
Submitted exclusively to the London Mathematical Society
doi:10.1112/0000/000000

Sharpness of the Mockenhaupt-Mitsis-Bak-Seeger Restriction Theorem in
Higher Dimensions

Kyle Hambrook and Izabella Łaba

ABSTRACT
We prove the range of exponents in the general L2 Fourier restriction theorem due to Mockenhaupt, Mitsis, Bak
and Seeger is sharp for a large class of measures on Rd. This extends to higher dimensions the sharpness result of
Hambrook and Łaba.

1. Introduction

If f : Rd → C is Lebesgue integrable, the Fourier transform of f is

f̂(ξ) = F [f ](ξ) =
∫
e−2πix·ξf(x)dx ∀ξ ∈ Rd.

If µ is a measure on Rd and f : Rd → C is µ-integrable, the Fourier-Stieltjes transform of the measure fµ is

f̂µ(ξ) = F [fµ](ξ) =
∫
e−2πix·ξf(x)dµ(x) ∀ξ ∈ Rd.

The expressionX . Y stands for “there exists a constantC > 0 such thatX ≤ CY .” The expressionX & Y
is analogous, and X ≈ Y means that X . Y and X & Y .

The purpose of this paper is to address the sharpness of the range of exponents in the following general
L2 restriction theorem.

THEOREM 1. Suppose µ is a finite Borel measure on Rd. Suppose there are α, β ∈ (0, d) such that

µ(B(x, r)) . rα ∀x ∈ Rd, r > 0, (1.1)

|µ̂(ξ)| . (1 + |ξ|)−β/2 ∀ξ ∈ Rd. (1.2)

Then for all p ≥ (4d− 4α+ 2β)/β we have

‖f̂dµ‖p . ‖f‖L2(µ) ∀f ∈ L2(µ). (1.3)

Theorem 1 was proved independently by Mockenhaupt [10] and Mitsis [9] in the non-endpoint range
p > (4d− 4α+ 2β)/β; the endpoint case was established later by Bak and Seeger [1].

Theorem 1 generalizes the classical Stein-Tomas restriction theorem for the sphere and its variants for
other smooth submanifolds of Rd for d ≥ 2 (cf. [12] for a discussion of such theorems). For example, the
Stein-Tomas restriction theorem for the sphere says that (1.3) holds for p ≥ (2d+ 2)/(d− 1) when µ is a
uniform measure on a sphere in Rd. Theorem 1 covers this case, with α = β = d− 1. However, Theorem 1
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is not limited to the classical setting of surface measures on smooth manifolds. It also applies (for instance)
to measures on fractals in Rd, including when d = 1.

The range p ≥ (2d+ 2)/(d− 1) in the classical Stein-Tomas restriction theorem for the sphere is sharp.
This is illustrated by the so-called Knapp example, where f is taken to be the indicator function of a small
(hence almost flat) spherical cap. Similar examples can be constructed for other smooth manifolds.

For fractal measures, the question of sharpness of the range of p in Theorem 1 remained open until
recently. In this setting, it turns out that the availability of restriction estimates beyond that range depends on
the particulars of the measure under consideration.

On one hand, the range of p in Theorem 1 is sharp for the class of measures on R that satisfy (1.1) and
(1.2) with 0 < β ≤ α < 1. This is due to Hambrook and Łaba [7] (cf. [6]), who proved a variant of Theorem
2 below where the measure µ depends on p. The main theorem of [7] addresses the case of Salem measures,
where β and α can be taken arbitrarily close together, but it is easy to adapt the same argument to allow more
general 0 < β < α < 1, see [6]. Chen [3] modified the argument of [7] to obtain the version stated here.

THEOREM 2. Given any 0 < β ≤ α < 1, there is a compactly supported probability measure µ on R
that satisfies (1.1) and (1.2) but does not satisfy (1.3) for any p < (4− 4α+ 2β)/β. In particular, there is a
sequence of functions fl ∈ L2(µ) such that

lim
l→∞

‖f̂ldµ‖p
‖fl‖L2(µ)

=∞ ∀p < (4− 4α+ 2β)/β.

On the other hand, there exist specific fractal measures on Rd obeying (1.1) and (1.2) for which the
estimate (1.3) holds for a better range of p than that provided in Theorem 1. Such measures were constructed
by Shmerkin and Suomala [11] for d = 1 and α > 1/2 (the same proof also works for d = 2, 3 and d/2 <
α ≤ 2), and, independently via a different method, by Chen and Seeger [4] for all d ≥ 1 and α = β = d/k,
where k ∈ N. The best possible range for a measure supported on a set of Hausdorff dimension α is p ≥ 2d/α
(this follows easily from energy estimates, see e.g. [7]), and that range is in fact achieved in [4]. An earlier
paper by Chen [2] provides an example of a measure on R supported on a set of Hausdorff dimension 1/2 for
which (1.3) holds for all p ≥ 4, but that measure does not obey (1.1) or (1.2).

Theorem 2 says that the range of p in Theorem 1 is sharp for the class of measures on R such that (1.1)
and (1.2) hold with 0 < β ≤ α < 1, but it says nothing about measures on Rd for d ≥ 2. The construction of
[7] (or [3]) does not appear to generalize in a straightforward manner to higher dimensions. However, we are
able to combine it with the classical Knapp example to prove the following sharpness theorem, which is the
main result of this paper.

THEOREM 3. Let d ≥ 2. Given any d− 1 < β ≤ α < d, there is a compactly supported probability
measure ν on Rd that satisfies (1.1) and (1.2) but does not satisfy (1.3) for any p < (4− 4α+ 2β)/β. In
particular, there is a sequence of functions fl ∈ L2(ν) such that

lim
l→∞

‖f̂ldν‖p
‖fl‖L2(ν)

=∞ ∀p < (4d− 4α+ 2β)/β.

Theorem 3 says that when d ≥ 2 the range of p in Theorem 1 is sharp for the class of measures on Rd
such that (1.1) and (1.2) hold with d− 1 < β ≤ α < d. Readers interested in future research should note that
the problem remains open when d ≥ 2 and α, β do not satisfy d− 1 < β ≤ α.



SHARPNESS IN HIGHER DIMENSIONS Page 3 of 13

The proof of Theorem 3 adapts the Hambrook-Łaba construction in dimension 1 (with the modifications
due to Chen [3]) to higher dimensions by combining it with the classical Knapp example.

The starting point for the proof of Theorem 2 in [7], [3] is a construction due to Łaba and Pramanik
[8] of random Cantor sets in R of dimension 0 < α < 1 whose natural measures µ satisfy conditions (1.1)
and (1.2) for any β < α. The key new idea of [7] was that such sets could be modified to include lower-
dimensional deterministic Cantor-type subsets that have far more arithmetic structure than the rest of the set.
As long as the embedded deterministic subset is small enough, the conditions (1.1) and (1.2) continue to
hold for the natural measure µ on the Cantor set. At the same time, such subsets can be used to construct
counterexamples to restriction estimates with p beyond the range guaranteed by Theorem 1. Specifically, we
choose the deterministic Cantor subset so that, for each l, the set Pl of the left endpoints of its l-th stage
intervals forms a multi-scale arithmetic progression, and let fl be essentially the indicator function of the
union of these l-th stage intervals. The most difficult part of the proof is establishing a sufficiently large
lower bound on ‖f̂ldµ‖p. This ultimately reduces to counting solutions to equations of the form

∑r
i=1 ai =∑2r

i=r+1 ai, where the ai are finite-stage left endpoints of the Cantor set that lie in the support of fl. The
arithmetic structure of Pl ensures that the number of such solutions is sufficiently large.

Our measure ν in Theorem 3 is a radial version of the measure µ from Theorem 2. Thus the support of
ν consists of nested spheres centered at the origin, where each point in the support of µ corresponds to a
sphere in the support of ν. At finite stages of the construction, each interval of the l-th iteration of the Cantor
set on the line corresponds to an annulus centered at the origin, of thickness δ2 (depending on l). In order to
construct our counterexample, we first restrict attention to those annuli that correspond to the deterministic
subset of the Cantor set. We then fix a half-line in Rd starting at the origin, say one of the coordinate half-
axes, and consider cylindrical sectors of the chosen annuli, centered on that half-line and of diameter δ. This
produces essentially a family of Knapp examples, stacked along the fixed half-line and parameterized by the
deterministic Cantor set. Our functions fl will be the appropriately regularized indicator functions of sets of
this type. To prove our lower bound on ‖f̂ldν‖p, we will use a non-trivial combination of the Hambrook-Łaba
additive arguments and the classical Knapp calculation.

As explained above, we will rely on the construction from [7], [3] of Cantor sets on the line that obey (1.1)
and (1.2) with exponents α0 = α− (d− 1) and β0 = β − (d− 1), respectively, and that additionally contain
lower-dimensional Cantor subsets with finite-stage endpoints forming multi-scale arithmetic progressions.
Since that construction is somewhat long, we do not reproduce it here. Instead, in the next few sections we
list the parameters of the construction and state the properties that will be needed in the proof of Theorem 3.
The details are almost identical to those in [3], and we encourage the interested reader to consult that paper;
however, we do provide an overview of the construction in Section 6. The rest of the paper is devoted to the
proof of Theorem 3.

2. The Numbers α0, β0, sj , tj , nj , Sj , Tj , Nj

We begin by defining the numerical parameters of the 1-dimensional construction. Let (sj)∞j=1, (tj)∞j=1,
(nj)

∞
j=1 be sequences of positive integers. Define

Sj = s1 · · · sj , Tj = t1 · · · tj , Nj = n1 · · ·nj (2.1)

for j ≥ 1 and S0 = T0 = N0 = 1. We assume the sequences satisfy the following.

• sj ≤ tj < nj/2 ∀j ∈ N (2.2)
• lim

j→∞
nj =∞ (2.3)

• lim
j→∞

nj
j

= 0 (2.4)

• lim
j→∞

nd−1j

ln(400jNj)
= 0 (2.5)
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• Tj ≈ Nα0
j+1 ln(400(j + 1)Nj+1) ∀j ∈ N, j ≥ j0 (2.6)

• Sj+1

Tj+1
≈ N−β0/2

j+1 ∀j ∈ N, j ≥ j0 (2.7)

Here j0 is some large positive integer. It is easy but tedious to prove that such sequences indeed exist.

3. The Sequences of Sets (Aj)∞j=0 and (Pj)
∞
j=0

In this section, we describe the sequences of sets (Aj)∞j=0 and (Pj)
∞
j=0. These will be the left endpoints

of our Cantor sets on the line. Here and below, we will use the notation [n] = {0, . . . , n− 1} for n ∈ N.

Let

P0 = {1} , Pj+1 =
⋃
a∈Pj

a+
1

Nj+1
{1, 3, . . . , 2sj+1 − 1} .

Thus each Pj is a generalized arithmetic progression and |Pj | = Sj .

Let (Aj)∞j=0 be a sequence of sets with the following properties.

• For each a ∈ Aj , there exists Aj+1,a ⊆
1

Nj+1
[nj+1] with |Aj+1,a| = tj+1 (3.1)

• A0 = {1} (3.2)

• Aj+1 =
⋃
a∈Aj

a+Aj+1,a (3.3)

• Pj ⊆ Aj (3.4)

• For each a ∈ Pj , Aj+1,a is disjoint from
1

Nj+1
{0, 2, . . . , 2sj+1} (3.5)

• |µ̂(ξ)| . (1 + |ξ|)−β0/2 for all ξ ∈ R (3.6)

Here µ is the natural measure on the Cantor set defined through a standard iterative procedure with Aj as
the left endpoints of the construction intervals (see Section 4). The sequence (Aj)

∞
j=0 can be constructed

by making trivial modifications to the construction of Chen [3] (cf. [6], [7]). Note that Aj ⊆ N−1j [Nj ] and
|Aj | = Tj .

4. The Measure µ

For j = 0, 1, 2, ..., define

Ej = Aj + [0, N−1j ] =
⋃
a∈Aj

[a, a+N−1j ]

and define µj to be the uniform probability measure on Ej , i.e.,

dµj =
1

|Ej |
1Ejdx =

Nj
Tj

∑
a∈Aj

1[a,a+N−1
j ]dx.

Define µ to be the weak limit of (µj)
∞
j=0. The existence of the weak limit in this type of construction is

standard, so we omit the proof. Note that µ is the so-called natural measure on the Cantor set

supp(µ) =
∞⋂
j=1

Ej =

∞⋂
j=1

⋃
a∈Aj

[a, a+N−1j ] ⊆ [1, 2], (4.1)
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and

µ([a, a+N−1j ]) =
1

Tj
. (4.2)

5. The Measure ν

Let σ be the uniform probability measure on the unit sphere Sd−1 in Rd. Define the measure ν on Rd by

dν(x) = |x|−(d−1)/2dµ(|x|)⊗ dσ(x/|x|).

Clearly, ν is a finite non-trivial measure.

Let l ∈ N, a ∈ N−1l [Nl], e ∈ Sd−1. Let δ = N
−1/2
l . Define Da,δ2 to be the annulus with center at the

origin, inner radius a, and thickness δ2 = N−1l . That is,

Da,δ2 =
{
x ∈ Rd : |x| ∈ [a, a+N−1l ]

}
.

Then by (4.1),

supp(ν) =
∞⋂
j=1

⋃
a∈Aj

Da,δ2 ⊆
{
x ∈ Rd : 1 ≤ |x| ≤ 2

}
. (5.1)

DefineCa,δ2,w,e to be the sector of the annulusDa,δ2 that has widthw and is centered on the half-line parallel
to the unit vector e. That is,

Ca,δ2,w,e =

{
x ∈ Rd : | x

|x|
− e| ≤ w/2, |x| ∈ [a, a+N−1l ]

}
.

It follows easily from (4.2) that for w < 1/2,

ν(Ca,δ2,w,e) ≈ wd−1T−1l ∀a ∈ Al. (5.2)

6. The Meaning of the Numbers, Sets, and Measures

In this section, we provide an overview of the construction of the finite-stage Cantor endpoint sets (Aj)∞j=0

and (Pj)
∞
j=0 and the limiting measures µ and ν, and we explain how the parameters α0, β0, sj , tj , nj , Sj , Tj ,

Nj come into play.

In general terms, the Cantor construction proceeds as follows. Start with the interval [1, 2]. Divide it into
n1 equal subintervals, select t1 of them, and discard the rest. For each selected subinterval, divide it into n2
equal subintervals, select t2 of them, and discard the rest. Continue in this way. At the j-th stage, we have a
set Ej consisting of the union of Tj intervals of length N−1j . The left endpoints of the intervals making up
Ej form the set Aj . The support of µ is the Cantor set E∞ := ∩∞j=1Ej . The support of ν is the union of those
spheres in Rd centered at the origin with radii in E∞.

Our restriction counterexample relies on a very particular choice of the subintervals in the above
construction. We would like each Ej to contain the set Pj + [0, N−1j ], the j-th stage iteration of a self-
similar Cantor set whose left endpoints form a multi-scale arithmetic progression. (Thus the set E∞ contains
the lower-dimensional, self-similar, strongly structured set ∩∞j=1(Pj + [0, N−1j ]), but we will not use this fact
directly, instead working with finite iterations of the construction.) This will be essential for disrupting the
restriction inequality beyond the range of exponents in Theorem 1.

To this end, we need to make sure at each stage that Pj ⊆ Aj , but also that Aj is otherwise sufficiently
random for (3.6) to hold. We start with A0 = P0 = {1} and proceed by induction. Recall that, for j ≥ 0,
Pj+1 =

⋃
a∈Pj a+N−1j+1 {1, 3, . . . , 2sj+1 − 1}. Suppose thatAj is given, with Pj ⊆ Aj . ThenEj is a union

of Tj intervals of length N−1j . Consider one such interval, with left endpoint at some a ∈ Aj . We divide the



Page 6 of 13 KYLE HAMBROOK AND IZABELLA ŁABA

interval into nj+1 equal subintervals, with left endpoints in a+N−1j+1[nj+1]. From these endpoints, we wish
to select a subset a+Aj+1,a of cardinality tj+1; the union of the sets a+Aj+1,a over all a ∈ Aj will be the
set Aj+1. The selection procedure depends on whether a ∈ Pj :

– If a ∈ Pj , we always start by selecting the sj+1 endpoints that form the arithmetic progression a+
N−1j+1 {1, 3, . . . , 2sj+1 − 1}, thus ensuring that Pj+1 ⊆ Aj+1. We then select the other tj+1 − sj+1

endpoints from a+N−1j+1 {2sj+1 + 1, . . . , nj+1}. The selection is made in such a way that, provided
(2.7) holds, µ̂ will decay as in (3.6). A probabilistic argument is used to prove that this is possible.
Note that endpoints in a+N−1j+1 {0, 2, . . . , 2sj+1} are not allowed in the selection process, in order to
ensure that (3.5) holds.

– If a /∈ Pj , we use a probabilistic argument to select tj+1 endpoints from a+N−1j+1[nj+1] so that (3.6)
will hold. No further modifications are needed.

We close this section with a few words about the parameters sj , tj , and nj in Section 2. Essentially,
we want nj and tj to be slowly growing sequences with the asymptotic dimensionality condition tj ∼ nα0

j .
The precise description is provided by (2.2)–(2.6). These imply that the linear Cantor set E∞ has Hausdorff
dimension α0 and that, moreover, µ satisfies µ((x− r, x+ r)) . rα0 for all x ∈ R, r > 0. In Section 7, this
will be used to prove that ν satisfies (1.1).

The numbers sj denote the length of the arithmetic progressions included in the endpoint sets in the
Cantor construction. For optimal counterexamples, we would like to maximize sj subject to the constraint
that the set Aj still be random enough for (3.6) to hold. Roughly speaking, this requires that sj ∼ tjn−β0/2

j

asymptotically; the precise statement we need is (2.7). As we will see in Section 8, (3.6) implies the measure
ν satisfies (1.2).

7. The Ball Condition for ν

In this section, we prove ν satisfies (1.1).

Let x ∈ Rd and r > 0 be given. If 2r ≥ N−11 , then

ν(B(x, r)) ≤ ν(Rd) ≤ ν(Rd)(2N1)
αrα.

Now suppose 0 < 2r < N−11 . Choose l ∈ N such that N−1l+1 ≤ 2r ≤ N−1l . Assume B(x, r) intersects
supp(ν) (otherwise ν(B(x, r)) = 0). By (5.1),B(x, r) intersectsDa,δ2 for some a ∈ Al. Since 2r ≤ N−1l =
δ2, there are at most two such a ∈ Al, say a′ and a′′. Moreover, if we set e = x/|x|, then

B(x, r) ⊆ Ca′,δ2,δ2,e ∪ Ca′′,δ2,δ2,e

Therefore, by (5.2), (2.5), and (2.6), we have

ν(B(x, r)) ≤ ν(Ca′,δ2,δ2,e) + ν(Ca′′,δ2,δ2,e)

≈ N−(d−1)l T−1l ≈ N−(d−1)l N−α0

l+1 (ln(400(l + 1)Nl+1))
−1

= N
−(d−1)−α0

l+1 nd−1l+1 (ln(400(l + 1)Nl+1))
−1 . N

−(d−1)−α0

l+1

. rd−1+α0 = rα

as required.

8. The Fourier Decay of ν

To prove that ν obeys (1.2), we invoke a theorem of Gatesoupe [5]:
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THEOREM 4. Let µ be a non-trivial measure on R with compact support contained in (0,∞). Suppose

|µ̂(ξ)| . φ(|ξ|) ∀ξ ∈ R, ξ 6= 0,

where φ : (0,∞)→ (0,∞) satisfies
1

t
. φ(t) ∀t ≥ 1.

Then the measure

dν(x) = |x|−(d−1)/2dµ(|x|)⊗ dσ(x/|x|)

satisfies

|ν̂(ξ)| . |ξ|−(d−1)/2φ(|ξ|) ∀ξ ∈ Rd, |ξ| ≥ 1.

By (3.6), the measure µ obeys the assumptions of the theorem with φ(|ξ|) = (1 + |ξ|)−β0/2. Recalling
that β = β0 + d− 1, we get (1.2) as claimed.

9. The Functions ψa and fl

We first fix l ∈ N and define the functions ψa for a ∈ Pl.

For Y ⊆ Rd and ε > 0, let

Nε(Y ) =
{
x ∈ Rd : |x− y| < ε for some y ∈ Y

}
be the ε-neighbourhood of Y . Let ed be the standard unit vector (0, . . . , 0, 1) ∈ Rd.

Fix l ∈ N and δ = N
−1/2
l . For each a ∈ Pl, choose a C∞c (Rd) function ψa that is equal to 1 on Ca,δ2,δ,ed ,

is equal to 0 outside Nδ2/2(Ca,δ2,δ,ed), and satisfies 0 ≤ ψa ≤ 1 everywhere.

Since ψa ∈ C∞c (Rd), ψ̂a is a Schwartz function. In Section 8, we established that ν satisfies (1.2). It
follows easily that

|ψ̂adν(ξ)| = |(ψ̂a ∗ ν̂)(ξ)| .a,l (1 + |ξ|)−β/2. (9.1)

The implied constant here depends on a and l; we could remove the dependence on a by choosing each ψa
to be a translation of a single function, but this is not important for our argument.

LEMMA 5. With ψa as above, we have

ψ̂adν(0) ≈ δd−1T−1l = N
−(d−1)/2
l T−1l , (9.2)

where the implied constant depends only on d.

Proof. By (5.2),

ψ̂adν(0) ≥ ν(Ca,δ2,δ,ed) ≈ δ
d−1T−1l . (9.3)

On the other hand,

ψ̂adν(0) ≤ ν(Nδ2/2(Ca,δ2,δ,ed)). (9.4)

Because of (3.5), the sets Da,δ2 with a ∈ Pl are isolated from the sets Da′,δ2 with a′ ∈ Al, a′ 6= a.
Consequently, for each a ∈ Pl we have

Nδ2/2(Ca,δ2,δ,ed) ∩Nδ2/2(Da′,δ2) = ∅ ∀a′ ∈ Al, a′ 6= a,
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so that only the annulus Da,δ2 contributes to (9.4). It follows that

ψ̂adν(0) ≤ ν(Ca,δ2,δ+δ2,ed) ≤ ν(Ca,δ2,2δ,ed) . 2d−1δd−1T−1l ,

where at the last step we used (5.2). Combining this with (9.3) gives (9.2).

Finally, we define fl =
∑
a∈Pl ψa.

10. A Lower Bound on ‖f̂ldν‖2r2r

LEMMA 6. Let r ∈ N be such that rβ > d. Then

‖f̂ldν‖2r2r & (2r)−lN
(d+1)/2
l N

−r(d−1)
l T−2rl S2r−1

l . (10.1)

Proof. For x ∈ Rd, we will write x = (x1, . . . , xd). Fix a small constant η > 0 to be specified later. It
is important that η does not depend on l. It is allowed to depend on r and d. Recall that δ = N

−1/2
l , and let

Rδ be the box
Rδ =

{
ξ ∈ Rd : |ξj | ≤ η/δ for j = 1, . . . , d− 1, |ξd| ≤ η/δ2

}
.

For every f : Rd → C, we define f̃ by f̃(x) = f(−x) for all x ∈ Rd. Here and elsewhere λ is the
Lebesgue measure on Rd. Let h : Rd → [0, 1] be a Schwartz function that is equal to 1 on 1

4Rδ and has
supp(h) ⊆ 1

2Rδ . Define g = h ∗ h̃. Then g is a non-negative Schwartz function such that

• ˜̂g = |˜̂h|2 ≥ 0, (10.2)
• g ≤ λ( 12Rδ), (10.3)
• g(ξ) ≥ λ( 18Rδ) for ξ ∈ 1

8Rδ, (10.4)
• supp(g) ⊆ Rδ. (10.5)

By (10.3),

‖f̂ldν‖2r2r =
∫
|f̂ldν(ξ)|2rdξ ≥

1

λ( 12Rδ)

∫
g(ξ)|f̂ldν(ξ)|2rdξ. (10.6)

Note

f̂ldν(ξ) =
∑
a∈Pl

e−2πiξ·aed
∫
e−2πiξ·(x−aed)ψa(x)dν(x),

where ed is the standard unit vector (0, . . . , 0, 1) ∈ Rd. Since r ∈ N, we have

|f̂ldν(ξ)|2r =
∑

a1,...,a2r∈Pl

e−2πiξ·ed(
∑r
i=1 ai−

∑2r
i=r+1 ai) ×

r∏
i=1

∫
e−2πiξ·(x−aied)ψai(x)dν(x)

2r∏
i=r+1

∫
e2πiξ·(x−aied)ψai(x)dν(x).

Substituting into (10.6) gives

‖f̂ldν‖2r2r ≥
1

λ( 12Rδ)

∑
a1,...,a2r∈Pl

I(a1, . . . , a2r), (10.7)

where

I(a1, . . . , a2r) =

∫
g(ξ)e−2πiξ·ed(

∑r
i=1 ai−

∑2r
i=r+1 ai) ×

r∏
i=1

∫
e−2πiξ·(x−aied)ψai(x)dν(x)

2r∏
i=r+1

∫
e2πiξ·(x−aied)ψai(x)dν(x)dξ
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We claim that for any choice of a1, . . . , a2r ∈ Pl, the integral I(a1, . . . , a2r) is non-negative. We prove the
claim in Section 12. Assume the claim for now. It then follows from (10.7) that

‖f̂ldν‖2r2r ≥
1

λ( 12Rδ)

∑
a1,...,a2r∈Pl∑r

i=1 ai=
∑2r
i=r+1 ai

I(a1, . . . , a2r). (10.8)

Using that supp(g) ⊆ Rδ , we rewrite (10.8) as

‖f̂ldν‖2r2r ≥
1

λ( 12Rδ)

∑
a1,...,a2r∈Pl∑r

i=1 ai=
∑2r
i=r+1 ai

∫
Rδ

g(ξ)P (ξ, a1, . . . , a2r)dξ, (10.9)

where

P (ξ, a1, . . . , a2r) = (10.10)
r∏
i=1

∫
e−2πiξ·(x−aied)ψai(x)dν(x)

2r∏
i=r+1

∫
e2πiξ·(x−aied)ψai(x)dν(x).

For a lower bound on P (·), we adapt the Knapp argument. Fix a ∈ Pl for now, and let x ∈ supp(ψa) and
ξ ∈ Rδ . From the definition of ψa we have |xj | ≤ 3δ for j = 1, . . . , d− 1, and |xd − a| ≤ 3δ2. Hence

|ξ · (x− aed)| ≤
d−1∑
j=1

|ξj ||xj |+ |ξd||xd − a| ≤ 3dη,

and, since |eit − 1| ≤ |t| for t ∈ R,

|e±2πiξ·(x−aed) − 1| ≤ 6πdη. (10.11)

Define E(ξ, a) by ∫
e−2πiξ·(x−aed)ψa(x)dν(x) = ψ̂adν(0) + E(ξ, a).

It follows from (10.11) that

|E(±ξ, a)| ≤ 6πdηψ̂adν(0). (10.12)

Rewrite (10.10) as

P (ξ, a1, . . . , a2r) =

r∏
i=1

(
ψ̂aidν(0) + E(ξ, ai)

) 2r∏
i=1+r

(
ψ̂aidν(0) + E(−ξ, ai)

)
.

Expanding this and using (10.12), we see that

P (ξ, a1, . . . , a2r) ≥
(
1− (22r − 1)(6πdη)

) 2r∏
i=1

ψ̂aidν(0) ≥
1

2

2r∏
i=1

ψ̂aidν(0),

assuming that η is small enough depending on r and d.
We now return to (10.9). Applying our lower bound on P (·) and using that g ≥ 0, we get

‖f̂ldν‖2r2r ≥
1

2λ( 12Rδ)

∑
a1,...,a2r∈Pl∑r

i=1 ai=
∑2r
i=r+1 ai

2r∏
i=1

ψ̂aidν(0)

∫
Rδ

g(ξ)dξ. (10.13)

Then using (10.4), we have ∫
Rδ

g(ξ)dξ ≥
∫

1
8Rδ

g(ξ)dξ ≥ (λ( 18Rδ))
2. (10.14)

We clearly have

λ(cRδ) = (cη)dδ−(d+1) = (cη)dN
(d+1)/2
l (10.15)
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for any c > 0. Applying (10.14) and (10.15) to (10.13) gives

‖f̂ldν‖2r2r ≥ 2−1−5dηdN
(d+1)/2
l

∑
a1,...,a2r∈Pl∑r

i=1 ai=
∑2r
i=r+1 ai

2r∏
i=1

ψ̂aidν(0).

Now employing Lemma 5 yields

‖f̂ldν‖2r2r & N
(d+1)/2
l N

−2r(d−1)/2
l T−2rl Ml,r, (10.16)

where

Ml,r =

∣∣∣∣∣
{
(a1, . . . , a2r) ∈ P 2r

l :

r∑
i=1

ai =

2r∑
i=r+1

ai

}∣∣∣∣∣ .
We now work out a lower bound on Ml,r. Define

P⊕rl =

{
r∑
i=1

ai : ai ∈ Pl

}
and

G(b) =

∣∣∣∣∣
{
(a1, . . . , ar) ∈ P⊕rl :

r∑
i=1

ai = b

}∣∣∣∣∣ .
Then

Ml,r =
∑
b∈P⊕rl

G(b)2.

By the Cauchy-Schwarz inequality,  ∑
b∈P⊕rl

G(b)

2

≤Ml,r|P⊕rl |. (10.17)

To bound Ml,r, first note that ∑
b∈P⊕rl

G(b) = |Pl|r = Srl . (10.18)

Next we estimate |P⊕rl |. Each a ∈ Pl is of the form

a = 1 +

l∑
k=1

a(k)

Nk
,

where a(k) ∈ {1, 3, . . . , 2sk − 1} for k = 1, . . . , l. Therefore each b ∈ P⊕rl is of the form

b = r +

l∑
k=1

b(k)

Nk
,

where b(k) ∈ {r, r + 1, . . . , r(2sk − 1)} for k = 1, . . . , l. Hence

|P⊕rl | ≤ (2r)lSl. (10.19)

Combining (10.17), (10.18), and (10.19) gives

Ml,r ≥
S2r
l

(2r)lSl
= (2r)−lS2r−1

l .

Applying this lower bound for Ml,r in (10.16) yields (10.1).
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11. The Divergence of ‖f̂ldν‖pp/‖fl‖
p
L2(ν)

LEMMA 7. Let r ∈ N be such that rβ > d. For all p with 1 ≤ p ≤ 2r we have

‖f̂ldν‖pp &
N
−(p/2)(d−1+β0)+(d+1)/2−α0+β0/2
l

(2r)lnα0

l+1 ln(400(l + 1)Nl+1)
(11.1)

Proof. Lemma 6 says

‖f̂ldν‖2r2r & (2r)−lN
(d+1)/2
l N

−r(d−1)
l T−2rl S2r−1

l .

Applying (2.6) and (2.7) gives

‖f̂ldν‖2r2r &
N
−r(d−1+β0)+(d+1)/2−α0+β0/2
l

(2r)lnα0

l+1 ln(400(l + 1)Nl+1)
. (11.2)

which is (11.1) with p = 2r. Assume now that 1 ≤ p < 2r. Then

‖f̂ldν‖2r2r =
∫
|f̂ldν(ξ)|2r−p|f̂ldν(ξ)|pdξ ≤

(∫
fl(x)dν(x)

)2r−p

‖f̂ldν‖pp.

By Lemma 5, the fact |Pl| = Sl, and (2.7), we have∫
fl(x)dν(x) =

∑
a∈Pl

∫
ψa(x)dν(x) ≈ N−(d−1)/2l T−1l Sl ≈ N−(d−1+β0)/2

l ,

so that

‖f̂ldν‖pp & N
−(2r−p)(d−1+β0)/2
l ‖f̂ldν‖2r2r

This together with (11.2) yields (11.1).

LEMMA 8. For 1 ≤ p <∞, we have

‖fl‖pL2(ν) ≈ N
− p4 (d−1+β0)

l .

Proof. We have

‖fl‖2L2(ν) =

∫ (∑
a∈Pl

ψa(x)

)2

dν(x) =
∑
a∈Pl

∫
(ψa(x))

2dν(x)

because the ψa have disjoint supports. By an argument analogous to the proof of Lemma 5,∫
(ψa(x))

2dν(x) ≈ N−(d−1)/2l T−1l .

Using this, the fact |Pl| = Sl, and (2.7) finishes the proof.

We now complete the proof of Theorem 3. Let 1 ≤ p <∞. Choose r ∈ N such that rβ > d and 2r ≥ p.
By Lemmas 7 and 8, we have

‖f̂ldν‖pp
‖fl‖pL2(ν)

&
N
−(p/4)(d−1+β0)+(d+1)/2−α0+β0/2
l

(2r)lnα0

l+1 ln(400(l + 1)Nl+1)

Because of (2.3) and (2.4), the exponent of Nl determines whether the right-hand side diverges. Specifically,
we have divergence if and only if −(p/4)(d− 1 + β0) + (d+ 1)/2 + α0 − β0/2 > 0. Recalling that β0 =
β − (d− 1) and α0 = α− (d− 1), this translates after a little bit of algebra to p < (4d− 4α+ 2β)/β, as
required by the statement of Theorem 3.
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12. Proof of the Claim

In the proof of Lemma 6, we claimed that the integral

I(a1, . . . , a2r) =

∫
g(ξ)e−2πiξ·ed(

∑r
i=1 ai−

∑2r
i=r+1 ai) ×

r∏
i=1

∫
e−2πiξ·(x−aied)ψai(x)dν(x)

2r∏
i=r+1

∫
e2πiξ·(x−aied)ψai(x)dν(x)dξ.

is non-negative for any choice of a1, . . . , a2r ∈ Pl. In this section, we prove this claim.

Recall the hypothesis of Lemma 6 is that r ∈ N is such that rβ > d. For i = 1, . . . , r, write mi for the
measure defined by ∫

f(x)dmi =

∫
f(x− aied)ψai(x)dν(x) ∀f ∈ L1(ν).

For i = 1 + r, . . . , 2r, write mi for the measure defined by∫
f(x)dmi =

∫
f(aied − x)ψai(x)dν(x) ∀f ∈ L1(ν).

By (9.1), for all 1 ≤ i ≤ 2r and ξ ∈ Rd, we have

|m̂i(ξ)| = |e±2πiξ·aied ψ̂aidν(±ξ)| . (1 + |ξ|)−β/2.

The implied constant depends on ai and l, but this dependence is not important for our argument. It follows
that ∣∣F [∗2ri=1mi](ξ)

∣∣ = ∣∣∣∣∣
2r∏
i=1

F [mi](ξ)

∣∣∣∣∣ . (1 + |ξ|)−rβ .

Since rβ > d, F [∗2ri=1mi] ∈ L1(Rd). Therefore ∗2ri=1mi has a continuous, non-negative, L1(Rd) density
function φ. Rewrite I(a1, . . . , a2r) as

I(a1, . . . , a2r) =

∫
e−2πiξ·ed(

∑r
i=1 ai−

∑2r
i=r+1 ai)

2r∏
i=1

F [mi](ξ)g(ξ)dξ

=

∫
e−2πiξ·ed(

∑r
i=1 ai−

∑2r
i=r+1 ai)F [∗2ri=1mi](ξ)g(ξ)dξ

=

∫
e−2πiξ·ed(

∑r
i=1 ai−

∑2r
i=r+1 ai)F [φ](ξ)g(ξ)dξ.

Since g is a Schwartz function, we have g = F [˜̂g]. Therefore

I(a1, . . . , a2r) =

∫
e−2πiξ·ed(

∑r
i=1 ai−

∑2r
i=r+1 ai)F [φ ∗ ˜̂g](ξ)dξ.

Since φ and ˜̂g are in L1(Rd), Young’s convolution inequality implies φ ∗ ˜̂g is in L1(Rd). Moreover, since
F [φ] = F [∗2ri=1mi] ∈ L1(Rd) and g is bounded,F [φ ∗ ˜̂g] = F [φ]g is also inL1(Rd). Therefore we can apply
the Fourier inversion theorem to obtain

I(a1, . . . , a2r) = (φ ∗ ˜̂g)

(
−ed ·

(
r∑
i=1

ai −
2r∑

i=r+1

ai

))
.

As φ and ˜̂g are both non-negative, we conclude that I(a1, . . . , a2r) is non-negative, as claimed.
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