This idea appears to be new in this setting,
but has been used extensively in recent work on restriction estimates in finite fields,
see e.g. [38], [21], [33].

Theorem 3.4 shows that the range of p in (12) cannot, in this generality, be
improved. It remains unknown, however, whether such improvements might be
possible for some measures µ, and if so, how such measures might be characterized.

In this regard, we first note that a measure µ ∈ M(Rd) supported on a set of
dimension α0 cannot obey (13) for any p < 2d/α0, even if the L2 norm on the
right side is replaced by the stronger L∞ norm. This can be seen by letting f ≡ 1
and considering the energy integral (7) (see [19] for details).

Question 3.5. Is there a measure µ ∈ M(Rd) supported on a set of dimension
α0, obeying (10) and (11) with α and β arbitrarily close to α0, such that (13) holds
for (some or all) exponents in the intermediate range

2d

α0
≤ p < 4d− 2α0

α0
? (15)

If so, what properties of µ determine the range of such exponents?

Chen [10] provides an example of a measure supported on a set E ⊂ R of di-
mension 1/2 for which the restriction estimate (13) holds for the maximal possible
range p ≥ 4. Chen’s example is based on Körner’s construction in [30] of fractal
measures whose k-fold convolutions, for an appropriate k, are absolutely contin-
uous; in particular, the 1/2-dimensional example just mentioned depends on the
existence of a measure µ supported on a set of dimension 1/2 such that µ ∗ µ has
an L∞ density. However, Körner’s measures do not appear to obey (10) and (11)
with α, β near α0, and it is not clear whether the construction can be modified to
ensure these properties.
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Another open question concerns restriction estimates beyond the Stein-Tomas
range.

Question 3.6. Let µ ∈ M(R) be a Salem measure of dimension α0 ∈ (0, 1),
obeying the assumptions of Theorem 3.3 with α, β arbitrarily close to α0. Are
there any restriction estimates of the form

‖f̂dµ‖Lp(Rd) ≤ C(p)‖f‖L∞(dµ) (16)

for all f ∈ L∞(dµ), where p < 4d−2α0

α0
?

In the case when µ is the normalized surface measure on Sd−1, Stein [48]
conjectured that

‖f̂dµ(ξ)‖Lp(Rd) ≤ C(d, p)‖f‖L∞(Sd−1,dµ), (17)

for all p > 2d
d−1 . This is known for d = 2 (due to Fefferman and Stein [14]). It

remains open for all d > 2, but partial results are available (see e.g. [52], [56]
for an overview of the subject, and [8] for the current best result for the sphere).
The range of p as above, suggested by stationary phase formulas, is known to be
optimal.

We do not know whether fractal measures as in Question 3.6 admit any esti-
mates such as (16) with p < 4d−2α0

α0
. In the case of a sphere, such estimates require

sophisticated geometric input related to the Kakeya problem. It is unclear how
such arguments might translate to the setting of fractal sets.

4. Maximal functions and differentiation theorems

One of the most basic results in analysis is the Hardy-Littlewood maximal theorem.

Theorem 4.1. Given f ∈ L1(Rd), define its Hardy-Littlewood maximal function
by

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy, (18)

where B(x, r) = {y : |x− y| ≤ r}. Then

‖Mf‖p ≤ Cp,d‖f‖p

for all 1 < p ≤ ∞. Moreover, M is of weak type (1,1):

|{x : Mf(x) > λ}| ≤ Cλ−1‖f‖1.

This easily implies the Lebesgue differentiation theorem: if f ∈ L1(Rd), then
for almost all x we have

lim
r→0

1

|B(x, r)|

∫
B(x,r)

f(y)dy = f(x). (19)
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In particular, if f = χE is the characteristic function of a measurable set E, (19)
states that for almost all x ∈ E

lim
r→0

|E ∩B(x, r)|
|B(x, r)|

= 1, (20)

which is the Lebesgue theorem on density points.
We will be interested in analogues of Theorem 4.1 and its corollaries (19), (20)

where the averages on ballsB(x, r) are replaced by averages with respect to singular
measures supported on lower-dimensional sets. In general, such averages can be
quite badly behaved, as can be seen from the consideration of Kakeya and Nikodym
type examples (see e.g. [49], [56]). However, non-trivial maximal estimates can
hold for certain types of singular measures. In the case of hypersurfaces and,
more generally, manifolds in Rd, the main issues are smoothness and curvature. A
classic result of this type is the spherical maximal theorem, due to E.M. Stein [47]
for d ≥ 3 and Bourgain [6] for d = 2.

Theorem 4.2. Define the spherical maximal operator in Rd by

MSf(x) = sup
t>0

∫
Sd−1

|f(x− ty)|dσ(y), (21)

where σ is the normalized Lebesgue measure on Sd−1. Then

‖MSf(x)‖Lp(Rd) ≤ C‖f‖Lp(Rd), p >
d
d−1 , (22)

and this range of p is optimal.

There is a vast literature on maximal and averaging operators over families
of smooth lower-dimensional submanifolds of Rd, see e.g. [50], [39], [45], [46],
[22], [40], [41]. The situation is somewhat similar to restriction estimates in that
results of this type, including Stein’s proof of the spherical maximal theorem for
d ≥ 3, exploit curvature via Fourier decay estimates such as (5) for the surface
measure on the manifold. Such decay estimates are weaker for manifolds with
flat directions, which is reflected in a weaker range of exponents in maximal and
averaging estimates. We also note that the argument used to deduce (19) and (20)
from Theorem 4.1 is very general and applies in many other settings. In particular,
Theorem 4.2 implies the analogues of (19) and (20) for spherical averages, for
f ∈ Lp(Rd) with p > d

d−1 .
We are interested in analogues of Theorem 4.1 and its corollaries for singular

measures supported on fractal sets. For µ ∈ M(Rd), define the maximal operator
associated with it:

Mf(x) := sup
r>0

∫
|f(x+ ry)| dµ(y). (23)

In dimensions d ≥ 2, a theorem of Rubio de Francia [43] asserts that if µ obeys
the Fourier decay condition (5) with β > 1, then M is bounded on Lp(Rd) for
p > (β + 1)/β. This in particular implies Theorem 4.2 for d ≥ 3, and provides its
analogue for Salem measures of dimension strictly greater than 1. However, it does
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not apply to singular measures on R, since it is not possible for such measures to
obey (5) with β > 1.

In [32], we prove the following.

Theorem 4.3. (a) There is a measure µ ∈ M([1, 2]), supported on a set E of
Lebesgue measure 0 (but Hausdorff dimension 1) such that M is bounded on Lp(R)
for all p > 1.

(b) For any 0 < ε < 1
3 , there is a measure µ ∈M([1, 2]), supported on a set E

of Hausdorff dimension 1− ε. such that M is bounded on Lp(R) for p > 1+ε
1−ε .

As a corollary, we have a differentiation theorem for the measures constructed
in [32]:

lim
r→0

∣∣∣∣∫ f(x+ ry)dµ(y)− f(x)

∣∣∣∣ = 0 for a.e. x ∈ R (24)

for f ∈ Lp(R) with the same range of p as in Theorem 4.3. This answers a
question of Aversa and Preiss [1], [2]. Note that we require µ to be supported on
[1, 2] rather than [0, 1]; the purpose of this is to exclude the trivial solution µ = δ0.
An argument due to Preiss, included in [32], shows that M cannot be bounded on
L1(R), and (24) cannot hold for all f ∈ L1(R), if µ is singular with respect to the
Lebesgue measure.

Question 4.4. What is the optimal range of ε and p for which there exists a
measure µ ∈ M([1, 2]) with dimH(suppµ) = 1 − ε, such that M is bounded on
Lp(R), or that (24) holds for all f ∈ Lp(R)?

The range of ε and p in Theorem 4.3 is an artifact of the construction, and is
likely not optimal. On the other hand, it is easy to see that if dimH(suppµ) = α,
then (24) cannot hold for f ∈ Lp(R) (hence M cannot be bounded on Lp(R)) if
p < 1/α.

While the Lp-boundedness of M implies a differentiation theorem on Lp, there
is no converse implication, so that at least in principle it is possible that the range
of p, ε for differentiation theorem might be wider than for maximal theorems. We
also note that, while singular measures cannot differentiate all L1(R) functions as
pointed out above, there might be differentiation theorems of this type on spaces
such as L logL.

The measures in [32] are constructed via a randomized Cantor iteration, sim-
ilar to Example 2.3 but with variable numbers of intervals at different stages of
the construction. Thus, again, randomness of fractal sets is a substitute for cur-
vature. However, unlike with restriction estimates, the random behaviour of µ is
not mediated via Fourier estimates such as (5). Instead, we work in the “physical
space” and use randomization to ensure the correlation condition (25) below. This
is somewhat similar to Bourgain’s argument in [6], where the crucial geometrical
input concerns intersections of pairs of thin annuli.

Specifically, let En ⊂ [1, 2] be the n-th iteration of the Cantor construction,
φn = 1

|En|1En
, and σn = φn+1 − φn. The correlation condition we require asserts

that, for an appropriate range of n depending on p and ε, and for “most” choices
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of translation and dilation parameters c`, r`, we have∣∣∣∣∣
∫ k∏

`=1

σn

(z − c`
r`

)
dz

∣∣∣∣∣ ≤ C(k, n) (25)

with C(k, n) decayig exponentially in n. Heuristically, σn are highly oscillating
random functions with

∫
σn = 0, so that affine copies of σkn with generic trans-

lation and scaling parameters should be close to orthogonal, leading to massive
cancellations in the integral in (25).

The condition (25) is reminiscent of higher-order uniformity conditions in ad-
ditive combinatorics (cf. [16], [18]). A calculation from [16] shows that, at least
if ε is small enough, (25) implies that µ obeys a Fourier decay estimate (5) for
some (not necessarily optimal) β > 0; this, however, is not used in the proof of the
maximal theorem. At the same time, (25) is perfectly compatible with µ being a
Salem measure, and it is not difficult to modify the construction in [32] along the
lines of [31] to ensure that µ also has that property.

Question 4.5. Give an explicit, deterministic example of a measure µ ∈M([1, 2]),
singular with respect to the Lebesgue measure, sich that M is bounded on Lp(R)
for some p <∞.

The construction in [32] is random and produces no explicit examples. By the
arguments in [32], it would suffice to produce an explicit Cantor iteration for which
an appropriate version of (25) holds. There are many “pseudorandom” arithmetic
sets known in number theory that correlate poorly with their translates, and the
hope would be that such sets might be used as a basis for the Cantor iteration. The
main obstacle appears to be that the copies of σn in (25) are not only translated
but also dilated, and this makes the correlation condition very difficult to verify
for any such explicit sets.

5. Arithmetic patterns in fractal sets

We now turn to Szemerédi-type problems for fractal sets. The general question,
vaguely formulated, is as follows: if E ⊂ Rd has sufficiently large Hausdorff di-
mension, must it contain certain specified geometric configurations? If not, what
additional assumptions on E are sufficient to guarantee that? This could be viewed
as continuous analogues of Szemerédi’s theorem on arithmetic progressions in sets
of integers of positive upper asymptotic density [51], or of its multidimensional
variants [15].

It follows easily from the Lebesgue density theorem (20) that any set E ⊂ Rd
of positive Lebesgue measure contains a similar copy of any finite set F . Erdős
[12] conjectured that given any infinite sequence {an} ⊂ R, there exists a set E of
positive measure which does not contain any non-trivial affine copy of it. Falconer
[13] proved this for sequences that decay sufficiently slowly; see also [7], [20], [28],
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[29] for other related results and examples. The question remains open for faster
decaying sequences, such as the geometric sequence {2−n}.

Our focus here is on finding finite configurations in sets E ⊂ Rg of d-dimensional
Lebesgue measure 0, but Hausdorff dimension close to d. The simplest question
of this type is: given a triple F = {x, y, z} of distinct points in R, is it true that
any set E ⊂ R of dimension α sufficiently close to 1 must contain an affine copy of
F? Without additional assumptions on E, the answer is negative, even if α = 1.
This is due to Keleti [25], who also constructs sets that avoid all “parallelograms”
{x, x+ y, x+ z, x+ y + z}, with y, z 6= 0 [25], and sets that avoid all affine copies
of infinitely many 3-point configurations [26]. Similar results are known in higher
dimensions: for instance, Maga [34] proved that, given a triple F = {x, y, z} of
distinct points in R2, there exists a compact set in R2 with Hausdorff dimension 2
which does not contain any similar copy of F .

Additive combinatorics suggests that sets E that are “pseudorandom” in an
appropriate sense should be better behaved with regard to Szemerédi-type phe-
nomena than generic sets of the same size. For example, Szemerédi-type results
are available for sets of integers of zero asymptotic density if additional random-
ness or pseudorandomness conditions are assumed, see e.g. [27], [17], [18]. The
nature of such conditions depends on the context and especially on the type of
configurations being sought. For 3-term arithmetic progressions in sets of integers,
the relevant criterion is linear uniformity, expressed in terms of Fourier analytic
estimates [42]; higher order uniformity norms [16] can be used to guarantee the
existence of longer arithmetic progressions.

It turns out that Fourier decay estimates of the form (5) for fractal measures can
indeed serve as analogues of the additive-combinatorial notion of linear uniformity.
The following theorem is due to myself and Pramanik [31].

Theorem 5.1. Let E ⊆ [0, 1] be a closed set. Assume that there is a measure
µ ∈M(E) such that:

µ(B(x, ε)) ≤ C1ε
α for all 0 < ε ≤ 1 (26)

|µ̂(ξ)| ≤ C2(1 + |ξ|)−β/2 (27)

with 0 < α < 1 and 2/3 < β ≤ 1. If α > 1 − ε0(C1, C2, β), then E contains a
3-term arithmetic progression.

While Theorem 5.1 is stated and proved in [31] only for arithmetic progressions,
the same proof works for any fixed 3-point configuration {x, y, z}. In many cases
of interest including Salem measures, (27) is satisfied with β arbitrarily close to α.
The proof in [31] shows that the dependence of ε0 on β can be dropped from the
statement of the theorem if β is bounded from below away from 2/3, e.g. β > 4/5,
so that in such cases the ε0 in Theorem 5.1 depends only on C1, C2.

More recently, in a joint work with Chan and Pramanik [9], we proved a multi-
dimensional analogue of Theorem 5.1. Roughly speaking, we consider certain types
of ”admissible” finite configurations defined by appropriate systems of matrices.
If E ⊂ Rd supports a probability measure obeying (26) and (27) with α > d− ε0,
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where ε0 = ε0(C1, C2, β) is small enough depending on the configuration in ques-
tion, then E must contain that configuration. We omit the precise statement, since
the definition of admissible configurations is quite lengthy and technical. Instead,
we mention a few corollaries of the main theorem of [9].

Corollary 5.2. Suppose that E ⊂ R2 supports a probability measure obeying (26)
and (27), with α > 2− ε0.

(a) Let d = 2, and let a, b, c be three distinct points in the plane. If ε0 is small
enough depending on the configuration a, b, c, then E must contain three distinct
points x, y, z such that the triangle 4xyz is a similar (possibly rotated) copy of the
triangle 4abc.

(b) Let a, b, c be three distinct colinear points in Rd. If ε0 is small enough
depending on a, b, c, then E must contain three distinct points x, y, z that form a
similar image of the triple a, b, c.

Maga’s result [34] shows that (a) fails without the assumption (27), even if E
has Hausdorff dimension 2.

Corollary 5.3. Let E ⊂ Rd be as in Corollary 5.2, with ε0 small enough. Then
E contains a parallelogram {x, x + y, x + z, x + y + z}, where the four points are
all distinct.

Again, this should be compared to a result of Maga [34], which shows that the
result is false without the Fourier decay assumption. More complicated examples
are also possible, see [9] for details.

Question 5.4. Is there an analogue of Theorem 5.1 for k-term arithmetic pro-
gressions with k ≥ 4? If so, what are the appropriate higher order uniformity
conditions on µ?

Question 5.5. The main theorem of [9] provides a class of finite configurations
in Rd that are “controlled” (in the sense of e.g. [16]) by the Fourier transform.
Can this class be extended? (The constraints on the various parameters in [9] are
unlikely to be optimal.) Is there a characterization of those configurations that are
not controlled by the Fourier transform?
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