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Abstract. We prove results about the Lp-almost-periodicity of convolutions. One
of these follows from a simple but rather general lemma about approximating a sum
of functions in Lp, and gives a very short proof of a theorem of Green that if A and
B are subsets of {1, . . . , N} of sizes αN and βN then A + B contains an arithmetic
progression of length at least

exp
(
c(αβ log N)1/2 − log log N

)
.

Another almost-periodicity result improves this bound for densities decreasing with
N : we show that under the above hypotheses the sumset A+B contains an arithmetic
progression of length at least

exp

(
c

(
α log N

log3 2β−1

)1/2

− log(β−1 log N)

)
.

1. Introduction

Let A and B be subsets of an abelian group. What can one say about the structure of
the sumset A+B? One of the main endeavours of additive combinatorics is to answer
questions along these lines, and one particularly appealing goal is to find long arithmetic
progressions in A+B for particular kinds of sets A and B. Under the assumption that
A and B are ‘large’, a remarkable result in this direction was established by Bourgain
[1], who showed that if A and B are subsets of {1, . . . , N} of sizes αN and βN , then
A + B contains an arithmetic progression of length about1 exp(c(αβ logN)1/3). This
was subsequently improved by Green [4] to the following.

Theorem 1.1 (Green). Suppose A and B are subsets of {1, . . . , N} with densities α
and β. Then A+B contains an arithmetic progression of length at least

exp
(
c(αβ logN)1/2 − log logN

)
.

Green’s method of proof was quite different to Bourgain’s, which involved establishing
a particular kind of almost-periodicity result, and yet a third strategy was employed by
Sanders [9] in giving an alternative proof of the theorem. In this paper we prove almost-
periodicity results along similar lines to Bourgain’s and those in [3] and give applications
in the direction of Theorem 1.1. Let us first state a particularly clean almost-periodicity
result; this yields precisely Green’s bounds when applied in the direction of finding
arithmetic progressions in sumsets.
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1Here, and throughout the paper, we employ the convenient device of letting the letters c and C

denote positive absolute constants that may change from occurrence to occurrence.
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Theorem 1.2. Let p > 2 and ε ∈ (0, 1) be parameters. Let G be a finite abelian group
and suppose f : G→ C is a function. Then there is a Bohr set T ⊆ G of rank at most
Cp/ε2 and radius cε such that, for each t ∈ T ,

‖f(x+ t)− f(x)‖Lp(x) 6 ε‖f̂‖`1 .

(We give definitions in the next section.) Taking f = 1A ∗ 1B, the proof of Theorem
1.1 from this result is very quick. What is perhaps surprising is that the proof of this
theorem is also very short and involves hardly any Fourier analysis. Instead it relies on
a simple and quite general probabilistic argument similar to that employed in [3]; this
is contained in Section 3.

Theorem 1.2 is quite general and makes no assumptions on f ; however, in order for it

to be effective we must assume that ‖f̂‖`1 is sufficiently small. This will indeed be the

case in the application to proving Theorem 1.1, where f = 1A ∗ 1B and ‖f̂‖`1 is well
controlled by the Cauchy-Schwarz inequality.

By a different and somewhat more involved argument we are also able to establish the
following strengthening of Theorem 1.1.

Theorem 1.3. Suppose A and B are subsets2 of {1, . . . , N} with densities α and β.
Then A+B contains an arithmetic progression of length at least

exp

(
c

(
α logN

(log 2β−1)3

)1/2

− log(β−1 logN)

)
.

The improvement of this over Theorem 1.1 enters when one of the sets has density
decreasing with N . Note, for example, that for Theorem 1.1 to yield a non-trivial
conclusion at least one of the sets needs to have density at least log logN/(logN)1/2,
and each set density at least (log logN)2/ logN , whereas Theorem 1.3 allows for both
sets to have density about (log logN)C/ logN , and in fact one of the sets can have
density as low as exp (−(logN)c).

We shall in fact deduce this theorem from the following small-doubling version, where
the sets involved are not assumed to be dense in an interval but rather satisfy a small
sumset hypothesis.

Theorem 1.4. Suppose A and B are sets of integers satisfying |A+B| 6 KA|A|, KB|B|.
Then A+B contains an arithmetic progression of length at least

exp

(
c

(
log |A+B|
KB(log 2KA)3

)1/2

− log(2KA log 2|A|)

)
.

Theorem 1.3 follows on noting that if A and B are subsets of {1, . . . , N} then |A+B| 6
2N , whence we may take KA = 2α−1 and KB = 2β−1.

Behind this theorem lies another almost-periodicity result; this time the driving force
is a combination of the main result from [3] with an observation from the remarkable

2We shall always assume that A and B are non-empty, and that N > 3, to avoid trivialities.
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paper [10] of Sanders. The result, Theorem 6.2, is more naturally stated in the context
of other results and so we postpone it till Section 6.

The remainder of this paper is laid out as follows. In the next section we fix notation and
note some preliminary lemmas. In Section 3 we prove a general lemma on approximating
functions in Lp; this forms the heart of our proof of Theorem 1.2, which we deduce
together with Theorem 1.1 in Section 4. Together these sections provide all the material
needed for the reader interested purely in a short proof of Theorem 1.1. The proof of
Theorem 1.4 proceeds by different means, starting in Section 5 where we note a variant
of Ruzsa’s model lemma that works efficiently with two sets. In Section 6 we state and
prove Theorem 6.2, the almost-periodicity result required for Theorem 1.4, and deduce
the latter theorem.

2. Notation, definitions and preliminaries

We now fix notation and give definitions. Most of what we use is standard in the
additive combinatorial literature; as a consequence we shall be rather brief, referring
the unfamiliar reader to the book [11] of Tao and Vu for more information about any
of the following notions.

For a finite abelian group G we write Ĝ for its dual group, and we define the Fourier

transform f̂ : Ĝ → C of a function f : G → C by f̂(γ) = Ex∈Gf(x)γ(x). Here, and
elsewhere in this paper, the notation Ex∈X = |X|−1

∑
x∈X denotes the average over a

finite set X; when X is clear from the context we may write simply Ex. We define the
convolution of two functions f, g : G → C by f ∗ g(x) = Eyf(y)g(x − y). With these
normalizations, the Fourier inversion formula, Parseval’s identity and the convolution
identity take the form

f(x) =
∑
γ∈ bG

f̂(γ)γ(x),

Ex∈G|f(x)|2 =
∑
γ∈ bG

|f̂(γ)|2, and

f̂ ∗ g(γ) = f̂(γ)ĝ(γ).

We plainly need the notion of a Bohr set; our definition here is not identical to that in
[11] but is essentially equivalent.

Definition 2.1. Let G be a finite abelian group. For a set Γ ⊆ Ĝ of characters and a
number δ > 0 we define

BohrG(Γ, δ) = {x ∈ G : |γ(x)− 1| 6 δ for all γ ∈ Γ}

and call this3 a Bohr set of rank |Γ| and radius δ.

3There is an abuse of notation here; technically one should specify the triple (G, Γ, δ) and not just
the set BohrG(Γ, δ) in order to discuss the rank and radius of a Bohr set.
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A Bohr set is thus a set of approximate annihilators of a set of characters, and it is
these days well-known that such sets play an important role in additive combinatorics.
Of critical importance is that Bohr sets are highly structured:

Lemma 2.2. Suppose T is a Bohr set of rank d and radius δ ∈ (0, 2] in a finite abelian
group G. Then |T | > (δ/2π)d|G|. Furthermore, if G = ZN is a group of residues modulo
a prime N , then T contains an arithmetic progression of size at least 1

2π
δN1/d.

See for example [11, §4.4] for proofs.

For a finite abelian group G we write µG for the normalized counting measure µG(A) =
|A|/|G| on G, and for a subset X of G we write µX = 1X/µG(X). For a function
f : X → C we use the notation ‖f‖`p = (

∑
x∈X |f(x)|p)1/p for the `p norm of f and

‖f‖Lp = ‖f‖p = (Ex|f(x)|p)1/p for the Lp norm of f .

Finally, we write T = {z ∈ C : |z| = 1} for the unit circle in C.

3. Approximating a linear combination of functions in Lp

In this section we present a rather general lemma about approximating a linear com-
bination of functions by a combination of just a few of those functions. Theorem 1.2,
the simple almost-periodicity result, will be a simple deduction from this lemma. To
illustrate the lemma, let us sketch how it works as applied in the proof of Theorem 1.2.
To prove Theorem 1.2 it suffices to approximate f in Lp by a linear combination of a
few characters. The Fourier inversion formula gives us an expression

f =
∑
γ∈ bG

f̂(γ)γ (3.1)

for f as a linear combination of characters, but too many to be of use. The idea, then,
is to reduce the number of characters used by sampling some at random. According
to what distribution ought we to sample? An answer is suggested directly by (3.1):
one can view this expression essentially as the expectation of a random character χ,

where χ is picked to be the character γ with probability proportional to f̂(γ) (ignoring
technicalities). Taking an average of a few such random characters then approximates
f well in Lp by the law of large numbers, yielding what we want.

The version of the law of large numbers we shall use is the following inequality of
Marcinkiewicz and Zygmund.

Lemma 3.1 (Marcinkiewicz-Zygmund inequality). Suppose X1, . . . , Xn are indepen-
dent, mean zero (complex-valued) random variables with E|Xi|p <∞. Then

E|
k∑

j=1

Xj|p 6 (Cp)p/2E

( k∑
j=1

|Xj|2
)p/2

 .

This is proved in many places, though attention is often not paid to the dependence
on p in the multiplicative constant. One route to get this particular dependence on p
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is to note that one has this form for the bound for Rademacher random variables via
Khintchine’s inequality [6], and that one can deduce the result for general real-valued
random variables from this by the techniques of symmetrization and randomization; see
for example [5, §3.8]. The complex-valued case follows easily from the real case.

With this in hand, the following lemma implements the idea outlined above in a slightly
more general setup. For a non-zero complex number λ we write λ◦ = λ/|λ| ∈ T for the
direction on the unit circle determined by λ, and we set 0◦ = 0.

Lemma 3.2. Let p > 2 and ε ∈ (0, 1) be parameters, and let (X,µ) be a probability
space. Suppose

f = λ1g1 + · · ·+ λNgN

where each λj ∈ C and each gj : X → C is a measurable function with ‖gj‖Lp(µ) 6 1.
Then there is a positive integer k 6 Cp/ε2 and a k-tuple σ ∈ [N ]k such that

‖ 1
‖λ‖`1

f − 1
k
(λ◦σ1

gσ1 + · · ·+ λ◦σk
gσk

)‖Lp(µ) 6 ε.

In fact, the inequality holds with probability at least 0.99 if the tuple (σ1, . . . , σk) is picked
with probability |λσ1 · · ·λσk

|/‖λ‖`1.

Remark 3.3. In the applications we have in mind one generally has X being a finite
set and µ being uniform measure on some subset of X.

Proof. Let h be picked randomly from λ◦1g1, . . . , λ
◦
NgN , with λ◦jgj being picked with

probability |λj|/‖λ‖`1 . Then we have

Eh =
N∑

j=1

λj

‖λ‖`1
gj = f/‖λ‖`1 =: f0.

Let h1, . . . , hk be iid copies of h. The average k−1(h1 + · · ·+ hk) ought then to approxi-
mate its expectation f0 provided k is not too small; and indeed, by the Marcinkiewicz-
Zygmund inequality coupled with two interchanges of orders of integration we have

E
∫

X

|1
k

k∑
j=1

hj(x)− f0(x)|p dµ(x) 6
(Cp)p/2

kp/2
E
∫

X

(
1

k

k∑
j=1

|hj(x)− f0(x)|2
)p/2

dµ(x)

6
(Cp)p/2

kp/2
, (3.2)

the second inequality following from the nesting of Lq norms and the assumption that
‖gj(x)‖Lp(µ) 6 1 for each j. Picking k = dCp/ε2e gives that this is at most cεp for some
small constant c, and so

E‖1

k

k∑
j=1

hj(x)− f0(x)‖p
Lp(µ) 6 cεp.

Hence, by Markov’s inequality, we have that

‖1

k

k∑
j=1

hj(x)− f0(x)‖Lp(µ) 6 ε

holds with probability at least 1− c, as required. �
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Remark 3.4. In obtaining (3.2) we bounded the integrals rather crudely using the
bounds ‖hj(x)‖Lp(µ), ‖f0‖Lp(µ) 6 1. One can in certain situations make some additional
savings here; see the remarks at the end of the next section.

4. Deducing almost-periodicity and finding progressions in sumsets

We are now ready to prove the almost-periodicity result Theorem 1.2 and deduce The-
orem 1.1.

Proof of Theorem 1.2. Applying Lemma 3.2 to the Fourier expansion (3.1) of f , with
X = G, gives us characters γ1, . . . , γk with k 6 Cp/ε2 and complex numbers c1, . . . , ck
with |cj| 6 1 such that g = (c1γ1 + · · ·+ ckγk)/k satisfies

‖f/‖f̂‖`1 − g‖Lp 6 ε/3.

Let t ∈ BohrG({γ1, . . . , γk}, ε/3). By the triangle inequality we then have

|g(x+ t)− g(x)| 6 1

k

k∑
j=1

|γj(t)− 1| 6 ε/3

for any x ∈ G, whence the theorem follows. �

We next give the deduction of Theorem 1.1 from Theorem 1.2.

Proof of Theorem 1.1. By embedding the interval {1, . . . , N} in the cyclic group ZN ′ ,
where 4N 6 N ′ 6 8N is a prime, it suffices to establish the theorem for cyclic groups
instead of intervals; we shall thus prove the theorem for A,B ⊆ ZN with densities α, β.

Let f = 1A ∗ 1B and apply Theorem 1.2 to f with parameters to be determined; this
gives us a Bohr set T of rank d 6 Cp/ε2 and radius cε such that, for any t ∈ T ,

‖1A ∗ 1B(x+ t)− 1A ∗ 1B(x)‖Lp(x) < ε‖1̂A1̂B‖`1 6 ε(αβ)1/2,

where we have used the convolution identity, the Cauchy-Schwarz inequality and Par-
seval’s identity. Let P be a long arithmetic progression in T ; we shall determine how
long we can pick it in a moment. We then have

Ex∈G sup
t∈P

|1A ∗ 1B(x+ t)− 1A ∗ 1B(x)| 6 Ex

(∑
t∈P

|1A ∗ 1B(x+ t)− 1A ∗ 1B(x)|p
)1/p

< |P |1/pε(αβ)1/2

by the nesting of Lp norms. If this were less than αβ = Ex1A ∗ 1B(x) then we would be
done, for then there would be an element x such that 1A ∗ 1B(x+ t) > 0 for each t ∈ P ,
whence x + P ⊆ A + B. Let us pick ε = (αβ)1/2/e; we shall then be done if |P | 6 ep.
By Lemma 2.2 we can find an arithmetic progression P in T of length the integer part
of

cεN1/d = exp
(
cp−1αβ logN − log(C(αβ)−1)

)
,
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so we pick p = C
√
αβ logN in order to ensure that |P | 6 ep. Noting that the theorem

is trivial if αβ 6 C/ logN , we are done. �

Fourier space versus physical space. We should note that one can also obtain
physical-side almost-periodicity results via Lemma 3.2 by applying it to the expansion

1A ∗ 1B =
∑
y∈G

1A(y)

|G|
1y+B.

So applied, the lemma essentially lets one approximate 1A ∗ 1B by a multiple of 1C ∗ 1B

for many small sets C ⊆ A, and from this one can deduce almost-periodicity results:
see [3]. One can in fact obtain slightly stronger estimates for the expectations involved
in the proof of Lemma 3.2 in this setup than those concluded above. In particular,
by specializing the proof to this expansion at (3.2), one naturally obtains the following
version of the main result of [3]; see also [10, Lemma 3.3].

Theorem 4.1. Let p > 2, ε ∈ (0, 1) and k ∈ N be parameters. Let G be a group and
let A, B and S be finite subsets of G with |S ·A| 6 K|A|. Then there is a set T ⊆ S of
size

|T | > |S|
(2K)Cpk2/ε2

such that, for each t ∈ (T−1T )k,

‖1A ∗ 1B(tx)− 1A ∗ 1B(x)‖`p(x) 6 ε|A||B|1/p.

Here we have used product notation for the group operation and unnormalized convo-
lutions f ∗ g(x) =

∑
y∈G f(y)g(y−1x).

By making use of more detailed still distributional information in the random sampling,
one can obtain estimates of a different form for the almost-periodicity of 1A ∗ 1B. This
was done in [3], and it is the use of a particular form of these estimates that leads to
the improved density dependence in Theorem 1.3.

5. A variant of Ruzsa’s model lemma

We now turn to the proof of Theorem 1.4, which finds long arithmetic progressions in
A + B if A and B are sets of integers with |A + B| small. Before we can embark on
the proof proper, we need to transfer the problem to one in a cyclic group of prime
order, where we have more effective tools at our disposal. If A and B were assumed
to be dense subsets of {1, . . . , N}, then we could simply embed the sets in ZN ′ for a
small prime N ′ and work there instead of in the integers, as in the proof of Theorem
1.1. In the small-doubling setup, however, we need to argue more subtly; the following
modification of a modelling lemma of Ruzsa [8, Theorem 2.3.5] will allow us to proceed
efficiently.

Proposition 5.1. Let A and B be finite sets of integers and suppose k > 2 is an integer.
Then for any integer N > |kA− kA+ kB − kB| there are subsets A′ ⊆ A and B′ ⊆ B
with |A′| > |A|/2k, |B′| > |B|/2k such that A′ +B′ is k-isomorphic to a subset of ZN .
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In this context, two subsets A and A′ of two abelian groups are said to be Freiman
k-isomorphic if there is a bijection φ : A→ A′ such that

a1 + · · ·+ ak = a′1 + · · ·+ a′k ⇐⇒ φ(a1) + · · ·+ φ(ak) = φ(a′1) + · · ·+ φ(a′k)

whenever aj ∈ A; such a map is called a k-isomorphism. The relevance of this property
here is that a 2-isomorphism preserves the structure of a sumset, as well as the structure
of an arithmetic progression.

In the following proof we use the notation {x} = x − bxc to represent the fractional
part of a real number x.

Proof. We follow Ruzsa’s proof with minor modifications. Let ξ be a real number in
the interval [0, N ], to be fixed later, and define the map φ : Z → ZN by

φ(a) = bξac (mod N).

We shall show that if ξ is picked appropriately then one can find A′ and B′ as required
such that the map ψ(a+b) := φ(a)+φ(b) is well-defined and a k-isomorphism on A′+B′.

To this end, let us define

Aj =

{
a ∈ A :

j − 1

2k
6 {ξa} < j

2k

}
for j = 1, . . . , 2k,

and similarly for Bj. We claim that if ξ is chosen appropriately then any Ar and Bs will
lead to a good ψ above; the sets A′ and B′ can thus simply be taken to be the largest
Ar and Bs, which will clearly have sizes at least |A|/2k and |B|/2k.

That ψ is well-defined and a k-isomorphism on each Ar +Bs will follow if we can show
that there is a ξ such that for arbitrary a1, . . . , ak, a

′
1, . . . , a

′
k ∈ Ar and b1, . . . , bk, b

′
1, . . . , b

′
k ∈

Bs the congruence

bξa1c+ · · ·+ bξakc+ bξb1c+ · · ·+ bξbkc
≡ bξa′1c+ · · ·+ bξa′kc+ bξb′1c+ · · ·+ bξb′kc (mod N)

(5.1)

holds if and only if the equality

a1 + · · ·+ ak + b1 + · · ·+ bk = a′1 + · · ·+ a′k + b′1 + · · ·+ b′k (5.2)

holds. To see that such a ξ exists, consider the quantity

k∑
i=1

(
bξaic − bξa′ic

)
+

k∑
i=1

(
bξbic − bξb′ic

)
= ξ

k∑
i=1

(ai − a′i) + ξ
k∑

i=1

(bi − b′i)−
k∑

i=1

(
{ξai} − {ξa′i}

)
−

k∑
i=1

(
{ξbi} − {ξb′i}

)
.

(5.3)

Supposing first that (5.2) holds, we have that if all the ai, a
′
i and bi, b

′
i lie in Ar and

Bs respectively then the last two sums in (5.3) have absolute value strictly less than
1/2 each, and so the left-hand side is an integer lying strictly between −1 and 1, and
is hence 0. Thus (5.1) holds even as an equality of integers, not just a congruence,
regardless of the choice of ξ.
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Suppose now that (5.1) holds. The left-hand side of (5.3) is then a multiple of N , and
the right-hand side is of the form ξt+ δ where t ∈ kA− kA+ kB− kB and |δ| < 1. We
want, in this notation, our choice of ξ to force t = 0. It thus suffices to pick ξ ∈ [0, N ]
such that

ξ /∈ 1

t
· (dN + (−1, 1))

for any integer d and non-zero integer t ∈ kA − kA + kB − kB. For a fixed t, this
condition excludes at most |t|+1 intervals from [0, N ] (corresponding to d ∈ {0, . . . , t}),
the lengths of which sum to 2. The number of integers t that need to be considered is
(|kA−kA+kB−kB|−1)/2, since we are omitting 0 and since t and −t give rise to the
same collection of excluded intervals. The sum total lengths of the excluded intervals
is thus |kA− kA+ kB− kB| − 1, and since N > |kA− kA+ kB− kB| this means that
there is a ξ ∈ [0, N ] outside these intervals, completing the proof. �

Remark 5.2. Clearly one can extend this statement to m sets instead of two, as long
as one is willing to reduce the size of the sets by a factor of mk instead of 2k.

In order to apply this result we shall need an efficient bound on the size of the set
2A− 2A+ 2B − 2B when A+B is small. The following lemma provides this.

Lemma 5.3. Suppose A and B are sets of integers with |A + B| 6 Kmin(|A|, |B|).
Then |2A− 2A+ 2B − 2B| 6 KC |B|.

Proof. This is an application of standard tools from additive combinatorics. There are
many possible ways to argue; here is one. By averaging, there is an element x such
that the set D = (x− A) ∩ B has size at least |A||B|/|A+ B| > |A|/K. By the Ruzsa
triangle inequality [11, Lemma 2.6] we then have

|2A−2A+2B−2B| 6 |2A− 2A−D||D + 2B − 2B|
|D|

6
|3A− 2A||3B − 2B|

|D|
6 K11|B|,

where at the last step we used the Plünnecke-Ruzsa inequality [11, Corollary 6.29] (see
also [7] for a simple proof). �

6. Improving the density dependence and using small doubling

As previously mentioned, in order to obtain the improved density dependence in The-
orem 1.3 we shall make use of the more detailed moment estimates given in [3]. These
are encoded in the following specialization of [3, Proposition 3.3].

Theorem 6.1. Let p > 2 and k ∈ N be parameters. Let G be a finite abelian group and
let A, B and S be subsets of G with |A + S| 6 KA|A| and |A + B| 6 KB|B|. Suppose
0 < ε 6 k/

√
KB. Then there is a set T ⊆ S of size

|T | > exp(−Ck2p log(2KA)/ε2)|S|

such that, for each t ∈ kT − kT ,

‖µA ∗ 1B(x+ t)− µA ∗ 1B(x)‖Lp(x) 6 ε‖µA ∗ 1B‖1/2
p/2.



10 ERNIE CROOT, IZABELLA  LABA, AND OLOF SISASK

(Recall that µA = 1A/µG(A).) The proof of this theorem in [3] was combinatorial,
and various consequences of it were drawn by combinatorial means. It turns out that
if we couple its conclusion with some relatively simple Fourier analysis in the form of
Chang’s theorem, then we can magnify its quantitative effectiveness dramatically: more
specifically, following one of the key ideas in the remarkable paper [10] of Sanders, we
shall ‘bootstrap’ the iterated sumset of almost-periods given by the previous theorem
to a Bohr set of almost-periods.

Theorem 6.2. Let G be a finite abelian group and let A,B ⊆ G be non-empty subsets
with |A + B| 6 KA|A|, KB|B|. Let p > 2 and suppose 0 < ε 6 1/

√
KB. Then there is

a Bohr set T ⊆ G of rank d 6 Cp(log 2KA/ε)
2(log 2KA)/ε2 +C log µG(B)−1 and radius

at least cε/d
√
KA such that

‖µA ∗ 1B(x+ t)− µA ∗ 1B(x)‖Lp(x) 6 ε‖µA ∗ 1B‖1/2
p/2 for each t ∈ T .

Proof. Apply the previous theorem with S = B and parameter k to be determined to
get a set X with

τ := |X|/|G| > exp
(
−Ck2p(log 2KA)/ε2 − log µG(B)−1

)
such that

‖µA ∗ 1B(x+ t)− µA ∗ 1B(x)‖Lp(x) 6 1
3
ε‖µA ∗ 1B‖1/2

p/2 for each t ∈ kX.

By the triangle inequality we thus have

‖µA ∗ 1B ∗ µ(k)
X − µA ∗ 1B‖p 6 1

3
ε‖µA ∗ 1B‖1/2

p/2,

where µ
(k)
X = µX ∗ µX ∗ · · · ∗ µX denotes the k-fold convolution of µX with itself.

Now let t ∈ G be arbitrary. Another application of the triangle inequality yields

‖µA ∗ 1B(x+ t)− µA ∗ 1B(x)‖Lp(x) 6 2
3
ε‖µA ∗ 1B‖1/2

p/2

+ ‖µA ∗ 1B ∗ µ(k)
X (x+ t)1S(x)− µA ∗ 1B ∗ µ(k)

X (x)1S(x)‖Lp(x),
(6.1)

where S = (A+B) ∪ (A+B − t) contains the support of µA ∗ 1B(x+ t)− µA ∗ 1B(x).
We shall bound the last term here by restricting t to an appropriate Bohr set. Indeed,
bounding the term by its maximum on S and then using Fourier inversion we have that
it is at most

21/pµG(A+B)1/p‖µA ∗ 1B ∗ µ(k)
X (x+ t)− µA ∗ 1B ∗ µ(k)

X (x)‖L∞(x)

6 21/pµG(A+B)1/p
∑
γ∈ bG

|µ̂A(γ)||1̂B(γ)||µ̂X(γ)|k|γ(t)− 1|.

Now let Γ = {γ ∈ Ĝ : |µ̂X(γ)| > 1/e} and set δ = ε/5
√
KA and k = dlog 2/δe. Then,

for any t ∈ BohrG(Γ, δ) we have∑
γ∈ bG

|µ̂A(γ)||1̂B(γ)||µ̂X(γ)|k|γ(t)− 1| 6 δ
∑
γ∈Γ

|µ̂A(γ)||1̂B(γ)|+ 2

ek

∑
γ /∈Γ

|µ̂A(γ)||1̂B(γ)|

6 δµG(B)1/2µG(A)−1/2.
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To be of use in (6.1) we thus want 21/pµG(A+B)1/pδµG(B)1/2µG(A)−1/2 to be at most
1
3
ε‖µA ∗ 1B‖1/2

p/2. A quick calculation using Hölder’s inequality and the relationship

‖µA ∗ 1B‖1 = µG(B) reveals that our choice of δ ensures this. Hence we have the
conclusion we want for any t ∈ BohrG(Γ, δ). To obtain the low rank conclusion, we
apply Chang’s theorem [2] (see also [11, Lemma 4.36]): this says that BohrG(Γ, δ),
being a Bohr set associated to a set of large Fourier coefficients, contains a low-rank
Bohr set BohrG(Λ, δ/d) where

d := |Λ| 6 C log 1/τ 6 Cp(log 2KA/ε)
2(log 2KA)/ε2 + CµG(B)−1,

which completes the proof. �

Proof of Theorem 1.4. We first need to embed the sets A and B into a finite abelian
group so that we can effectively use the properties of Bohr sets. As mentioned in
Section 5, this is simple in the setup of Theorem 1.3, where A and B are dense subsets
of {1, . . . , N}: we may simply embed the sets in ZN ′ where N ′ is a prime between
4N and 8N . For the small doubling case we use Proposition 5.1. Specifically, let
us assume without loss of generality that KB 6 KA. Applying Proposition 5.1 to
A and B with k = 2 and N a prime less than CKC

A |B|, as allowed by Lemma 5.3,
we obtain sets A′ ⊆ A, B′ ⊆ B with |A′| > |A|/4, |B′| > |B|/4 and a Freiman 2-
isomorphism φ from A′ + B′ to a subset of ZN . We shall find our desired arithmetic
progression in A′ + B′. We may assume, by translating if necessary, that A′ and B′

both contain 0 and that φ takes 0 to 0. Hence we have φ(A′ + B′) = φ(A′) + φ(B′)
and so |φ(A′) + φ(B′)| 6 4KA|φ(A′)|, 4KB|φ(B′)|. Since the property of containing an
arithmetic progression of a given size is preserved under 2-isomorphism, it suffices (after
adjusting the constants) to establish the theorem for φ(A′) and φ(B′), which we now
relabel as A and B.

The argument is now similar to that in the proof of Theorem 1.1 given in Section 3, the
main difference being that we take into account the higher-order energy ‖µA ∗ 1B‖p/2

present in the conclusion of Theorem 6.2. Let us apply Theorem 6.2 with ε = 1/e
√
KB

and a parameter p to be specified later; since B has density at least cK−C
A in ZN this

gives us a Bohr set T of rank d 6 CpKB(log 2KA)3 and radius at least c/KAd such that

‖µA ∗ 1B(x+ t)− µA ∗ 1B(x)‖Lp(x) < ε‖µA ∗ 1B‖1/2
p/2 for each t ∈ T .

Let P be an arithmetic progression in T . Assume for a contradiction that A + B does
not contain a translate of P , so that for each x ∈ ZN there is some t ∈ P for which
µA ∗ 1B(x+ t) = 0. Then

|P |εp‖µA ∗ 1B‖p/2
p/2 >

∑
t∈P

‖µA ∗ 1B(x+ t)− µA ∗ 1B(x)‖p
Lp(x)

> ‖µA ∗ 1B‖p
p > ‖µA ∗ 1B‖p

p/2/µG(A+B),

the last inequality being an instance of the Cauchy-Schwarz inequality. We shall thus
have a contradiction if |P | and p are picked so that

|P | 6 epK
p/2
B ‖µA ∗ 1B‖p/2

p/2/µG(A+B).

Since ‖µA∗1B‖p/2 > ‖µA∗1B‖1/µG(A+B)1−2/p by Hölder’s inequality, it suffices to pick
|P | 6 ep to obtain the contradiction. Now, by Lemma 2.2 we can find an arithmetic
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progression P in T of size the integer part of

exp

(
c

logN

pKB(log 2KA)3
− C log(pKA)

)
;

picking p = C
√

logN/KB(log 2KA)3 then yields the conclusion, since |A + B| 6 N 6
CKC

A |A|. �

7. Further remarks

Exactly the same argument that deduced Theorem 6.2 from Theorem 6.1 can be used
to deduce the following result from Theorem 4.1.

Theorem 7.1. Let p > 2 and ε ∈ (0, 1). Let G be a finite abelian group and let A, B
and S be finite subsets of G with |A+ S| 6 K1|A| and |A+B| 6 K2|B|. Then there is
a Bohr set T of rank at most

d = Cp(log(1/δ))2ε−2 log(2K1) + C log(µG(S)−1)

and radius at least δ/d, where

δ = cε
√
µG(A)/µG(B)K

−1/p
2 ,

such that, for each t ∈ T ,

‖µA ∗ 1B(x+ t)− µA ∗ 1B(x)‖Lp(x) 6 εµG(B)1/p.

Thus one may go from an iterated sumset of Lp-almost periods directly to a Bohr set of
Lp-almost-periods. Applying this with S = A, B = A−A, ε = 1/2 and p = C log(2K),
where K is the doubling constant for A, it is a quick deduction to recover Theorem 10.1
of Sanders [10], namely that 2A − 2A contains a low-rank coset progression in groups
with ‘good modelling’: one uses the inequalities

|µ−A ∗ µA ∗ 1A−A(t)− 1| = |µ−A ∗ µA ∗ 1A−A(t)− µ−A ∗ µA ∗ 1A−A(0)|
6 ‖µA‖Lq‖µA ∗ 1A−A(x+ t)− µA ∗ 1A−A(x)‖Lp(x)

6 c,

whence t ∈ 2A− 2A. Since T contains a large coset progression, one is done. We stress
that this does not offer a quantitative improvement over Sanders’s result, but we include
the remark for clarification and since it follows a slightly different and more direct route
to that in [10], avoiding the need to deal with correlations and deducing containment
from this.
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