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ABSTRACT. We prove that the range of exponents in Mockenhaupt’s restriction theorem for Salem
sets [12], with the endpoint estimate due to Bak and Seeger [1], is optimal.
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1. INTRODUCTION

Using a Stein-Tomas type argument, Mockenhaupt [12] (see also Mitsis [11]) proved the following
restriction theorem, with the endpoint due to Bak and Seeger [1].

Theorem 1. Let µ be a compactly supported positive measure on Rn such that for some α, β ∈
(0, n) we have

(1.1) µ(B(x, r)) ≤ C1r
α for all x ∈ Rn and r > 0,

(1.2) |µ̂(ξ)| ≤ C2(1 + |ξ|)−β/2 for all ξ ∈ Rn.

Then for all p ≥ pn,α,β := 2(2n−2α+β)
β , there is a C(p) > 0 such that

(1.3) ‖f̂dµ‖Lp(Rn) ≤ C(p)‖f‖L2(dµ)

for all f ∈ L2(dµ). The equivalent dual form of this assertion is: For all 1 ≤ p′ ≤ 2(2n−2α+β)
4(n−α)+β ,

there is a C(p′) > 0 such that

(1.4) ‖f̂‖L2(dµ) ≤ C(p′)‖f‖Lp′ (Rn)

for all f ∈ Lp′(Rn).

When α = β = n−1 and µ is the surface measure on the unit sphere Sn−1 in Rn, this is the classical
Stein-Thomas theorem [16], [17], [14], [15]. The point of Theorem 1 is that similar estimates
hold for less regular measures obeying (1.1) and (1.2), including fractal measures with α, β not
necessarily integer.

It is well known (see e.g. [10], [18]) that if a measure µ is supported on a set of Hausdorff dimension
α0 < n and obeys (1.1) and (1.2), we must necessarily have α ≤ α0 and β ≤ α0. The surface
measure on the sphere provides an example with α = β = α0. We do not know whether this is
possible when α0 is non-integer, but there are many constructions of measures supported on sets
of fractional Hausdorff dimension α0 for which (1.1) and (1.2) hold with α and β both arbitrarily
close to α0. Salem [13] constructed measures on [0, 1] supported on sets of Hausdorf dimension
0 < α < 1, and obeying (1.1) with the same α, such that (1.2) holds for all 0 < β < α with the
constant C2 depending on β. (The verification of (1.1) for Salem’s construction is in [12].) Further
examples are in [3], [4], [6], [7], [9].
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We are interested in the question of the sharpness of the range of p in Theorem 1. It is easy to see
that if µ is a probability measure on Rn supported on a compact set of Hausdorff dimension α0 < n,
then (1.3) cannot hold for any p < 2n/α0, even if the L2 norm on the right side is replaced by the
stronger L∞ norm. Indeed, let f ≡ 1, so that f̂dµ = µ̂. The assumption on the support of µ implies
that for any γ > α0 we have

Iγ(µ) =

∫
|ξ|≥1

|µ̂(ξ)|2 |ξ|−(n−γ)dξ =∞

(This is the usual energy integral, with the |ξ| ≤ 1 region removed. See e.g. [10], [18].) On the
other hand, by Hölder’s inequality we have

Iγ(µ) ≤ ‖µ̂‖2p
(∫
|ξ|≥1

|ξ|−(n−γ)
p

p−2

) p−2
p
,

and the last integral is finite for p < 2n/γ, so that ‖µ̂‖p = ∞ for such p. The conclusion follows
by letting γ → α0.

In the most interesting case when α and β can be taken arbitrarily close to α0, this leaves the
intermediate range

(1.5)
2n

α0
≤ p < 4n− 2α0

α0
.

In the case of the Tomas-Stein theorem, where µ is the surface measure on the unit sphere in Rn and
α = β = n− 1, the estimate (1.3) is known to fail for all p < 4n−2α

α = 2n+2
n−1 . This is seen from the

so-called Knapp example, where (1.3) is tested on characteristic functions of small spherical caps
(see e.g. [15], [18]). It has not been known whether similar examples exist for sets of fractional
dimension. Mockenhaupt [12] stated that he could not exclude the possibility that for n = 1 and
α0 = α ∈ (0, 1), the estimate (1.3) could in fact hold for all p > 2/α. Mitsis [11] and Bak and
Seeger [1] did not try to address this question.

In this regard, we have the following result for n = 1.

Theorem 2. For α ∈ (0, 1) such that α = log(t0)
log(n0)

for some t0, n0 ∈ N, n0 6= 1, and for every

1 ≤ p < 4
α − 2, the following holds. There is a probability measure µ on [0, 1] supported on a set

E of dimension α, and a sequence of functions {f`}j∈N on [0, 1] (characteristic functions of finite
unions of intervals), such that

• µ obeys (1.1) with the given value of α,
• µ obeys (1.2) for every β < α (with C2 depending on β),
• the restriction estimate (1.3) fails for the sequence {f`}, i.e.

(1.6)
‖f̂`dµ‖Lp(R)

‖f`‖L2(dµ)
→∞ as `→∞.

The set of α in the assumptions of the theorem is dense in (0, 1). It is likely that the construction
could be modified to yield such a measure and sequence of functions for every α ∈ (0, 1), but
this would not strengthen our conclusions significantly, considering that for a fixed p the relevant
range of α is given by a strict inequality and that in any event we cannot produce a measure with
α = β = α0.

The Salem set E will be constructed via a randomized Cantor iteration. The main idea is that,
while Salem sets are random overall, they may nonetheless contain much smaller sets that come
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close to being arithmetically structured. In our case, E will contain subsets E ∩ F`, where F` is a
finite iteration of a smaller Cantor set with endpoints in a generalized arithmetic progression. The
functions f` will then be characteristic functions of F`.

In a sense, this may be viewed as a one-dimensional analogue of Knapp’s counterexample. The
latter is based on the fact that an “almost flat” spherical cap is contained in the curved sphere, or
equivalently, that the sphere is tangent to a flat hyperplane. Here, the set E may be thought of as
random but nonetheless “tangent” to the arithmetically structured sets F`.

The construction of the Salem set E is similar to that in [9], but we have to be careful to make
sure that the inclusion of the sets E ∩ F` does not disturb the Fourier estimates. Our lower bound
on ‖f̂`dµ‖p relies on arithmetic arguments, specifically on counting solutions to linear equations in
the set of endpoints of the Cantor intervals in the construction. Optimizing the parameters in the
construction, we get Theorem 2.

If instead of Salem measures obeying (1.1) and (1.2) one considers more general measures on R
supported on sets of Hausdorff dimension α0 ∈ (0, 1), then an example due to Chen [5] (based on
the work of Körner [8]) shows that restriction estimates (1.3) for such measures can in fact hold for
all p ≥ 2/α0. (Körner’s measures do not necessarily obey (1.1) and (1.2) with α, β near α0, and it
is not clear whether his construction can be modified to ensure these properties.)

It is still possible that some Salem sets do not contain structured subsets, and that the range of p
in (1.3) can be improved for such sets. However, our result shows that Theorem 1 in its stated
generality is optimal with regard to the range of p.

We also note that the same construction yields the following.

Theorem 3. Let α be as in Theorem 2, and assume that the exponents 1 ≤ p, q <∞ obey

(1.7) p <
q(2− α)
α(q − 1)

Then there is a measure µ on [0, 1] and a sequence of functions {f`}`∈N, constructed as in the proof
of Theorem 2, such that

(1.8)
‖f̂`dµ‖Lp(Rn)

‖f`‖Lq(dµ)
→∞ as `→∞.

2. THE CONSTRUCTION OF µ

Let N0 and t0 be integers such that 1 < t0 < N0, and let α = log t0/ logN0. Let also N = N2n0
0

and t = t2n0
0 , where n0 is a large integer to be chosen later. Observe that log t/ logN = α regardless

of the value of n0, so that we may freely assume that n0 is large enough while keeping α fixed. For
short, we will write [N ] = {0, 1, . . . , N − 1}.

We use C, C ′, etc. to denote constants that may change from line to line. Whenever such constants
depend on n0 or on any of the running parameters j, k, `,m, we will indicate this explicitly by
writing, e.g., C(n0); all other constants may depend on α, but are independent of n0, j, k, `,m.
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We will construct µ and f` simultaneously via a sequence of Cantor iterations. We will have a
sequence of sets A0, A1, A2, . . . satisfying

A0 = {0} ,

Aj+1 =
⋃
a∈Aj

(a+Aj+1,a),

Aj+1,a ⊂ N−(j+1)[N ]

|Aj+1,a| = t

Note that Aj ⊂ N−jZ and |Aj | = tj . The freedom in the construction comes in how we choose the
subsets Aj+1,a ⊂ N−(j+1)[N ]; we can make separate choices for each j and each a ∈ Aj .

Given such a sequence Aj , we define

Ej =
⋃
a∈Aj

a+ [0, N−j ], E =

∞⋂
j=1

Ej .(2.1)

Since E1 ⊃ E2 ⊃ · · · , E is a closed non-empty set.

There is a natural probability measure µ onE, defined as the weak limit of the absolutely continuous
measures µj with densities

dµj
dx

=
∑
a∈Aj

t−jN j1[a,a+N−j ].(2.2)

Lemma 4. For any choice of Aj as above, E has Hausdorff dimension α, and µ obeys

µ([x, x+ ε]) ≤ C1(n0)ε
α for all ε > 0.

Proof. This is standard. See, for example, Lemma 6.1 in [9]. �

We will also construct sequences of sets Pj ⊂ Aj and Fj ⊂ Ej so that:

• P0 = {0}
• Pj+1 =

⋃
a∈Pj

(a + N−(j+1)P ) for j = 0, 1, 2, . . ., where P ⊂ {0, 1, . . . , N − 1} is an

arithmetic progression of length t1/2 = tn0
0

• Fj =
⋃
a∈Pj

a+ [0, N−j).

Note that |Pj | = tj/2. We also define
f` = 1F`

.

The main result of this section is the following.

Proposition 5. Assume that n0 is sufficiently large. There is a choice of Aj , j = 1, 2, . . . , with the
above properties such that for every 0 < β < α we have

(2.3) |µ̂(k)| ≤ C(β, n0)|k|−β/2 (k ∈ Z \ {0}),

(2.4) |f̂`µj(k)| ≤ C(β, `, n0)|k|−β/2 (k ∈ Z \ {0}, j ≥ `),

Proof. Our starting point is the construction of Salem sets in [9], Section 6. We will modify it
to make Aj contain the structured sets Pj while also preserving the Fourier estimates (2.3), (2.4).
We will proceed by induction. Define A0 = {0}, and let A1 ⊂ N−1[N ] be an arbitrary set of
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cardinality t so that P1 ⊂ A1. Assuming that j ≥ 1 and that Aj is given so that Pj ⊂ Aj , we define
Aj+1 by constructing Aj+1,a for each a ∈ Aj .

If A ⊂ R is a finite set, we will write for k ∈ Z

SA(k) =
∑
a∈A

e−2πiak.

The outline is as follows. We first construct a set Bj+1 ⊂ N−(j+1)[N ] so as to minimize the
differences

(2.5)
∣∣∣1
t
SBj+1(k)−

1

N
SN−(j+1)[N ](k)

∣∣∣
for k ∈ Z, subject to the constraint that |Bj+1| = t. Moreover, we will want (2.5) to be similarly
small if Bj+1 is replaced by any of its “rotated” copies Bj+1,x with x ∈ [N ] (the terminology will
be explained shortly). These sets will serve as our initial candidates for Aj+1,a. Next, we choose
the “rotations” x(a) for a ∈ Aj so as to minimize the Fourier coefficients of the next generation
Cantor sets with Bj+1,x(a) used in place of Aj+1,a.

Finally, recall that we had Pj ⊂ Aj . For each a ∈ Pj , we add N−(j+1)P to Bj+1,x(a), then
subtract a matching number of elements of Bj+1,x(a) that are not in N−(j+1)P , so that the resulting
set has cardinality t again. This will be Aj+1,a for a ∈ Pj . For a ∈ Aj \ Pj , we simply let
Aj+1,a = Bj+1,x(a). We will prove that these modifications can be made without destroying the
Fourier estimates.

We now turn to the details. As in [9], we will need Bernstein’s inequality (see e.g. [2]).

Lemma 6 (Bernstein’s inequality). Let X1, . . . , Xn be independent complex-valued random vari-
ables with |Xj | ≤ 1, EXi = 0, and E|Xj |2 = σ2j . Let σ > 0 be such that σ2 ≥

∑n
j=1 σ

2
j and

σ2 ≥ 6nλ. Then

P

∣∣∣∣∣∣
n∑
j=1

Xj

∣∣∣∣∣∣ ≥ nλ
 ≤ 4 exp

(
−n

2λ2

8σ2

)
.

Define ηj > 0 by

(2.6) η2j = 192t−1 ln(8N j+2).

Lemma 7. There is a set Bj+1 ⊂ N−(j+1)[N ] with |Bj+1| = t such that∣∣∣∣∣SBj+1,x(k)

t
−
SN−(j+1)[N ](k)

N

∣∣∣∣∣ ≤ ηj(2.7)

for all k ∈ Z and x ∈ {0, 1, . . . , N − 1}. Here

Bj+1,x =

{
(x+ y) (mod N)

N j+1
:

y

N j+1
∈ Bj+1

}
.

Proof. This is Lemma 6.2 of [9]; we include the proof because it is short and provides a good
warm-up for the main argument.

If j is large enough so that ηj ≥ 2, then we may choose Bj+1 to be an arbitrary subset of
N−(j+1)[N ] of cardinality t. Then (2.7) holds trivially, since each term on the left side of (2.7)
is bounded by 1 in absolute value. Assume therefore that ηj ≤ 2.
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Let Bj+1 ⊂ N−(j+1)[N ] be a random set constructed by stipulating that for each b ∈ N−(j+1)[N ]
the probability that b ∈ Bj+1 is p = t/N .

Fix k ∈ Z and x ∈ [N ]. For each b ∈ N−(j+1)[N ], define the random variable Xb(k, x) =
(1Bj+1,x(b)−p)e−2πibk. The Xb(k, x)’s satisfy EbXb(k, x) = 0 and Eb|Xb(k, x)|2 = p(1−p). Set
σ2 = 6t, n = N , and λ = ηjp/2. Then σ2 ≥

∑
b∈N−(j+1)[N ] Eb|Xb(k, x)|2, and σ2 ≥ 6nλ = 3ηjt.

We apply Lemma 6 to the Xb(k, x)’s. Since

SBj+1,x(k)

t
−
SN−(j+1)[N ](k)

N
= t−1

∑
b∈N−(j+1)[N ]

Xb(k, x),

and

4 exp

(
−n

2λ2

8σ2

)
= 4 exp

(
− ln(8N j+2)

)
=

1

2N j+2
,

Lemma 6 gives

(2.8) P

(∣∣∣∣∣SBj+1,x(k)

t
−
SN−(j+1)[N ](k)

N

∣∣∣∣∣ ≥ ηj
2

)
=

1

2N j+2

for fixed k ∈ Z and x ∈ [N ]. Since SBj+1,x(k) and SN−(j+1)[N ](k) are periodic with period N j+1,
it suffices to consider k ∈

{
0, 1, . . . , N j+1 − 1

}
. Thus the probability that the event in (2.8) occurs

for some k ∈ Z and x ∈ {0, 1, . . . , N − 1} is bounded by 1/2.

Hence with positive probability we have∣∣∣∣∣SBj+1,x(k)

t
−
SN−(j+1)[N ](k)

N

∣∣∣∣∣ ≤ ηj
2

(2.9)

for all k ∈ Z and x ∈ [N ]. When k = 0 and x = 0, (2.9) says ||Bj+1| − t| ≤ ηjt/2. Therefore,
by either adjoining to Bj+1 or removing from it at most ηjt/2 elements, we get a set of cardinality
exactly t obeying (2.7) for all k, x as above. �

The main step in the proof of Proposition 5 is the following lemma.

Lemma 8. There is a choice of the rotations x(a), a ∈ Aj , such that

|µ̂j+1(k)− µ̂j(k)| ≤ Cmin

(
1,
N j+1

|k|

)
t−(j+1)/2 ln(8N j+1).(2.10)

for all k ∈ Z, j ≥ 1, and∣∣∣f̂`µj+1(k)− f̂`µj(k)
∣∣∣ ≤ Cmin

(
1,
N j+1

|k|

)
t−(j+1)/2 ln(8N j+1).(2.11)

for all k ∈ Z, j ≥ 2, and ` ∈ {1, . . . , j}.

Proof. Step 1. Consider the random variables

χa(k) = e−2πika

(
SBj+1,x(a)

(k)

t
−
SN−(j+1)[N ](k)

N

)
, a ∈ Aj , k ∈ Z,
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where for each a ∈ Aj we choose x(a) (the same for all k) independently and uniformly at random
from the set [N ]. Let c be a large constant. We claim that there is a choice of x(a) such that∣∣∣∣∣∣t−j

∑
a∈Aj

χa(k)

∣∣∣∣∣∣ < λj := ct−(j+1)/2 ln(8N j+1)(2.12)

for all k ∈ Z and ∣∣∣∣∣∣t−j+`/2
∑

a∈F`∩Aj

χa(k)

∣∣∣∣∣∣ < λj,` := ct−
j+1
2

+ `
4 ln(8N j+1)(2.13)

for all k ∈ Z and all ` ∈ {1, . . . , j}.

Consider the following events:

• E is the event that
∣∣∣t−j∑a∈Aj

χa(k)
∣∣∣ ≥ λj for some k ∈ Z,

• E` is the event that
∣∣∣t−j+`/2∑a∈F`∩Aj

χa(k)
∣∣∣ ≥ λj,` for some k ∈ Z.

We will prove that P(E) < 1/2 and P(E`) < 1/(2j) for ` = 1, 2, . . . , j. Since the failure of E
implies (2.12), and the failure of all E` with ` = 1, 2, . . . , j implies (2.13), there must be a choice
of x(a) for which both (2.12) and (2.13) hold.

We begin with E . By periodicity, it suffices to consider k ∈ [N j+1]. The random variables χa(k),
a ∈ Aj , are independent and have expectation Eχa(k) = 0. By Lemma 7, |χa(k)| ≤ ηj . With
n = tj and σ2 = cnη2j = 192ctj−1 ln(8N j+2), we have σ2 ≥

∑
a∈Aj

E|χa(k)|2 and σ2 ≥ 6nλj .
Therefore, by Lemma 6, we have for each fixed k

P

∣∣∣∣∣∣t−j
∑
a∈Aj

χa(k)

∣∣∣∣∣∣ ≥ λj
 ≤ 4 exp

(
−
λ2j t

2j

8σ2

)
.

Hence E has probability at most 4N j+1 exp
(
−λ2j t2j/8σ2

)
, which is less than 1/2 if c ≥ 3072.

Next, we turn to E`. Again, let k ∈ [N j+1]. We apply Bernstein’s inequality as before, but this time
with n = |F` ∩Aj | = t`/2tj−` = tj−`/2 and σ2 = cnη2j = 192ctj−`/2−1 ln(8N j+2). We get that

P

∣∣∣∣∣∣t−j+`/2
∑

a∈F`∩Aj

χa(k)

∣∣∣∣∣∣ ≥ λj,`
 ≤ 4 exp

(
−
λ2j,` t

2j−`

8σ2

)
.

Hence E` has probability at most 4N j+1 exp
(
−λ2j,` t2j−`/8σ2

)
, which is less than 1/2j if c ≥

6144.

Step 2. Define Aj+1 as follows. Recall that Pj ⊂ Aj . For each a ∈ Pj , construct Aj+1,a by
adjoining N−(j+1)P to Bj+1,x(a) with x(a) chosen as in Step 1, then subtract a matching number
of elements of Bj+1,x(a) that are not in N−(j+1)P , so that N−(j+1)P ⊂ Aj+1,a and |Aj+1,a| = t.
For a ∈ Aj \ Pj , we let Aj+1,a = Bj+1,x(a). We claim that

(2.14)

∣∣∣∣∣∣SAj+1(k)

tj+1
−
∑
a∈Aj

e−2πika
SN−(j+1)[N ](k)

tjN

∣∣∣∣∣∣ ≤ 2ct−(j+1)/2 ln(8N j+1),
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(2.15)

∣∣∣∣∣∣SAj+1∩F`
(k)

tj+1
−

∑
a∈Aj∩F`

e−2πika
SN−(j+1)[N ](k)

tjN

∣∣∣∣∣∣ ≤ 2ct−(j+1)/2 ln(8N j+1).

To see this, first let Ãj+1 =
⋃
a∈Aj

Bj+1,x(a). Then by (2.12)∣∣∣∣∣∣
SÃj+1

(k)

tj+1
−
∑
a∈Aj

e−2πika
SN−(j+1)[N ](k)

tjN

∣∣∣∣∣∣ =
∣∣∣∣∣∣t−j

∑
a∈Aj

χa(k)

∣∣∣∣∣∣ < λj .

Since Aj+1 differs from Ãj+1 by at most t(j+1)/2 elements, we have∣∣∣∣∣SÃj+1
(k)

tj+1
−
SAj+1(k)

tj+1

∣∣∣∣∣ ≤ t−(j+1)/2.

and (2.14) follows.

Similarly, by (2.13)∣∣∣∣∣∣
SÃj+1∩F`

(k)

tj+1
−

∑
a∈Aj∩F`

e−2πika
SN−(j+1)[N ](k)

tjN

∣∣∣∣∣∣ =
∣∣∣∣∣∣t−j

∑
a∈Aj∩F`

χa(k)

∣∣∣∣∣∣
< t−`/2λj,` = ct−

j+1
2
− `

4 ln(8N j+1)

SinceAj+1∩F` differs from Ãj+1∩F` by at most t(j+1)/2 elements, the left side again differs from
the left side of (2.15) by at most t−(j+1)/2, so that (2.15) follows.

Step 3. We will first show that (2.14) implies (2.10). We have

µ̂j(k) = N jt−j
∑
a∈Aj

∫ a+N−j

a
e−2πikxdx

=
1− e−2πik/Nj

2πik/N j
t−jSAj (k)

=
1− e−2πik/Nj+1

2πik/N j+1
t−j

∑
a∈Aj

e−2πika
SN−(j+1)[N ](k)

N
,

and

µ̂j+1(k) =
1− e−2πik/Nj+1

2πik/N j+1
t−(j+1)SAj+1(k)

Therefore,

|µ̂j+1(k)− µ̂j(k)| =

∣∣∣∣∣1− e−2πik/N
j+1

2πik/N j+1

∣∣∣∣∣
∣∣∣∣∣∣SAj+1(k)

tj+1
−
∑
a∈Aj

e−2πika
SN−(j+1)[N ](k)

tjN

∣∣∣∣∣∣
≤ 2ct−(j+1)/2 ln(8N j+2)

∣∣∣∣∣1− e−2πik/N
j+1

2πik/N j+1

∣∣∣∣∣
Estimating the last factor by min(1, N j+1/π|k|), we get (2.10).
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Next, we show (2.15) implies (2.11). Let ` ∈ {1, · · · , j}. We have

f̂`dµj(k) =
1− e−2πik/Nj+1

2πik/N j+1

1

tjN

∑
a∈Aj∩F`

e−2πikaSN−(j+1)[N ](k)

and

̂f`dµj+1(k) =
1− e−2πik/Nj+1

2πik/N j+1
t−(j+1)SAj+1∩F`

(k).

Then (2.11) follows as above, using (2.15) instead of (2.14).

�

Lemma 9 (cf. [9], Lemma 6.5). Assume that n0 is large enough. For every 0 < β < α, there is a
constant C(n0β) such that

∞∑
j=0

min

(
1,
N j+1

|k|

)
t−(j+1)/2 ln(8N j+1) ≤ C(n0, β)|k|−β/2

for all k ∈ Z, k 6= 0.

Proof. Split the sum as
∑

j≤ ln |k|
lnN

+
∑

j>
ln |k|
lnN

and estimate each term separately. For details, see the
proof of Lemma 6.5 of [9]. �

We can now conclude the proof of Proposition 5. Since µj converges to µ weakly, µ̂j converges to
µ̂ pointwise. Hence

|µ̂(k)| ≤ |µ̂1(k)|+
∞∑
j=1

|µ̂j+1(k)− µ̂j(k)|.

The sum is bounded by C(n0, β)|k|−β/2, by Lemmas 8 and 9, and we have

|µ̂1(k)| =

∣∣∣∣∣∣1− e
−2πik/N

2πik/N

1

t

∑
a∈A1

e−2πiak

∣∣∣∣∣∣ ≤ C(n0)

|k|
.

This proves (2.3).

To prove (2.4), we first note the inequality

|f̂`dµh(k)| =

∣∣∣∣∣1− e−2πik/N
h

2πik/Nh
t−hSAh∩F`

(k)

∣∣∣∣∣ ≤ Nht−h

π|k|
|Ah ∩ F`| =

Nht−`/2

π|k|
.(2.16)

Then (2.4) is immediate in case j = `. If j > `, we write

|f̂`dµj(k)| ≤ |f̂`dµ`(k)|+ | ̂f`dµ`+1(k)− f̂`dµ`(k)|+
j−1∑
i=`+1

| ̂f`dµi+1(k)− f̂`dµi(k)|.

Lemmas 8 and 9 imply the sum is bounded by C(n0, β)|k|−β/2. For the remaining terms, we use
(2.16).

�
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3. THE ESTIMATES ON f`

We start with the easy part.

Lemma 10. For all 1 ≤ q <∞, we have ‖f`‖qLq(dµ) = µ(F`) = t−`/2.

Theorem 2 will follow from this and Proposition 11 below.

Proposition 11. Fix r ∈ N with r > 1
α and assume that n0 is large enough (depending on r). Let

1 ≤ p ≤ 2r. Then for all ` sufficiently large we have

(3.1)
∥∥∥f̂`dµ∥∥∥p

Lp(R)
≥ C(r)N

`r−`−1

t`(p+1)/2
.

Proof of Theorems 2 and 3, given Proposition 11. Fix r large enough so that r > 1/α and 2r ≥
q(2−α)
α(q−1) . Applying Proposition 11, we see that (3.1) holds for all p as in (1.7). Hence

‖f̂`dµ‖Lp(R)

‖f`‖Lq(dµ)
≥ C(r)

(
N `r−`−1

t`(p+1)/2

)1/p

t`/2q.

After some algebra, this is seen to go to infinity provided that (1.7) holds and that n0 is large enough
depending on p.

It remains to prove Proposition 11. This will occupy the rest of this section, and will be done in
several steps. If Y ⊂ R is a finite set and r ∈ N, we will write

MY = #
{
(a1, . . . , a2r) ∈ Y 2r :

∑r
i=1 ai =

∑2r
i=r+1 ai

}
Lemma 12. For every j, `, r ∈ N such that j ≥ `,

(3.2) MF`∩Aj ≥ r−`−1t(2r−1)`/2
(
t2r

N

)j−`
.

Proof. Throughout the proof, the parameters j, ` will be kept fixed. Let

Y = Aj ∩ F`, |Y | = t`/2tj−`

and
Z = {a1 + · · ·+ ar : a1, . . . , ar ∈ Y }

We claim that

(3.3) |Z| ≤ (rt1/2)` rN j−`.

Indeed, each y ∈ Y has a unique digit representation

y =
∑̀
k=1

y(k)N−k + y(`+1)N−j

where y(k) ∈ P for k = 1, . . . , ` and y(`+1) ∈ [N j−`]. We may assume that P = {x, x+d, . . . , x+
(t1/2 − 1)d}. Then each z ∈ Z can be written (not necessarily uniquely) as

z =
∑̀
k=1

z(k)N−k + z(`+1)N−j



ON THE SHARPNESS OF MOCKENHAUPT’S RESTRICTION THEOREM 11

where z(`+1) ∈ {0, 1, . . . , r(N j−` − 1)} and

z(k) ∈ P ′ := {rx, rx+ d, . . . , rx+ r(t1/2 − 1)d}

for k = 1, . . . , `. Since |{0, 1, . . . , r(N j−` − 1)}| ≤ rN j−` and |P ′| ≤ rt1/2, (3.3) follows.

We now prove (3.2). For z ∈ N−jZ, let

g(z) = # {(y1, . . . , yr) ∈ Y r :
∑r

i=1 yi = z}

Then ‖g‖`1 = |Y |r, ‖g‖2`2 = MY , and g is supported on Z. By Hölder’s inequality, ‖g‖`1 ≤
‖g‖`2 |Z|1/2, so that

MY ≥
‖g‖2`1
|Z|

≥ (t`/2tj−`)2r

(rt1/2)` rN j−`

as claimed.

�

The next lemma is Lemma 9.A.4 of [18]. We will use it in the proof of Lemma 14.

Lemma 13. Let m be a measure on the torus T = R/Z, and let φ be a Schwartz function on R.
Define a measure m′ on R by

dm′(x) = φ(x)dm({x}),

where {x} is the fractional part of x. Then for all ξ ∈ R,

m̂′(ξ) =
∑
k∈Z

m̂(k)φ̂(ξ − k).

Moreover, if there are C > 0 and α > 0 such that

|m̂(k)| ≤ C(1 + |k|)−α for all k ∈ Z,

then there is a C ′ > 0 such that

|m̂′(ξ)| ≤ C ′(1 + |ξ|)−α for all ξ ∈ R.

Lemma 14. Let `, r ∈ N with r > 1
α . Then

(3.4)
∥∥∥f̂`dµ∥∥∥2r

L2r(R)
≥ C2r

N `r−`−1

t`(2r+1)/2
,

where

C2r =

∫ −∞
∞

(
sin(πx)

πx

)2r

dx ∈ (0,∞).

Proof. By Proposition 5, for every 0 < β < α we have

|f̂`dµj(k)| ≤ C|k|−β/2

for k ∈ Z \ {0} and j ≥ `. By Lemma 13, this inequality extends to

|f̂`dµj(ξ)| ≤ C|ξ|−β/2

for |ξ| ≥ 1 and j ≥ `. Fix β ∈ (0, α) such that r > 1/β > 1/α, and let g(ξ) := min
(
1, C|ξ|−β/2

)
.

Assume C > 1 without loss of generality. We have
∣∣∣f̂`dµj∣∣∣ ≤ g and g ∈ L2r(R). By a straight-

forward application of the portmanteau theorem on the weak convergence of measures (cf. [2]),
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the fact that µj → µ weakly implies we have f̂`dµj → f̂`dµ pointwise. So, by the dominated

convergence theorem,
∥∥∥f̂`dµj∥∥∥

2r
→
∥∥∥f̂`dµ∥∥∥

2r
. Therefore, it will suffice to prove that∥∥∥f̂`dµj∥∥∥2r

2r
≥ C2r

N `r−`

t`(2r+1)/2

for j ≥ `.

By (2.2) we have

f`dµj = t−jN j
∑
b∈P`

∑
a∈Aj∩[b,b+N−`]

1[a,a+N−j ]dx

so that

f̂`dµj(ξ) =
1− e−2πiξ/Nj

2πiξ/N j
t−j

∑
b∈P`

∑
a∈Aj∩[b,b+N−`]

e−2πiaξ

= e−πiξ/N
j
sinc(ξ/N j) t−j

∑
a∈F`∩Aj

e−2πiaξ,

where sinc(x) = sin(πx)/(πx). Therefore

∥∥∥f̂`dµj∥∥∥2r
2r

= t−2rj
∫ ∞
−∞

sinc2r(ξ/N j)

∣∣∣∣∣∣
∑

a∈F`∩Aj

e−2πiaξ

∣∣∣∣∣∣
2r

dξ

=
N j

t2rj

∫ ∞
−∞

sinc2r(η)

∣∣∣∣∣∣
∑

a∈Nj(F`∩Aj)

e−2πiaη

∣∣∣∣∣∣
2r

dη

=
N j

t2rj

∫ ∞
−∞

sinc2r(η)
∑

a1,...,a2r∈Nj(F`∩Aj)

e−2πiη
∑r

n=1(an−an+r)

=
N j

t2rj

∑
a1,...,a2r∈Nj(F`∩Aj)

ŝinc2r
(

r∑
n=1

(an − an+r)

)
.

But

ŝinc2r = ∗2ri=1ŝinc = ∗2ri=11[−1/2,1/2] ≥ 0.

So ∥∥∥f̂`dµj∥∥∥2r
2r
≥ N j

t2rj
ŝinc2r(0)MNj(F`∩Aj).

Appealing to Lemma 12 completes the proof. �

We can now prove Proposition 11.

Proof of Proposition 11. Fix r ∈ N so that r > 1/α. By Lemma 14, (3.1) holds with p = 2r,
provided that n0 is large enough. It suffices to prove that it also holds for all p such that 1 ≤ p < 2r.

Let φ be a function in L∞(R), then for 1 ≤ p < 2r we have

‖φ‖2r2r =
∫
|φ|2r =

∫
|φ|p |φ|2r−p ≤ ‖φ‖pp ‖φ‖2r−p∞ .
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We apply this with φ = f̂`dµ. We have ‖f̂`dµ‖∞ ≤ µ(F`) = t−l/2, so that

‖f̂`dµ‖pp ≥ C
N `r−`−1

t`(2r+1)/2
· (t`/2)2r−p = C

N `r−`−1

t`(p+1)/2

as claimed.

�
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