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Abstract. It is well known that if a finite set A ⊂ Z tiles the integers by translations,
then the translation set must be periodic, so that the tiling is equivalent to a factorization
A⊕B = ZM of a finite cyclic group. We are interested in characterizing all finite sets A ⊂ Z
that have this property. Coven and Meyerowitz [3] proposed conditions (T1), (T2) that are
sufficient for A to tile, and necessary when the cardinality of A has at most two distinct
prime factors. They also proved that (T1) holds for all finite tiles, regardless of size. It
is not known whether (T2) must hold for all tilings with no restrictions on the number of
prime factors of |A|.

We prove that the Coven-Meyerowitz tiling condition (T2) holds for all integer tilings of
period M = (pipjpk)2, where pi, pj , pk are distinct odd primes. The proof also provides a
classification of all such tilings.
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1. Introduction

We say that a set A ⊂ Z tiles the integers by translations if there is a set T ⊂ Z such that
every integer n can be represented uniquely as n = a+ t with a ∈ A and t ∈ T . Throughout
this article, we assume that A is finite. It is well known (see [34]) that any tiling of Z by
a finite set A must be periodic, i.e. T = B ⊕ MZ for some finite set B ⊂ Z such that
|A| |B| = M . Equivalently, A⊕B is a factorization of the cyclic group ZM .

We are interested in determining which finite sets A ⊂ Z have this property, and, in
particular, in a characterization proposed by Coven and Meyerowitz [3]. In order to state
their conditions, we need to introduce some notation. By translational invariance, we may
assume that A,B ⊂ {0, 1, . . . } and that 0 ∈ A ∩ B. The characteristic polynomials (also
known as mask polynomials) of A and B are

A(X) =
∑
a∈A

Xa, B(x) =
∑
b∈B

Xb.

Then the tiling condition A⊕B = ZM is equivalent to

(1.1) A(X)B(X) = 1 +X + · · ·+XM−1 mod (XM − 1).

Let Φs(X) be the s-th cyclotomic polynomial, i.e., the unique monic, irreducible poly-
nomial whose roots are the primitive s-th roots of unity. Alternatively, Φs can be defined
inductively via the identity

(1.2) Xn − 1 =
∏
s|n

Φs(X).
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In particular, (1.1) is equivalent to

(1.3) |A||B| = M and Φs(X) | A(X)B(X) for all s|M, s 6= 1.

Since Φs are irreducible, each Φs(X) with s|M must divide at least one of A(X) and B(X).
The following result is due to Coven and Meyerowitz [3].

Theorem 1.1. [3] Let SA be the set of prime powers pα such that Φpα(X) divides A(X).
Consider the following conditions.

(T1) A(1) =
∏

s∈SA Φs(1),

(T2) if s1, . . . , sk ∈ SA are powers of different primes, then Φs1...sk(X) divides A(X).

Then:

• if A satisfies (T1), (T2), then A tiles Z;
• if A tiles Z then (T1) holds;
• if A tiles Z and |A| has at most two distinct prime factors, then (T2) holds.

While (T1) is relatively easy to prove, (T2) turns out to be much deeper and more difficult.
Coven and Meyerowitz [3] proved that if A satisfies (T2), then A ⊕ B[ = ZM , where M =
lcm(SA) and B[ is an explicit, highly structured “standard” tiling complement (defined
here in Section 2.4). We prove in [24] that having a tiling complement of this type is in
fact equivalent to (T2). In this formulation, (T2) bears some resemblance to questions on
replacement of factors in theory of factorizations of abelian groups (see [44] for an overview
of the latter).

The proof of Theorem 1.1 in [3] is based on an inductive argument. Coven and Meyerowitz
use a theorem of Tijdeman [47] to prove that if A tiles the integers, then it also tiles ZM
for some M which has the same prime factors as |A|. Hence, if |A| has at most two distinct
prime factors, we may assume that so does M . The authors then use Sands’s theorem [37],
which states that, in any tiling A⊕B = ZM with M divisible by at most 2 primes, at least
one of A and B must be contained in pZM for some prime p|M . Coven and Meyerowitz
use this to decompose the given tiling into tilings of smaller groups while keeping track of
the (T2) property. We also note that if |A| is a prime power, then the Coven-Meyerowitz
characterization simplifies further since (T2) is vacuous; in this case, the result had been
proved earlier by Newman [34].

The Coven-Meyerowitz proof does not extend to the general case. Sands’s factor replace-
ment theorem is false if M has three or more prime factors, with counterexamples in [43],
[25]. On the other hand, we prove in [24, Corollary 6.2] (using a relatively minor modification
of the argument in [3]) that if A ⊕ B = ZM , and if |A| and |B| share at most two distinct
prime factors, then both A and B satisfy (T2). (See also [46], [39].) Thus the simplest case
that is not covered by these methods is when |A| = |B| = pipjpk, where pi, pj, pk are distinct
primes.

Our main result is the following theorem.

Theorem 1.2. Let M = p2
i p

2
jp

2
k, where pi, pj, pk are distinct odd primes. Assume that

A⊕B = ZM , with |A| = |B| = pipjpk. Then both A and B satisfy (T2).

We also obtain a classification of all tilings A ⊕ B = ZM , where M = p2
i p

2
jp

2
k. Our main

results in that regard are Theorems 3.1 and 3.2. Since those theorems require some notation
and definitions, we postpone their statements until Section 3.
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The proof of Theorem 1.2 relies on the methods and concepts introduced in [24]. In order
to keep this article reasonably self-contained modulo results that can be used as black boxes,
we provide a summary of the concepts and results that we will need here, specialized to
the 3-prime setting, in Section 2. We then state our classification results in Section 3.1. In
Section 3.2, we discuss our strategy and the main new ideas of the proof. The rest of the
paper is devoted to the proof of Theorems 1.2, 3.1, and 3.2.

Since [3], there has been essentially no progress on proving (T2), except for a few special
cases that either assume particular structure of the tiling (see [22], [4]) or are covered by
the methods of [3] as in [24, Corollary 6.2] (see [46], [39]). However, there has been recent
work on other questions related to tiling. For instance, Bhattacharya [1] has established the
periodic tiling conjecture in Z2, with a quantitative version due to Greenfeld and Tao [13].
There has also been interesting work on tilings of the real line by a function (see [19] for a
survey and some open questions).

The Coven-Meyerowitz tiling conditions have implications for the ongoing work on Fu-
glede’s spectral set conjecture [10]. Fuglede conjectured that a set Ω ⊂ Rn of positive
n-dimensional Lebesgue measure tiles Rn by translations if and only if it is spectral, in the
sense that the space L2(Ω) admits an orthogonal basis of exponential functions. While the
conjecture has been disproved in its full generality in dimensions 3 and higher [45], [20], [21],
[8], [33], [9], significant connections between tiling and spectrality do exist (see [5] for an
overview of the problem in dimension 1), and there is a large body of work investigating
such connections from many points of view. In higher dimensions, the conjecture has been
proved for convex sets in Rn, by Iosevich, Katz and Tao [14] for n = 2, Greenfeld and Lev
[12] for n = 3, and by Lev and Matolsci [29] for general n. There have been many recent
results on special cases of the finite abelian group analogue of the conjecture [15], [31], [6],
[16], [17], [18], [30], [39], [40], [41], [7].

If (T2) could be proved for all finite integer tiles, this would imply the “tiling implies
spectrum” part of Fuglede’s spectral set conjecture for all compact tiles in dimension 1, as
well as for all cyclic groups ZM . This follows from the results of [26], [27], [23]. Proving
(T2) for specific tiling problems does not resolve the full conjecture, but it does imply that
the conjecture holds in those settings. In that regard, our Theorem 1.2 combined with [23,
Theorem 1.5] and [24, Corollary 6.2] has the following immediate corollary.

Corollary 1.3. Let M = p2
i p

2
jp

2
k.

(i) The “tiling implies spectrum” part of Fuglede’s spectral set conjecture holds for the
cyclic group ZM . In other words, if A ⊂ ZM tiles ZM by translations, then it is spectral.

(ii) Let A ⊂ Z be a finite set such that A mod M tiles ZM , and let F =
⋃
a∈A[a, a+ 1], so

that F tiles R by translations. Then F is spectral.

Indeed, let M and A be as in Corollary 1.3. If |A| 6= pipjpk, then both A and B satisfy (T2)
by [24, Corollary 6.2]. If on the other hand |A| = pipjpk, then both A and B satisfy (T2)
by Theorem 1.2. In both cases, spectrality follows from [23, Theorem 1.5]. (While Theorem
1.5 in [23] is stated for unions of finite intervals as in (ii), the same argument applies in the
finite group setting. See e.g. [5].)

2. Notation and preliminaries

This section summarizes the relevant definitions and results of [24], specialized to the
3-prime case. All material due to other authors is indicated explicitly as such.
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2.1. Multisets and mask polynomials. Throughout this paper, we will assume that M =
pnii p

nj
j p

nk
k , where pi, pj, pk are distinct primes and ni, nj, nk ∈ N. The indices {i, j, k} can be

thought of as a permutation of {1, 2, 3}; however, we will always use i, j, k for this purpose,
freeing up numerical subscripts for other uses. While the full proof of Theorem 1.2 requires
that ni = nj = nk = 2 and that pi, pj, pk 6= 2, many of our intermediate results are valid
under weaker assumptions as indicated.

We will always work in either ZM or in ZN for some N |M . We use A(X), B(X), etc.
to denote polynomials modulo XM − 1 with integer coefficients. Each such polynomial
A(X) =

∑
a∈ZM wA(a)Xa is associated with a weighted multiset in ZM , which we will also

denote by A, with weights wA(x) assigned to each x ∈ ZM . (If the coefficient of Xx in
A(X) is 0, we set wA(x) = 0.) In particular, if A has {0, 1} coefficients, then wA is the
characteristic function of a set A ⊂ ZM . We will use M(ZM) to denote the family of all
weighted multisets in ZM , and reserve the notation A ⊂ ZM for sets.

If N |M , then any A ∈ M(ZM) induces a weighted multiset A mod N in ZN , with the
corresponding mask polynomial A(X) mod (XN − 1) and induced weights

(2.1) wNA (x) =
∑

x′∈ZM :x′≡xmodN

wA(x′), x ∈ ZN .

We will continue to write A and A(X) for A mod N and A(X) mod XN − 1, respectively,
while working in ZN .

If A,B ∈ M(ZM), we will use A + B to indicate the weighted multiset corresponding to
the mask polynomial (A + B)(X) = A(X) + B(X), with the weight function wA+B(x) =
wA(x) +wB(x). We use the convolution notation A ∗B to denote the weighted sumset of A
and B, so that (A ∗B)(X) = A(X)B(X) and

wA∗B(x) = (wA ∗ wB)(x) =
∑
y∈ZM

wA(x− y)wB(y).

If one of the sets is a singleton, say A = {x}, we will simplify the notation and write
x ∗ B = {x} ∗ B. The direct sum notation A ⊕ B is reserved for tilings, i.e., A ⊕ B = ZM
means that A,B ⊂ ZM are both sets and A(X)B(X) = XM−1

X−1
mod XM −1. We will not use

derivatives of polynomials in this paper, hence notation such as A′, A′′, etc., will be used to
denote auxiliary multisets and polynomials rather than derivatives.

2.2. Array coordinates and geometric representation. For ν ∈ {i, j, k}, define Mν :=
M/pnνν =

∏
κ6=ν p

nκ
κ . Then each x ∈ ZM can be written uniquely as

x =
∑

ν∈{i,j,k}

πν(x)Mν , πν(x) ∈ Zpnνν .

This sets up an isomorphism ZM = Zpnii ⊕ Z
p
nj
j
⊕ Zpnkk , and identifies each element x ∈ ZM

with an element of a 3-dimensional lattice with coordinates (πi(x), πj(x), πk(x)). The tiling
A⊕B = ZM can then be interpreted as a tiling of that lattice.

For D|M , a D-grid in ZM is a set of the form

Λ(x,D) := x+DZM = {x′ ∈ ZM : D|(x− x′)}
for some x ∈ ZM . A few special cases have a geometric interpretation of interest. A line
through x ∈ ZM in the pν direction is the set `ν(x) := Λ(x,Mν), and a plane through x ∈ ZM
perpendicular to the pν direction, on the scale Mνp

αν
ν , is the set Π(x, pανν ) := Λ(x, pανν ).
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An M-fiber in the pν direction is a set of the form x ∗ Fν , where x ∈ ZM and

(2.2) Fν = {0,M/pν , 2M/pν , . . . , (pν − 1)M/pν}.
Thus x ∗Fν = Λ(x,M/pν). A set A ⊂ ZM is M-fibered in the pν direction if there is a subset
A′ ⊂ A such that A = A′ ∗ Fν .

If N = pα1
i p

αj
j p

αk
k is a divisor of M , with 0 ≤ αν ≤ nν , we let

D(N) := pγii p
γj
j p

γk
k , where γν = max(0, αν − 1) for ν ∈ {i, j, k}.

We will also write Nν = M/pν for ν ∈ {i, j, k}.

2.3. Divisor set and divisor exclusion. For N |M and A ⊂ ZM , we define

(2.3) DivN(A) := {(a− a′, N) : a, a′ ∈ A}
When N = M , we will omit the subscript and write Div(A) = DivM(A). Informally, we will
refer to the elements of Div(A) as the divisors of A or differences in A. A theorem due to
Sands [37] states that A⊕B = ZM if and only if A,B ⊂ ZM are sets such that |A| |B| = M
and

(2.4) Div(A) ∩Div(B) = {M}.
We will refer to this as divisor exclusion.

In cases when we need to indicate where a particular divisor of A must occur, we will use
the following notation for localized divisor sets. If A,A1, A2 ⊂ ZM and a0 ∈ ZM , we will
write

DivN(A1, A2) := {(a1 − a2, N) : a1 ∈ A1, a2 ∈ A2},
DivN(A, a0) = DivN(a0, A) := DivN(A, {a0}) = {(a− a0, N) : a ∈ A}.

(2.5)

For example, if A⊕ B = ZM , we will often need to consider Div(A1, A2), where A1 and A2

are restrictions of A to geometric structures such as planes or lines.

2.4. Standard tiling complements. Suppose that A⊕B = ZM , and let

Aν(A) =
{
αν ∈ {1, 2, . . . , nν} : Φpανν (X)|A(X)

}
The standard tiling complement A[ is defined via its mask polynomial

(2.6) A[(X) =
∏

ν∈{i,j,k}

∏
αν∈Aν(A)

(
1 +XMνp

αν−1
ν + · · ·+X(pν−1)Mνp

αν−1
ν

)
.

︷︸︸︷

M/p2j

{

{

{

A[

B[

M/p2i

A[ ∩B[

M/pj

M/pi

Figure 1. The standard sets A[, B[ ⊂ Zp2i p2j
with pi = 3, pj = 5 and Φp2i

Φp2j
|A,ΦpiΦpj |B.
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Then A[(X) satisfies (T2) and has the same prime power cyclotomic divisors as A(X).
For each prime power s|M , Φs divides exactly one of A and B [3], hence A[ is also uniquely
determined by M and B. Coven and Meyerowitz proved in [3] that if a finite tile satisfies
(T2), it has a standard tiling complement. We prove the converse in [24].

Proposition 2.1. Let A⊕B = ZM . Then A[ ⊕B = ZM if and only if B satisfies (T2).

We say that the tilings A⊕B = ZM and A′ ⊕B = ZM are T2-equivalent if

(2.7) A satisfies (T2) ⇔ A′ satisfies (T2).

Since A and A′ tile the same group ZM with the same tiling complement B, they must
have the same cardinality and the same prime power cyclotomic divisors. We will sometimes
say simply that A is T2-equivalent to A′ if both M and B are clear from context. Usually,
A′ will derived from A using certain permitted manipulations such as fiber shifts (Lemma
2.9). In particular, if we can prove that either A or B in a given tiling is T2-equivalent to a
standard tiling complement, this resolves the problem completely in that case.

Corollary 2.2. Suppose that the tiling A⊕B = ZM is T2-equivalent to the tiling A[⊕B =
ZM . Then A and B satisfy (T2).

2.5. Box product. Let A ⊂ ZM and N |M . For x ∈ ZM , define

AN
m[x] = #{a ∈ A : (x− a,N) = m}.

We may think of ANm[x], with x fixed and m ranging over the divisors of N , as the entries
of the N-box AN [x] = (AN

m[x])m|N [24]. If N = M , we will usually omit the superscript and
write AM

m [x] = Am[x]. If C ⊂ ZM , we write AN
m[C] :=

∑
c∈C AN

m[c]. Furthermore, if X ⊂ ZM
and x ∈ ZM , define

AN
m[x|X] = #{a ∈ A ∩X : (x− a,N) = m}.

If A,B ⊂ ZM , we define the box product of the associated M -boxes as

(2.8) 〈A[x],B[y]〉 =
∑
m|M

1

φ(M/m)
Am[x]Bm[y].

Here φ is the Euler totient function: if n =
∏L

ι=1 q
rι
ι , where q1, . . . , qL are distinct primes and

rι ∈ N, then φ(n) =
∏L

ι=1(qι − 1)qrι−1
ι .

Theorem 2.3. ([24]; following [11, Theorem 1]) If A⊕B = ZM is a tiling, then

(2.9) 〈AM [x],BM [y]〉 = 1 ∀x, y ∈ ZM .

2.6. Cuboids.

Definition 2.4. (i) A cuboid type T on ZN is an ordered triple T = (N,~δ, T ), where:

• N =
∏

ν∈{i,j,k} p
nν−αν
ν is a divisor of M , with 0 ≤ αν ≤ nν for each ν,

• ~δ = (δi, δj, δk), with 0 ≤ δν ≤ nν − αν,
• the template T is a nonempty subset of ZN .

(ii) A cuboid ∆ of type T is a weighted multiset corresponding to a mask polynomial of
the form

(2.10) ∆(X) = Xc
∏
ν∈J

(1−Xdν ),
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where J = J~δ := {ν : δν 6= 0}, and c, dν are elements of ZM such that (dν , N) = N/pδνν for
ν ∈ {i, j, k}. The vertices of ∆ are the points

(2.11) x~ε = c+
∑
ν∈J

ενdν : ~ε = (εν)ν∈J ∈ {0, 1}|J|,

with weights w∆(x~ε) = (−1)
∑
ν∈J εν .

(iii) Let A ∈M(ZN), and let ∆ be a cuboid of type T . Define

AT [∆] = AN
N [∆ ∗ T ] =

∑
~ε∈{0,1}k

w∆(x~ε)AN
N [x~ε ∗ T ],

where we recall that x ∗ T = {x+ t : t ∈ T}, so that

AN
N [x~ε ∗ T ] :=

∑
t∈T

AN
N [x~ε + t].

For consistency, we will also write AT [x] = AN
N [x ∗ T ] for x ∈ ZM .

An important special case is as follows: for N |M , an N-cuboid is a cuboid of type T =

(N,~δ, T ), where N |M , T (X) = 1, and δν = 1 for all ν such that pν |N . Thus, N -cuboids
have the form

(2.12) ∆(X) = Xc
∏
pν |N

(1−Xdν ),

with (dν , N) = N/pν for all ν such that pν |N . We reserve the term “N -cuboid”, without
cuboid type explicitly indicated, to refer to cuboids as in (2.12); for cuboids of any other
type, we will always specify T .

Cuboids provide useful criteria to determine cyclotomic divisibility properties of mask
polynomials. We say that a multiset A ∈M(ZM) is T -null if for every cuboid ∆ of type T ,

(2.13) AT [∆] = 0.

For A ∈ M(ZN), we have ΦN(X)|A(X) if and only if AN
N [∆] = 0 for every N -cuboid

∆. This has been known and used previously in the literature, see e.g. [42, Section 3], or
[16, Section 3]. In particular, for any N |M , ΦN divides A if and only if it divides the mask
polynomial of A ∩ Λ(x,D(N)) for every x ∈ ZM .

More generally, if for every m|N the polynomial Φm(X) divides at least one of A(X),

T (X), or ∆(X) for every ∆ of type T (N,~δ, T ), then A is T -null. We use such cuboid types
to test for divisibility by combinations of cyclotomic polynomials. For example, we have the
following.

• Assume that ni ≥ 2, and let T = (M,~δ, 1), with δi = 2 and δj = δk = 1. Then

ΦMΦM/pi |A⇔ A is T -null.

• Assume that ni = 2, and let T = (M,~δ, T ), where δi = 0, δj = δk = 1, and

T (X) =
XM/pi − 1

XM/p2i − 1
= 1 +XM/p2i + · · ·+X(pi−1)M/p2i .

If ΦMΦM/p2i
|A, then A is T -null.
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2.7. Tiling reductions. The general formulations of the tiling reductions below are pro-
vided in Theorems 6.1, 6.5, and Corollary 6.6 in [24]. The additional assumption that pν ‖ |B|
in Theorem 2.5 ensures that in any tiling A′ ⊕ B′ = ZNν with |A′| = |A| and |B′| = |B|/pν ,
|A′| and |B′| have only two common factors. Hence the assumption (ii) of [24, Theorem
6.1] is satisfied by [24, Corollary 6.2], and we deduce that A and B both satisfy (T2). The
assumption that pν ‖ |A| in Corollary 2.7 serves the same purpose.

Theorem 2.5. (Subgroup reduction) [3, Lemma 2.5] Let M = pnii p
nj
j p

nk
k . Assume that

A⊕ B = ZM , and that A ⊂ pνZM for some ν ∈ {i, j, k} such that pν ‖ |B|. Then A and B
satisfy (T2).

Theorem 2.6. Assume that A⊕B = ZM and Φpnνν |A for some ν ∈ {i, j, k}. Define

(2.14) Apν = {a ∈ A : 0 ≤ πν(a) ≤ pnν−1
ν − 1}.

Then the following are equivalent:

(i) For any translate A′ of A we have A′pν ⊕B = ZM/pν .

(ii) For every d such that pnνν |d|M , at least one of the following holds:

(2.15) Φd|A,

(2.16) Φd/pνΦd/p2ν
. . .Φd/pnνν | B.

Corollary 2.7. (Slab reduction) Let M = pnii p
nj
j p

nk
k . Assume that A ⊕ B = ZM , and

that there exists a ν ∈ {i, j, k} such that Φp2ν
|A, pν ‖ |A|, and A,B obey the condition (ii) of

Theorem 2.6. (In particular, this holds if A is M-fibered in one of the pi, pj, pk directions.)
Then A and B satisfy (T2).

2.8. Saturating sets. Let A⊕B = ZM , and x, y ∈ ZM . Define

Ax,y := {a ∈ A : (x− a,M) = (y − b,M) for some b ∈ B},

Ax := {a ∈ A : (x− a,M) ∈ Div(B)} =
⋃
b∈B

Ax,b.

We will refer to Ax as the saturating set for x. The sets By,x and By are defined similarly,
with A and B interchanged.

By divisor exclusion, Aa = {a} for all a ∈ A. For x ∈ ZM \ A, saturating spaces are
more robust, but are still subject to geometric constraints based on divisor exclusion. For
x, x′ ∈ ZM such that (x− x′,M) = pαii p

αj
j p

αk
k , with 0 ≤ αν ≤ nν , define

Span(x, x′) =
⋃

ν:αν<nν

Π(x, pαν+1
ν ),

Bispan(x, x′) = Span(x, x′) ∪ Span(x′, x).

(2.17)

Then for any x, x′, y ∈ ZM , we have

(2.18) Ax′,y ⊂ Ax,y ∪ Bispan(x, x′),

and in particular,

(2.19) Ax ⊂
⋂
a∈A

Bispan(x, a).
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For example, if x ∈ ZM \ A satisfies (x− a,M) = M/pi for some a ∈ A, then

Ax ⊂ Bispan(x, a) = Π(x, pnii ) ∪ Π(a, pnii ).

In the sequel, whenever we evaluate saturating sets, we will always start with geometric
restrictions based on (2.19).

2.9. Fibers and cofibered structures. The following is a simplified version of the defi-
nitions and results of [24, Section 8], restricted to M = p2

i p
2
jp

2
k. Most of this article can be

read with just these definitions, if the reader is willing to substitute ni = nj = nk = 2 in all
arguments. On those few occasions when the more general versions are necessary even in
that case, we have to refer the reader to [24, Section 8].

Let N |M , c ∈ N, and ν ∈ {i, j, k}. An N-fiber in the pν direction with multiplicity c is a
set F ⊂ ZM such that F mod N has the mask polynomial

F (X) ≡ cXa(1 +XN/pν +X2N/pν + · · ·+X(pν−1)N/pν ) mod (XN − 1)

for some a ∈ ZM . We will say sometimes that F passes through a, or is rooted at a. A set
A ⊂ ZM is N-fibered in the pν direction if it can be written as a union of disjoint N -fibers
in the pν direction, all with the same multiplicity.

Fiber chains in the pν direction are translates of sets that tile (M/pγν)ZM for some γ with
1 ≤ γ ≤ ni. For M = p2

i p
2
jp

2
k, the only fiber chains of interest that are not fibers on some

scale are multisets F̃ with mask polynomials

F̃ (X) = cXa(1 +XMν +X2Mν + · · ·+X(p2ν−1)Mν ), ν ∈ {i, j, k}, a ∈ ZM , c ∈ N.

If F ⊂ ZM is an M -fiber in the pν direction, we say that an element x ∈ ZM is at distance
m from F if m|M is the maximal divisor such that (z − x,M) = m for some z ∈ F . It is
easy to see that such m exists.

Let A⊕B = ZM be a tiling. We will often be interested in finding “complementary” fibers
and fibered structures in A and B, in the following sense.

Definition 2.8 (Cofibers and cofibered structures). Let A,B ⊂ ZM , with M = p2
i p

2
jp

2
k,

and let ν ∈ {i, j, k}.
(i) We say that F ⊂ A,G ⊂ B are (1, 2)-cofibers in the pν direction if F is an M-fiber

and G is an M/pν-fiber, both in the pν direction.

(ii) We say that the pair (A,B) has a (1,2)-cofibered structure in the pν direction if

• B is M/pν-fibered in the pν direction,
• A contains at least one “complementary” M-fiber F ⊂ A in the pν direction, which

we will call a cofiber for this structure.

The advantage of cofibered structure is that it permits fiber shifts as described below. In
many cases, we will be able to use this to reduce the given tiling to a simpler one.

Lemma 2.9 (Fiber-Shifting Lemma). Let A ⊕ B = ZM . Assume that the pair (A,B)
has a (1, 2)-cofibered structure, with a cofiber F ⊂ A. Let A′ be the set obtained from A by
shifting F to a point x ∈ ZM at a distance M/p2

i from it. Then A′ ⊕ B = ZM , and A is
T2-equivalent to A′.

In order to identify cofibered structures in (A,B), we will use saturating sets, via the
following lemma.
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Lemma 2.10. Assume that A ⊕ B = ZM is a tiling, with M = p2
i p

2
jp

2
k. Suppose that

x ∈ ZM \ A, b ∈ B, M/pν ∈ Div(A), and Ax,b ⊂ `ν(x) for some ν ∈ {i, j, k} and b ∈ B.
Then

(2.20) AM
M/p2ν

[x]BMM/p2ν
[b] = φ(p2

ν).

with the product saturated by a (1, 2)-cofiber pair (F,G) such that F ⊂ A is at distance M/p2
i

from x and G ⊂ B is rooted at b. In particular, if Ax ⊂ `ν(x), then the pair (A,B) has a
(1, 2)-cofibered structure.

3. Classification results

3.1. Classification results. We are now ready to state our classification results and provide
a more detailed outline of the proof. Let A⊕ B = ZM , where M = pnii p

nj
j p

nk
k . By (1.3), we

have Φs(X) | A(X)B(X) for all s|M such that s 6= 1. In particular, ΦM divides at least one
of A(X) and B(X). Without loss of generality, we may assume that ΦM |A.

We have ΦM |A if and only if ΦM divides A ∩ Λ(x,D(M)) for every x ∈ ZM (see Section
2.6). This implies structure results for restrictions of A to such grids. Let Λ := Λ(a,D(M))
for some a ∈ A, so that A∩Λ is nonempty. It is easy to see that ΦM |Fν for each ν ∈ {i, j, k}.
By the classic results on vanishing sums of roots of unity [2], [35], [36], [38], [32], [28], ΦM

divides A ∩ Λ if and only if

(A ∩ Λ)(X) =
∑

ν∈{i,j,k}

Qν(X)Fν(X),

where Qi, Qj, Qk are polynomials with integer coefficients depending on both A and Λ.
A particularly simple case occurs when A(X) = Qν(X)Fν(X) for a single ν ∈ {i, j, k}, so

that A is fibered on all D(M) grids in the same direction. However, much more complicated
structures are also possible. For instance, A ∩ Λ may be M -fibered in different directions
on different D(M) grids Λ, or there may exist a D(M) grid Λ such that A ∩ Λ contains
nonintersecting M -fibers in two or three different directions. An additional issue is that the
polynomials Qi, Qj, Qk are not required to have nonnegative coefficients. In such cases, there
may be points a ∈ A such that a ∗ Fν 6⊂ A for any ν, due to cancellations between M -fibers
in different directions.

Our classification results, and our proof of (T2), split into cases according to the fibering
properties of A. Theorems 3.1 and 3.2 summarize our main findings in the unfibered and
fibered case, respectively.

Theorem 3.1. Let A⊕B = ZM , where M = p2
i p

2
jp

2
k is odd. Assume that |A| = |B| = pipjpk,

ΦM |A, and there exists a D(M) grid Λ such that A∩Λ is nonempty and is not M-fibered in
any direction. Assume further, without loss of generality, that 0 ∈ Λ. Then A[ = Λ, and the
tiling A⊕ B = ZM is T2-equivalent to Λ⊕ B = ZM via fiber shifts. By Corollary 2.2, both
A and B satisfy (T2).

Theorem 3.2. Let A⊕B = ZM , where M = p2
i p

2
jp

2
k is odd. Assume that |A| = |B| = pipjpk,

ΦM |A, and that for every a ∈ A, the set A∩Λ(a,D(M)) is M-fibered in at least one direction
(possibly depending on a).

(I) Suppose that there exists an element a0 ∈ A such that

(3.1) a0 ∗ Fν ⊂ A ∀ν ∈ {i, j, k}.
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Then the tiling A ⊕ B = ZM is T2-equivalent to Λ ⊕ B = ZM via fiber shifts, where Λ :=
Λ(a0, D(M)). By Corollary 2.2, both A and B satisfy (T2).

(II) Assume that (3.1) does not hold for any a0 ∈ A. Then at least one of the following
holds.

• A ⊂ Π(a, pν) for some a ∈ A and ν ∈ {i, j, k}. By Theorem 2.5, both A and B satisfy
(T2).
• There exists a ν ∈ {i, j, k} such that (possibly after interchanging A and B) the

conditions of Theorem 2.6 are satisfied in the pν direction. By Corollary 2.7, both A
and B satisfy (T2).

A more detailed breakdown of the case (II) of Theorem 3.2 is provided in Theorem 9.1.

3.2. Outline of the proof. In the rest of this section, we provide an outline of the proof
of Theorems 3.1 and 3.2. We assume that A ⊕ B = ZM , where M = p2

i p
2
jp

2
k is odd, |A| =

|B| = pipjpk, and ΦM |A. Some of our arguments apply to tilings with more general M . In
order to be able to sketch the main ideas without interruptions, we postpone the discussion
of such extensions until the end of this section.

We begin with general arguments that are needed in both fibered and unfibered cases. In
Section 4, we develop technical tools we will use throughout the article. Lemma 4.1 is from
[24]; several of the other results in that section are specific to the 3-prime setting.

Assume first that ΦM |A and that there exists a D(M) grid Λ such that A ∩ Λ is not
M -fibered in any direction. In Sections 5 and 6, we prove that A ∩ Λ must then contain
at least one of two special structures, either diagonal boxes (Proposition 5.2) or an extended
corner (Proposition 5.5). Large parts of the argument are combinatorial and apply to all
A ⊂ ZM such that ΦM |A; however, to get the full strength of our results, we need to use
saturating set techniques, hence the tiling assumption is necessary.

Some of our technical tools work only when all the “top differences” are divisors of A, i.e.,

(3.2) {m : D(M)|m|M} ⊂ Div(A).

We therefore must pay special attention to the cases where (3.2) fails. A classification of
such structures is provided in Section 6. This analysis is also needed in the fibered case
(Theorem 3.2) when fibering, or lack thereof, on lower scales must be considered.

We resolve diagonal boxes and extended corner structures in Sections 7 and 8, respectively.
In Theorem 7.1, we prove that if A ∩ Λ contains diagonal boxes, then A is T2-equivalent to
either Λ (in which case we are done) or to another tile A′ containing an extended corner.
We then prove in Theorem 8.1 that if A ∩ Λ contains an extended corner structure, then A
is T2-equivalent to Λ. Theorem 3.1 follows by combining Theorem 7.1 and Theorem 8.1.

The main idea of that part of the proof is that all such tilings can be obtained via fiber
shifts (Lemma 2.9) from the standard tiling

(3.3) A[ ⊕B[ = ZM ,

where A[ = Λ(0, D(M)), and B[ is the standard tiling complement with ΦpiΦpjΦpk |B[.
Similar tilings were constructed by Szabó ([43]; see also [25]). We prove that all tilings
satisfying the assumptions of Theorems 3.1 must in fact have this form. Starting with an
unfibered grid in the given tiling, and using saturating set methods, we are able to locate
the shifted fibers and shift them back into place, returning to (3.3). This proves (T2) and
provides full information about the structure of the tiling.
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In Section 9, we consider the fibered case. In the simple case when the entire set A is
M -fibered in the same direction, we can apply Corollary 2.7 and be done; however, it is
possible for A to be fibered in different directions on different D(M)-grids. The proof breaks
down into cases, according to how the fibers in different directions interact.

Suppose first that there exists an element a0 ∈ A such that (3.1) holds. This case turns
out to be similar to that of unfibered grids and is resolved by similar methods, ending in
T2-equivalence to (3.3).

Assume now that no such element exists. Our main intermediate result in this case is that,
in fact, only two fibering directions are allowed (see Theorem 9.1 for more details). This
breaks down further into cases according to fibering properties and cyclotomic divisibility,
with each case terminating in either the subgroup reduction (Theorem 2.5) or slab reduction
(Theorem 2.6 and Corollary 2.7).

While our final result is restricted to the case when M = p2
i p

2
jp

2
k is odd, many of our

methods and intermediate results apply under weaker assumptions. Whenever a significant
part of the argument can be run in a more general case with little or no additional effort, we
do so, assuming that M = pnii p

nj
j p

nk
k for more general ni, nj, nk ≥ 2 and pi, pj, pk ≥ 2. For

example, the classification of unfibered grids in Sections 5 and 6 allows all nν to be arbitrary
and M to be either odd or even. The resolution of the pi extended corner case in Section 8
works for both odd and even M , with ni ≥ 2 arbitrary and with only a few additional lines
needed to accommodate the even case. On the other hand, the arguments in Section 9 are
limited to the odd M = p2

i p
2
jp

2
k case from the beginning.

Although we expect that the main conclusions should be the same in the even case, many
of our technical tools work differently when one of the primes is equal to 2. We would like
to draw the reader’s attention to the basic fibering argument in Lemma 4.9. This argument
does not work when pi = 2, and indeed, in Section 6 we provide examples of unfibered grids
in the even case where the fibering conclusions of the lemma fail. In particular, the unfibered
structures in Lemma 6.5 do not have a counterpart in the odd case. Additionally, with fewer
geometric restrictions coming from (2.19), saturating set arguments can be more difficult to
run.

The constraint ni = nj = nk = 2 is often needed in arguments based on divisor exclusion.
For example, while (2.19) provides geometric restrictions on saturating sets, we often need
additional constraints based on availability of divisors, and with ni = nj = nk = 2 there are
fewer divisors available to begin with. In the fibered case, several of our proofs terminate in
an essentially 2-dimensional (therefore easier) problem after we have run out of scales in one
direction. In order to allow arbitrary ni, nj, nk throughout the argument, we expect that a
systematic way to induct on scales may be necessary.

4. Toolbox

4.1. Divisors. The first lemma is Lemma 8.9 of [24], specialized to the 3-prime case.

Lemma 4.1 (Enhanced divisor exclusion). Let A ⊕ B = ZM , with M =
∏

ι∈{i,j,k} p
nι
ι .

Let m =
∏

ι∈{i,j,k} p
αι
ι and m′ =

∏
ι∈{i,j,k} p

α′ι
ι , with 0 ≤ αι, α

′
ι ≤ nι. Assume that at least one

of m,m′ is different from M , and that for every ι ∈ {i, j, k} we have

(4.1) either αι 6= α′ι or αι = α′ι = nι.
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Then for all x, y ∈ ZM we have

AM
m [x]AM

m′ [x]BMm [y]BMm′ [y] = 0.

In other words, there are no configurations (a, a′, b, b′) ∈ A× A×B ×B such that

(4.2) (a− x,M) = (b− y,M) = m, (a′ − x,M) = (b′ − y,M) = m′.

Proof. If we did have a configuration as in (4.2), then, under the assumption (4.1) for all ι,
we would have

(a− a′,M) = (b− b′,M) =
∏

ι∈{i,j,k}

pmin(αι,α′ι)
ι ,

with the right side different from M . But that is prohibited by divisor exclusion. �

4.2. Cyclotomic divisibility.

Lemma 4.2. Let A ∈ M(ZM), and let m, s|M with s 6= 1. Suppose that for every a ∈ A,
Φs divides A ∩ Λ(a,m). Then Φs|A.

Proof. Write ZM =
⋃
ν Λν , where Λν are pairwise disjoint m-grids. Accordingly, A(X) =∑

ν Aν(X), where Aν = A∩Λν . If A is disjoint from Λν , we have Aν(X) ≡ 0. If on the other
hand A ∩ Λν 6= ∅, then Φs|Aν . Summing up in ν, we get Φs|A. �

The next two lemmas are based on a combinatorial interpretation of divisibility by prime
power cyclotomics. For A ⊂ ZM and 1 ≤ α ≤ ni, we have Φpαi

(X)|A(X) if and only if

(4.3) |A ∩ Π(x, pαi )| = 1

pi
|A ∩ Π(x, pα−1

i )| ∀x ∈ ZM ,

so that the elements of A are uniformly distributed mod pαi within each residue class mod
pα−1
i . This in particular limits the number of elements that a tiling set may have in a plane

on some scale.

Lemma 4.3 (Plane bound). Let A⊕B = ZM , where M = pnii p
nj
j p

nk
k and |A| = pβii p

βj
j p

βk
k .

Then for every x ∈ ZM and 0 ≤ αi ≤ ni we have

|A ∩ Π(x, pni−αii )| ≤ pαii p
βj
j p

βk
k .

Corollary 4.4. Let A ⊕ B = ZM , where M = pnii p
nj
j p

nk
k and |A| = pβii p

βj
j p

βk
k with βi > 0.

Suppose that for some x ∈ ZM and 1 ≤ α0 ≤ ni

(4.4) |A ∩ Π(x, pni−α0
i )| > pβi−1

i p
βj
j p

βk
k ,

then Φ
p
ni−α
i
|A for at least one α ∈ {0, . . . , α0 − 1}.

Proof. Suppose that Φ
p
ni−α
i

- A for all α ∈ {0, . . . , α0 − 1}. It follows that there must exist

a γ ≥ α0 such that Φ
p
ni−γ
i
|A. The latter implies, by (4.4), that |A| >

∏
ν p

βν
ν , which is a

contradiction. �
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4.3. Saturating sets.

Lemma 4.5 (No missing joints). Let A⊕B = ZM , where M = pnii p
nj
j p

nk
k . Suppose that

(4.5) {D(M)|m|M} ∩Div(B) = ∅,
and that for some x ∈ ZM there exist ai, aj, ak ∈ A such that

(4.6) (x− ai,M) = M/pi, (x− aj,M) = M/pj, (x− ak,M) = M/pk.

Then x ∈ A.

Proof. Suppose that x 6∈ A, and let ∆ be the M -cuboid with vertices x, ai, aj, ak. By (4.6),
the saturating set Ax is contained in the vertex set of ∆. But that is impossible by (4.5). �

Lemma 4.6 (Flat corner). Let A ⊕ B = ZM ,M = p2
i p
nj
j p

nk
k , |A| = pipjpk. Suppose that

(4.5) holds, and that A contains the following 3-point configuration: for some x ∈ ZM \ A
there exist a, aj, ak ∈ A such that

(a− aj,M) = (ak − x,M) = M/pj, (a− ak,M) = (aj − x,M) = M/pk

Then Ax ⊂ `i(x), and the pair (A,B) has a (1, 2)-cofibered structure, with an M-cofiber in
A at distance M/p2

i from x.

Proof. Fix b ∈ B. Then

Ax,b ⊂ `i(x) ∪ `i(a) ∪ `i(aj) ∪ `i(ak).
By (4.5), we have the following.

• Ax,b∩`i(x) 6= ∅ implies that AM/p2i
[x]BM/p2i

[b] > 0, henceM/p2
i pj, M/p2

i pk, M/p2
i pjpk ∈

Div(A) and M/p2
i ∈ Div(B).

• Ax,b ∩ `i(a) 6= ∅ implies that AM/p2i pjpk
[x|`i(a)]BM/p2i pjpk

[b] > 0, hence M/p2
i , M/p2

i pj,

M/p2
i pk ∈ Div(A) and M/p2

i pjpk ∈ Div(B).
• Ax,b ∩ `i(aj) 6= ∅ implies that AM/p2i pk

[x|`i(aj)]BM/p2i pk
[b] > 0, hence M/p2

i , M/p2
i pj,

M/p2
i pjpk ∈ Div(A) and M/p2

i pk ∈ Div(B).
• Ax,b ∩ `i(ak) 6= ∅ implies that AM/p2i pj

[x|`i(ak)]BM/p2i pj
[b] > 0, hence M/p2

i , M/p2
i pk,

M/p2
i pjpk ∈ Div(A) and M/p2

i pj ∈ Div(B).

It follows that Ax,b cannot intersect more than one of the above lines. We now show it cannot
intersect any line other than `i(x). Indeed, assume that Ax,b ⊂ `i(a), then

φ(p2
i pjpk) = AM/p2i pjpk

[x|`i(a)]BM/p2i pjpk
[b]

= AM/p2i
[a]

∑
y:(y−b,M)=M/pjpk

BM/p2i
[y].

Observe that AM/p2i
[a] ≤ φ(p2

i ), and since M/pi,M/p2
i /∈ Div(B), we have BM/p2i

[y] ≤ 1 for

all y ∈ ZM \ B with (y − b,M) = M/pjpk. It follows that both must hold with equality.
Now, if pi > pj then AM/p2i

[a] = φ(p2
i ) implies that

|A ∩ Π(a, pnkk )| ≥ A[a] + AM/p2i
[a]

= 1 + φ(p2
i ) > pipj,

which contradicts Lemma 4.3. If on the other hand pi > pj, then BM/p2i
[y] = 1 for all y as

above implies {D(M)|m|M} ∩Div(B) 6= ∅, which contradicts (4.5). Hence Ax,b ∩ `i(a) = ∅.
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Next, assume that Ax,b ⊂ `i(ak), then

φ(pjp
2
i ) = AM/p2i pj

[x|`i(ak)]BM/p2i pj
[b]

= AM/p2i
[ak]

∑
y:(y−b,M)=M/pj

BM/p2i
[y]

By the same argument as above, we deduce that AM/p2i
[ak] = φ(p2

i ) and BM/p2i
[y] = 1 for all

y ∈ ZM \B with (y− b,M) = M/pj. When pi > pj, we therefore get |A∩Π(ak, p
nk
k )| > pipj,

which is a contradiction. When pi < pj, we must have {M/pj,M/pipj} ∩ Div(B) 6= ∅,
contradicting (4.5). Thus Ax,b ∩ `i(ak) = ∅. By symmetry, Ax,b ∩ `i(aj) = ∅. �

4.4. Fibering lemmas. Lemma 4.7 below is a simple version of the de Bruijn-Rédei-
Schoenberg theorem for cyclic groups ZN , where N has at most two distinct prime factors.
This was essentially proved in [2]; see also [28, Theorem 3.3].

Lemma 4.7. (Cyclotomic divisibility for 2 prime factors) Let A ∈ M(ZN) for some
N |M such that pi - N . Then:

(i) ΦN |A if and only if A is a linear combination of N-fibers in the pj and pk direction
with non-negative integer coefficients.

(ii) Let Λ be a D(N)-grid. Assume that ΦN |A, and that there exists c0 ∈ N such that
AN
N [x] ∈ {0, c0} for all x ∈ Λ. Then A ∩ Λ is N-fibered in either the pj or the pk direction.

Lemma 4.8 is a localized version of the above.

Lemma 4.8. (Flat cuboids) Let A ⊂ ZM . Assume that ΦM |A, and that there is a plane
Π := Π(z, pnii ) such that A ∩ Π is a disjoint union of M-fibers in the pj and pk directions.
Then for every parallel plane Π′ := Π(z′, pnii ), where (z − z′,M) = M/pi, the set A∩Π′ is a
disjoint union of M-fibers in the pj and pk directions.

Proof. Consider a 2-dimensional cuboid ∆′ with vertices x′, x′+dj, x
′+dk, x

′+dj +dk, where
x′ ∈ Π, (dj,M) = M/pj, (dk,M) = M/pk. Let x ∈ Π be the point such that (x− x′,M) =
M/pi, and let ∆ be the 2-dimensional cuboid with vertices x, x+dj, x+dk, x+dj+dk. By the
fibering property of A∩Π, we have AM [∆] = 0. Since ΦM |A, we also have AM [∆−∆′] = 0,
hence AM [∆′] = 0. If we consider A ∩Π′ (after translation) as a subset of ZM/p

ni
i

, it follows

that ΦM/p
ni
i
| (A ∩ Π′)(X). By Lemma 4.7, A ∩ Π′ is a union of fibers as claimed. �

Lemma 4.9. (Missing top difference implies fibering) Let N |M with pipjpk|N . Let
Λ := Λ(x0, D(N)) for some x0 ∈ ZN . Assume that A ⊂ ZN satisfies ΦN |A and Λ ∩ A 6= ∅.

(i) Suppose that pi 6= 2, and that

(4.7) N/pi 6∈ DivN(A ∩ Λ).

Then A∩Λ is N-fibered in one of the pj and pk directions. In particular, if N/pi 6∈ DivN(A),
then A ∩ Λ is N-fibered in one of the pj and pk directions for every D(N)-grid Λ.

(ii) Suppose that N/pi, N/pj 6∈ DivN(A∩Λ). Then A∩Λ is N-fibered in the pk direction.

Proof. (i) We first prove that each a ∈ A ∩ Λ belongs to an N -fiber in the pν direction for
at least one ν ∈ {j, k}. Suppose, for contradiction, that there exists an a ∈ A ∩ Λ that does
not have this property. Then there are xi, xj ∈ ZN such that

AN [xj] = AN [xk] = 0 and (xj − a,N) = N/pj, (xk − a,N) = N/pk.
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Since pi > 2 and AN
N/pi

[a] = 0, there exist at least two distinct elements xi, x
′
i ∈ ZN satisfying

AN [xi] = AN [x′i] = 0, (a− xi, N) = (a− x′i, N) = N/pi.

Consider two N -cuboids, each with vertices at a, xi, xj, and with another vertex at xk and
x′k respectively. By the cyclotomic divisibility assumption, each of those cuboids must be
balanced. This can only happen if there are two elements aijk, a

′
ijk ∈ ZN at the opposite

vertex of each cuboid from a (that is, with (a− aijk, N) = (a− a′ijk, N) = D(N)) satisfying

AN [aijk] = AN [a′ijk] = c0. However, this leads to a contradiction, since (aijk−a′ijk, N) = N/pi.
We therefore conclude that each a ∈ A∩Λ belongs to an N -fiber in at least one direction as
indicated.

Next, suppose that aj, ak ∈ A ∩ Λ belong to N -fibers in, respectively, the pj and pk
direction. If aj ∗ Fj and ak ∗ Fk do not intersect, then N/pi ∈ DivN(aj ∗ Fj, ak ∗ Fk),
contradicting the assumption (4.7). We may therefore assume that aj = ak = a and that
a ∗ Fj, a ∗ Fk ⊂ A.

Consider any N -cuboid with one vertex at a. Then the vertices at distance N/pj and
N/pk from a belong to A, and, by (4.7), the vertices at distance N/pipj and N/pipk from a
cannot be in A. The only way to balance the cuboid is for the vertex at distance N/pjpk
from a to be in A. Allowing such cuboids to vary, we see that A∩Π∩Λ must be N -fibered
in both of the pj and pk directions. This proves part (i) of the lemma.

(ii) Assume that N/pi, N/pj 6∈ DivN(A ∩ Λ). At least one of pi, pj must be odd; without
loss of generality, we may assume that pi 6= 2. By part (i) of the lemma, A ∩ Λ must be
N -fibered in one of the pj and pk directions on Λ. However, it cannot be N -fibered in the
pj direction, since N/pj 6∈ DivN(A ∩ Λ). Part (ii) follows. �

5. Structure on unfibered grids

5.1. Diagonal boxes. Throughout this section, we will use the following notation. Let
M = pnii p

nj
j p

nk
k , and let Λ be a fixed D(M) grid such that A ∩ Λ 6= ∅. We identify Λ with

Zpi ⊕ Zpj ⊕ Zpk , and represent each point x ∈ Λ as (λix, λjx, λkx) in the implied coordinate
system.

Definition 5.1. Let A ⊂ ZM . We say that A ∩ Λ contains diagonal boxes if there are
nonempty sets I ⊂ Zpi, J ⊂ Zpj , K ⊂ Zpk , such that

Ic := Zpi \ I, J c := Zpj \ J, Kc := Zpk \K
are also nonempty, and

(5.1) (I × J ×K) ∪ (Ic × J c ×Kc) ⊂ A ∩ Λ.

Proposition 5.2. Let A ⊕ B = ZM be a tiling, M = pnii p
nj
j p

nk
k , and assume that ΦM | A.

Suppose that there is a D(M)-grid Λ such that A ∩ Λ is not a union of disjoint M-fibers
(possibly in different directions). Then A ∩ Λ contains diagonal boxes.

Proof. Write D = D(M) for short. We first construct a set A0 ⊂ A ∩ Λ as follows. If A ∩ Λ
contains no M -fibers, let A0 := A ∩ Λ. If A ∩ Λ does contain an M -fiber F , consider the
set (A ∩Λ) \ F (if there is more than one such fiber, just choose one arbitrarily and remove
it). If this set contains no M -fibers, we let A0 be that set; otherwise continue by induction.
The procedure terminates when no more M -fibers can be found. The remaining set A0 is
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I

J

K

Ic

J c

Kc

Figure 2. A pair of diagonal boxes.

nonempty by our assumption on A, contains no M -fibers, and ΦM |A0; however, A0 need not
be a tiling complement.

We remark that A0 is not necessarily uniquely determined by A, as the fiber removal
procedure may lead to different outcomes depending on the order in which fibers are removed.
In that event, we fix one such set A0 and keep it fixed throughout the proof.

For future reference, we record a lemma.

Lemma 5.3. Suppose that x ∈ A \ A0. Then there exists a ν ∈ {i, j, k} such that x ∗ Fν ⊂
(A \ A0).

Proof. This follows directly from the construction, since any point x ∈ A \ A0 would have
been removed from A together with an M -fiber (in some direction) containing x. �

For each x ∈ Λ, we define

I(x) = {l ∈ Zpi : (l, λjx, λkx) ∈ A0}, Ic(x) = Zpi \ I(x),

J(x) = {l ∈ Zpj : (λix, l, λkx) ∈ A0}, J c(x) = Zpj \ J(x),

K(x) = {l ∈ Zpk : (λix, λjx, l) ∈ A0}, Kc(x) = Zpk \K(x).

Let a ∈ A0 be an element such that |K(a)| is maximal, in the sense that

(5.2) |K(a′)| ≤ |K(a)| ∀a′ ∈ A0.

By translational invariance, we may assume that a = (0, 0, 0). Observe that I(a), J(a), K(a)
are all nonempty since a ∈ A0, and Ic(a), J c(a), Kc(a) are all nonempty since a does not
belong to an M -fiber in A0 in any direction.

Claim 1. For all a′ = (0, 0, l) ∈ A0, with l ∈ K(a), we have I(a′)× J(a′)× {l} ⊂ A0.

Proof. Since K(a′) = K(a), it suffices to prove this with a′ = a. Let ai = (li, 0, 0) and
aj = (0, lj, 0) for some li ∈ I(a), lj ∈ J(a), and let z = (li, lj, 0) ∈ I(a)×J(a)×{0}. We need
to prove that z ∈ A0. Suppose, for contradiction, that z 6∈ A0, and consider the cuboid with
vertices at a, ai, aj, and (0, 0, lk). For lk ∈ K(a), the cuboid can only be balanced if both
(li, 0, lk) and (0, lj, lk) are elements of A0. Furthermore, let lk ∈ Kc(a), then for the cuboid
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to be balanced we still need at least one of (li, 0, lk) and (0, lj, lk) to be in A0. This implies
that max(|K(ai)|, |K(aj)|) > |K(a)|, contradicting the maximality assumption (5.2). Hence
Claim 1 follows. �

Claim 2. For all a′ = (0, 0, l) ∈ A0 with l ∈ K(a), we have Ic(a′)× J c(a′)×Kc(a) ⊂ A0.

Proof. Let x ∈ Ic(a′)× J c(a′)×Kc(a). Considering the M -cuboid with opposite vertices at
a′ and x, we see that the three vertices at distance M/pi,M/pj,M/pk from a′ are not in A0.
Hence, in order for the cuboid to be balanced, we must have x ∈ A0 as claimed. �

Claim 3. Suppose that for all l′, l′′ ∈ K(a), we have either (I(a′)× J(a′)) ⊆ (I(a′′)× J(a′′))
or (I(a′′) × J(a′′)) ⊆ (I(a′) × J(a′)), where a′ = (0, 0, l′), a′′ = (0, 0, l′′). Then A0 contains
diagonal boxes.

Proof. Under the assumptions of the claim, the sets I(a′) × J(a′) with a′ ∈ A0 and M/pk |
a− a′ have a minimal element. Without loss of generality, we may assume that

(I(a)× J(a)) ⊆ (I(a′)× J(a′)) ∀a′ ∈ A0 such that M/pk | a− a′.
Then Claims 1 and 2 imply that A0 (and therefore A) contains the diagonal boxes

(I(a)× J(a)×K(a)) ∪ (Ic(a)× J c(a)×Kc(a)),

which proves the claim. �

It remains to consider the case when there exist l′, l′′ ∈ K(a) such that for a′ = (0, 0, l′),
a′′ = (0, 0, l′′), we have

(5.3) I(a′) 6⊂ I(a′′) and J(a′′) 6⊂ J(a′).

For this to be possible, K(a) must have at least two distinct elements, and each of I(a′) and
J(a′′) must have at least one element different from 0. Since none of a, a′, a′′ belongs to an
M -fiber in A0, we must have

(5.4) pi, pj, pk > 2.

Furthermore, this configuration implies that

(5.5) {m : D|m|M} ⊂ Div(A0) ⊂ Div(A ∩ Λ).

Indeed, we have

{m : D|m|M} \ {M/pipj} ⊂ Div((I(a′)× J(a′)× {l′}) ∪ (I(a′′)× J(a′′)× {l′′})),

M/pipj ∈ Div(Ic(a′)× J c(a′)× {lk}, Ic(a′′)× J c(a′′)× {lk}) for any lk ∈ Kc(a).

Claim 4. Suppose that (5.3) holds for some l′, l′′ ∈ K(a), with a′ = (0, 0, l′), a′′ = (0, 0, l′′).
Then

Ic(a′′)× J c(a′)×Kc(a) ⊂ A0.

Proof. We may assume that a′′ = a and l′′ = 0. We will also write lk = l′, so that a′ = (0, 0, lk)
Let li ∈ I(a′) \ I(a), lj ∈ J(a) \ J(a′), lci ∈ Ic(a′) and lcj ∈ J c(a). We also fix lck ∈ Kc(a). For
the purpose of this proof, we will need to consider points with coordinates (βi, βj, βk) such
that

βν ∈ {0, lν , lcν} for ν ∈ {i, j, k}.
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Let xi := (li, 0, 0), xj := (0, lj, lk), and ai := (li, 0, lk), aj := (0, lj, 0). Then xi, xj 6∈ A0, and
ai, aj ∈ A0. By Claim 2, we have

zi := (lci , lj, l
c
k) ∈ A0 since lj ∈ J c(a′),

zj := (li, l
c
j , l

c
k) ∈ A0 since li ∈ Ic(a).

(5.6)

Let z = (li, lj, l
c
k) ∈ Ic(a)× J c(a′)×Kc(a) be the point such that

(5.7) (z − zi,M) = M/pi, (z − zj,M) = M/pj.

We need to prove that z ∈ A0.
We begin with the following reduction.

Claim 4’. Let xij = (li, lj, 0) and yij = (li, lj, lk). Suppose that at least one of the following
holds: either

(5.8) {xij, yij} ∩ A 6= ∅,
or else there exists a set A′ ⊂ ZM , identical to A except possibly along the line `j(xi), such
that A′ ⊕B = ZM and

(5.9) xi ∗ Fj ⊂ A′, hence xij ∈ A′.
Then z ∈ A0.

Proof. For notational consistency, if (5.8) holds, we let A′ = A. We have

(5.10) (xij − z,M) = (yij − z,M) = M/pk.

Suppose that at least one of xij, yij belongs to A′. By (5.7) and (5.5), the assumptions of
Lemma 4.5 hold for z and A′. Hence z ∈ A′. Since A′ and A may differ only along `j(xi),
we must in fact have z ∈ A.

Next, we claim that z ∈ A0. Indeed, assume for contradiction that z ∈ A\A0. By Lemma
5.3, there is a ν ∈ {i, j, k} such that z∗Fν ⊂ (A\A0). But by (5.6) and (5.7), zi ∈ (z∗Fi)∩A0

and zj ∈ (z ∗ Fj) ∩ A0. It follows that ν = k, and z ∗ Fk ⊂ (A \ A0). By (5.10), we have
xij, yij ∈ z ∗ Fk, and in particular xij, yij ∈ A.

Consider now the point xi. We have

(5.11) (xi − a,M) = M/pi, (xi − ai,M) = M/pk, (xi − xij,M) = M/pj,

with a, a′ ∈ A0, xij ∈ A. Taking also (5.5) into account, we see that xi satisfies the assump-
tions of Lemma 4.5 applied to A. Therefore xi ∈ A.

Since xi 6∈ A0, we must have xi ∈ A \ A0. By Lemma 5.3 and (5.11), it follows that
xi ∗ Fj ⊂ A \ A0. However, consider the point xij ∈ xi ∗ Fj. We have already seen that z
must have been removed from A together with the fiber z ∗Fk, which also contains xij. This
is a contradiction, since we are not allowed to remove the same point twice. �

To prove Claim 4, it remains to prove that at least one of the conditions (5.8), (5.9) in
Claim 4’ must hold. Assume first that xi ∈ A \ A0. By Lemma 5.3, A \ A0 must contain
an M -fiber xi ∗ Fν for some ν ∈ {i, j, k}. Since a ∈ (xi ∗ Fi) ∩ A and ai ∈ (xi ∗ Fk) ∩ A, we
must have ν = j. This clearly implies xij ∈ A. The same argument applies with i and j
interchanged.

We are left with the case when xi, xj, xij, yij /∈ A. Assume also for contradiction that
z /∈ A0. Consider the M -cuboid with vertices at xij, z, zi and zj, and note that zi, zj ∈ A0. In
order to balance this cuboid in A0, at least one of the points yi := (lci , lj, 0) and yj := (li, l

c
j , 0)

must be in A0. However, if yj ∈ A0, then we can apply Lemma 4.5 again, this time to A and
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xi, using (5.5), (5.11), and (xi − yj,M) = M/pj. Hence xi ∈ A. We assumed that xi 6∈ A0,
hence by Lemma 5.3 there must be a ν ∈ {i, j, k} such that xi ∗ Fν ⊂ A \ A0. However, the
points a, ai, yj ∈ A0 block all three directions, contradicting the assumption that yj ∈ A0.

We therefore have yi ∈ A0. Now, considering the saturating set Axi , we have

Axi ⊂
⋂

â∈{a,ai,zj ,yi}

Bispan(xi, â) = `j(xi) ∪ {a, aj}.

By (5.5), we must in fact have Axi ⊂ `j(xi). It follows that the pair (A,B) has a (PA,PB)-
cofibered structure of depth γ in the pj direction for some γ ≥ 2, with 1 ∈ PA and an M -fiber
in the pj direction in A at distance M/pγj from xi. Applying Lemma 2.9 to shift that fiber to
xi, we obtain a set A′ with the desired properties, thus concluding the proof of Claim 4. �

We can now complete the proof of the proposition. We claim that

(5.12) (I × J ×K) ∪ (Ic × J c ×Kc) ⊂ A0,

where
I =

⋂
l∈K(a)

I(al), J =
⋂

l∈K(a)

J(al), K = K(a),

Ic =
⋃

l∈K(a)

Ic(al), J c =
⋃

l∈K(a)

J c(al), Kc = Kc(a),

and al = (0, 0, l). It is clear that I×J×K ⊂ A0. Suppose now that (li, lj, lk) ∈ Ic×J c×Kc.
Then there are l, l′ ∈ K(a) such that li ∈ Ic(al) and lj ∈ J c(al′). If l = l′, or if li ∈ Ic(al′),
then (li, lj, lk) ∈ A0 by Claim 2 applied to al′ . The case lj ∈ J c(al) is similar. Assume
therefore that li ∈ I(al′) \ I(al) and lj ∈ J(al) \ J(al′). But then (5.3) holds with a′, a′′

replaced by al, al′ . Applying Claim 4, we see that (li, lj, lk) ∈ A0 in that case as well. This
ends the proof of the proposition. �

5.2. Extended corners. We continue to write M = pnii p
nj
j p

nk
k . Assume that A⊕ B = ZM

is a tiling, ΦM | A, and there exists a D(M)-grid Λ such that A ∩ Λ 6= ∅ and A ∩ Λ is not
M -fibered in any direction. By Proposition 5.2, if A ∩ Λ is not a union of disjoint M -fibers,
then A ∩ Λ contains diagonal boxes. It remains to consider the case when A ∩ Λ is a union
of disjoint M -fibers. In that case, we claim that A ∩ Λ contains the following structure.

Definition 5.4. Suppose that A ⊂ ZM , and let Λ be a D(M) grid.

(i) We say that A∩Λ contains a pi corner if there exist a, ai ∈ A∩Λ with (a−ai,M) = M/pi
satisfying

(5.13) A ∩ (a ∗ Fj ∗ Fk) = a ∗ Fj, A ∩ (ai ∗ Fj ∗ Fk) = ai ∗ Fk.

(ii) We say that A∩Λ contains a pi extended corner if there exist a, ai ∈ A∩Λ such that
(a− ai,M) = M/pi and

• A ∩ (a ∗ Fj ∗ Fk) is M-fibered in the pj direction but not in the pk direction,
• A ∩ (ai ∗ Fj ∗ Fk) is M-fibered in the pk direction but not in the pj direction.

We now prove that unfibered grids as described above must contain extended corners.

Proposition 5.5. Let D = D(M), and let Λ be a D-grid. Assume that A ∩ Λ is a union
of disjoint M-fibers, but is not fibered in any direction. Then A ∩ Λ contains a pν extended
corner for some ν ∈ {i, j, k}.
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Proof. Fix A and Λ as in the statement of the proposition. We will say that κ : A ∩ Λ →
{i, j, k} is an assignment function if A ∩ Λ can be written as

A ∩ Λ =
⋃

a∈A∩Λ

(a ∗ Fκ(a)),

where for any a, a′ ∈ A∩Λ, the fibers a ∗ Fκ(a) and a′ ∗ Fκ(a′) are either identical or disjoint.
Thus, if a′ ∈ a ∗ Fκ(a), then κ(a′) = κ(a).

We recall [24, Proposition 7.10]:

Proposition 5.6. Let M = pnii p
nj
j p

nk
k , and let D = D(M). Assume that A ⊕ B = ZM is

a tiling and that there exists a D-grid Λ such that A ∩ Λ is a nonempty union of disjoint
M-fibers. Then there is a subset {ν1, ν2} ⊂ {i, j, k} of cardinality 2 such that A ∩ Λ is a
union of disjoint M-fibers in the pν1 and pν2 directions.

Hence there exists an assignment function κ that takes at most two distinct values. (In
fact, the proof of [24, Proposition 7.10] shows that this is true for any assignment function.)
Without loss of generality, we may assume that κ(a) ∈ {j, k} for all a ∈ A ∩ Λ. We claim
that this implies that A ∩ Λ contains a pi extended corner.

Split Λ into 2-dimensional grids Πι := xι ∗ Fj ∗ Fk, ι = 0, 1, . . . , pi − 1. Then for each ι,
the set A∩Πι is a union of disjoint fibers in at least one of the pj or pk direction. Moreover,
we are assuming that A ∩ Λ is not fibered in either the pj or pk direction. Therefore for
each ν ∈ {j, k}, there must be at least one ι(ν) such that A ∩ Πι(ν) is fibered only in the pν
direction. Choosing a ∈ A ∩ Πι(j) and ai ∈ A ∩ Πι(k) with (a− ai) = M/pi, we see that the
condition (ii) of Definition 5.4 is satisfied. �

A pi corner is a special case of a pi extended corner, with only one fiber in each of the
planes through a and ai in Λ. This is one of the special structures that occur when ΦM | A,
A ∩ Λ is not M -fibered in any direction, and {D(M)|m|M} 6⊂ Div(A) (see Section 6).

In addition to the present purpose of classification of unfibered grids in on scale M , we will
also refer to Definition 5.4 (ii) in the fibered case, in the proofs of Proposition 9.14 (Claim
1) and Lemma 9.30.

6. Unfibered grids with missing top differences

Let A ⊂ ZM , and let Λ be a D(M)-grid such that A∩Λ 6= ∅. The purpose of this section
is to classify all possible unfibered grids A ∩ Λ under the assumption that ΦM |A and that
Div(A) does not contain all m such that D(M)|m|M . We do not assume in this section that
A is a tiling complement.

6.1. A structure result.

Proposition 6.1. Let M = pnii p
nj
j p

nk
k . Assume that A ⊂ ZM satisfies ΦM |A. Let Λ be a

D(M)-grid such that A ∩ Λ 6= ∅. Suppose that A ∩ Λ is not M-fibered in any direction, and
that (5.5) fails, i.e.

(6.1) {m : D(M)|m|M} 6⊂ Div(A ∩ Λ).

Then A ∩ Λ is a union of at most one set of diagonal boxes

(6.2) A1 = (I1 × J1 ×K1) ∪ (Ic1 × J c1 ×Kc
1),

where I1 ⊂ Zpi, J1 ⊂ Zpj , K1 ⊂ Zpk are non-empty sets such that Ic1 := Zpi \ I1, J
c
1 :=

Zpj \J1, K
c
1 := Zpk \K1 are also non-empty, and possibly additional M-fibers in one or more
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directions, disjoint from A1 and from each other. Furthermore, if A ∩ Λ does contain a set
of diagonal boxes (6.2), then at least one of the sets I1, J1, K1 has cardinality 1, and at least
one of the sets Ic1, J

c
1 , K

c
1 has cardinality 1.

Remark 6.1. For simplicity, we only state and prove Proposition 6.1 for sets A ⊂ ZM .
However, if we assume instead that A ∈M(ZN) for some N |M , and that (6.12) holds (i.e.,
A ∩ Λ is a multiset of constant multiplicity c0), the same argument applies except that the
diagonal boxes and fibers in the conclusion also have multiplicity c0.

Proof. We begin as in the proof of Proposition 5.2. Let A0 ⊂ A ∩ Λ be a set constructed
by removing M -fibers from A ∩ Λ until none are left, so that A ∩ Λ is the union of A0 and
some number of M -fibers in one or more directions, disjoint from A0 and from each other.
If A0 = ∅, we are done. Otherwise, we proceed with Claims 1, 2, and 3 from the proof of
Proposition 5.2, noting that this part does not require the use of saturating sets (hence A
need not be a tile). At that point, the only remaining case in the proof of Proposition 5.2
is when there exist l′, l′′ ∈ K(a) such that (5.3) holds. However, in that case we have (5.5),
which contradicts (6.1). Therefore, under the assumptions of Proposition 6.1, A0 contains
diagonal boxes A1 as in (6.2). Moreover, the cardinality statement must hold, since otherwise
we would not have (6.1).

As in Proposition 5.2, A0 need not be unique and may depend on the order in which the
fibers are removed, and A1 may then depend on the choice of A0. We fix one such choice of
A0 and A1, and keep it fixed for the remainder of the proof.

We claim that A0 = A1. To prove this, assume for contradiction that A0 \A1 is nonempty.
We clearly have ΦM |A0 and ΦM |A1, therefore ΦM |A0(X)− A1(X). Since the set A0 \ A1 is
nonempty and contains no fibers, it must contain another set of diagonal boxes

(6.3) A2 = (I2 × J2 ×K2) ∪ (Ic2 × J c2 ×Kc
2),

with obvious notation. Furthermore, since A2 ⊂ A0 \ A1, we must have

(6.4) A1 ∩ A2 = ∅.
We first claim that at least one of

I1 = I2, I1 = Ic2, J1 = J2, J1 = J c2 , K1 = K2, K1 = Kc
2,

must hold. Indeed, by (6.4), we must have

(I1 × J1 ×K1) ∩ (I2 × J2 ×K2) = ∅,
so that at least one of I1 ∩ I2, J1 ∩ J2, K1 ∩K2 is empty. Without loss of generality, we may
assume that K1 ∩K2 = ∅, so that

(6.5) K1 ⊂ Kc
2, K2 ⊂ Kc

1.

We also have

(I1 × J1 ×K1) ∩ (Ic2 × J c2 ×Kc
2) = ∅,

and since K1 ∩Kc
2 6= ∅, one of I1 ∩ Ic2 and J1 ∩ J c2 is empty. Without loss of generality, we

may assume that J1 ∩ J c2 = ∅, so that

(6.6) J1 ⊂ J2, J c2 ⊂ J c1 .

Next,

(Ic1 × J c1 ×Kc
1) ∩ (Ic2 × J c2 ×Kc

2) = ∅.
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By (6.6), we have J c1 ∩J c2 6= ∅, therefore one of Ic1 ∩ Ic2 and Kc
1 ∩Kc

2 is empty. If Kc
1 ∩Kc

2 = ∅,
then Kc

2 ⊂ K1, which together with (6.5) shows that K1 = Kc
2 and proves the claim. If

Ic1 ∩ Ic2 = ∅, we get that

(6.7) Ic1 ⊂ I2, Ic2 ⊂ I1.

Using that

(Ic1 × J c1 ×Kc
1) ∩ (I2 × J2 ×K2) = ∅.

and taking (6.5) and (6.7) into account, we see that J c1 ∩ J2 = ∅. But then J2 ⊂ J1, which
together with (6.6) proves the claim.

We may assume without loss of generality that

(6.8) K1 = Kc
2.

This implies that

(6.9) (I1 × J1) ∩ (I2 × J2) = ∅ and (Ic1 × J c1) ∩ (Ic2 × J c2) = ∅,
since otherwise we would have an M -fiber in the pk direction in A0. But also, considering
the box layers with third coordinate l ∈ K1 and l′ ∈ K2, we have

(6.10) (I1 × J1) ∩ (Ic2 × J c2) = ∅ and (Ic1 × J c1) ∩ (I2 × J2) = ∅,
The first parts of (6.9) and (6.10) imply that either

(6.11) I1 ∩ I2 = J1 ∩ J c2 = ∅,
or else the same holds with I, J interchanged. Assume that (6.11) holds. Then I2 ⊂ Ic1 and
J c2 ⊂ J c1 , so that in order for the second parts of (6.9) and (6.10) to hold, we must have

Ic1 ∩ Ic2 = J c1 ∩ J2 = ∅.
But this implies that Ic1 ⊂ I2 and J c2 ⊂ J c1 . Hence I1 = Ic2 and J1 = J2. But then A0 contains
M -fibers in the pi direction, a contradiction. �

6.2. Special unfibered structures: odd M .

Lemma 6.2. Let M = pnii p
nj
j p

nk
k and N = M/pαii p

αj
j p

αk
k with αι < nι for all ι ∈ {i, j, k}.

Assume that 2 - M , and that A ∈ M(ZN) satisfies ΦN |A. Let Λ be a D(N)-grid such that
A ∩ Λ 6= ∅. Assume further that

• there exists a c0 ∈ N such that

(6.12) AN
N [x] ∈ {0, c0} for all x ∈ Λ,

• A ∩ Λ is not M-fibered in any direction.

Then there is a permutation of {i, j, k} such that

(6.13) {D(N)|m|N} \Div(A ∩ Λ) ⊆ {N/pipj, N/pipk}.
Moreover, (6.13) holds with equality if and only if there exists x ∈ ZM \ A such that

AN
N/pi

[x] = c0φ(pi), AN
N/pjpk

[x] = c0φ(pjpk),

AN
m[x] = 0 for all m ∈ {D(N)|m|N} \ {N/pi, N/pjpk}.

We will refer to this structure as a pi-full plane.
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Figure 3. Full plane structure on a D(M) grid.

Proof. We may assume that M = N and c0 = 1. We will also write D = D(M) for short.
By Proposition 6.1 and the assumption that A ∩ Λ is not fibered, A ∩ Λ must contain at
least one of the following:

(a) two nonintersecting M -fibers in different directions, say pi and pj,

(b) diagonal boxes as in Definition 5.1, and possibly additional M -fibers in one or more
directions, disjoint from the diagonal boxes and from each other.

In the first case, we have {D|m|M} \ Div(A ∩ Λ) ⊆ {M/pipj}, just based on these two
fibers. It remains to consider the second case. Suppose that A ∩ Λ contains diagonal boxes

(I × J ×K) ∪ (Ic × J c ×Kc)

with I, J,K, Ic, J c, Kc all nonempty. In order for {D|m|M} \ Div(A ∩ Λ) to be nonempty,
we must have

(6.14) min(|I|, |J |, |K|) = min(|Ic|, |J c|, |Kc|) = 1.

We may assume without loss of generality that |Ic| = |J | = 1. Since pι ≥ 3 for all ι, it
follows that |I|, |J c|, and at least one of |K|, |Kc| are greater than 1. Assume that |Kc| > 1.
Then

M/pi ∈ Div(I × J ×K),

M/pj,M/pk,M/pjpk ∈ Div(Ic × J c ×Kc),

M/pipjpk ∈ Div(I × J ×K, Ic × J c ×Kc).

(6.15)

This implies (6.13). Furthermore, if (6.13) holds with equality, then |K| = 1, since otherwise
we would also have M/pipk ∈ Div(I × J × K). This proves the second conclusion of the
lemma, with x equal to the unique element of Ic × J ×K. Note that if we add an M -fiber
in any direction to this structure, then equality in (6.13) can no longer hold. �

Lemma 6.3. Let M = pnii p
nj
j p

nk
k and N = M/pαii p

αj
j p

αk
k with αι < nι for all ι ∈ {i, j, k}.

Assume that 2 - M , and that A ∈ M(ZN) satisfies ΦN |A. Let Λ be a D(N)-grid such that
A ∩ Λ 6= ∅. Assume further that

• (6.12) holds for all x ∈ Λ,
• A ∩ Λ is not fibered in any direction,

and that

(6.16) {D|m|N} \Div(A ∩ Λ) = {N/pipj}.
Then A ∩ Λ has one of the following, mutually exclusive, possible structures:
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(i) (pk-corner, cf. Definition 5.4 (i).) For each x ∈ ZN , the set A ∩ Λ ∩ Π(x, pnk−αkk )
is either empty or consists of a single N-fiber in one of the pi or pj directions. Since
A ∩ Λ is not fibered, there has to be at least one of each.

Figure 4. Corner structure on a D(M) grid.

(ii) (pk-almost corner) There exist x0, x1, . . . , xφ(pk) ∈ ZN with (xl − xl′ , N) = N/pk
for l 6= l′, and two disjoint sets Li,Lj ⊂ Zpk satisfying |Li|, |Lj| > 1 and Li ∪ Lj =
{0, 1, . . . , φ(pk)}, such that for all z ∈ Λ we have

AN
N [z] =


c0 if (z − xl, N) = N/pi for some l ∈ Li

or (z − xl, N) = N/pj for some l ∈ Lj
0 otherwise.

In particular, AN
N [xl] = 0 and AN

N/pi
[xl] = c0φ(pi) for all l ∈ Li, and similarly with i

and j interchanged.

Figure 5. An almost corner structure on a D(M) grid.

Proof. We may assume that M = N and c0 = 1, and proceed as in the proof of Lemma
6.2. Suppose first that (a) holds (i.e., A ∩ Λ contains two non-overlapping M -fibers in two
different directions), but A does not contain diagonal boxes. Then the M -fibers must be in
the pi and pj directions, or else (6.16) would be violated. Moreover, having any two such
fibers in the same plane Π(x, pnk−αkk ) would also violate (6.16), hence (i) holds in this case.

In case (b), A ∩ Λ contains diagonal boxes. We proceed as in the proof of Lemma 6.2 to
get (6.14). Since M/pipj 6∈ Div(A), we must have

min(|I|, |J |) = min(|Ic|, |J c|) = 1.

Therefore we may again assume without loss of generality that |Ic| = |J | = 1 and that
|Kc| > 1, and get (6.15). We now consider two cases.
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• If |K| = 1, the diagonal boxes are as in the conclusion of Lemma 6.2, and instead of
(6.16) we have (6.13) with equality.
• If |K| > 1, the diagonal boxes present the structure described in (ii), with Li = K

and Lj = Kc.

The only way we can add an M -fiber to either of these structures without adding M/pipj
to Div(A) is to add an M -fiber in the pk direction rooted at x (in the first case, with x defined
as in Lemma 6.2), or at x0 (in the second case, with x0 specified in (ii)) That, however, puts
us in the case (i) of the lemma. �

6.3. Special unfibered structures: even M .

Lemma 6.4. Let M = pnii p
nj
j p

nk
k with 2|M , and N = M/pαii p

αj
j p

αk
k with αι < nι for all

ι ∈ {i, j, k}. Assume that A ∈ M(ZN) satisfies ΦN |A. Let Λ be a D(N)-grid such that
A ∩ Λ 6= ∅. Assume further that

• (6.12) holds for all x ∈ Λ,
• A ∩ Λ is not fibered in any direction.

Assume that N/pι ∈ Div(A ∩ Λ) for all ι ∈ {i, j, k}, but {D(N)|m|N} 6⊂ Div(A ∩ Λ). Then
for some permutation of {i, j, k} we have

{D(N)|m|N} \Div(A ∩ Λ) = {N/pipj},

and A∩Λ has the pk corner structure in the sense of Definition 5.4 (i): for each x ∈ Λ, the
set A∩Λ∩Π(x, pnk−αkk ) is either empty or consists of a single N-fiber in one of the pi or pj
directions. Since A ∩ Λ is not fibered, there has to be at least one of each.

Proof. We may assume that M = N and c0 = 1. Assume without loss of generality that
pk = 2. In this case, in order for N/pk ∈ Div(A ∩ Λ), we must have at least one N -fiber
F in the pk direction in A ∩ Λ. Let A1 be the set obtained from A ∩ Λ by removing all
N -fibers in the pk direction. Since A ∩ Λ is not fibered, A1 is nonempty and satisfies (6.1).
By Proposition 6.1, it must contain either at least one fiber in another direction or a set of
diagonal boxes, each disjoint from F .

• Suppose that A1 contains diagonal boxes as in Definition 5.1. Without loss of gener-
ality, we may assume that F is rooted at a point a ∈ Ic × J ×K. Then

M/pi,M/pipk ∈ Div(F, I × J ×K),

M/pj,M/pjpk ∈ Div(F, Ic × J c ×Kc),

M/pipjpk ∈ Div(I × J ×K, Ic × J c ×Kc).

It follows that the only missing divisor can be M/pipj. In order to avoid that divisor
within each box, we must have

min(|I|, |J |) = min(|Ic|, |J c|) = 1.

Taking into account the differences (a′− a′′,M), where a′ ∈ F and a′′ belongs to one
of the boxes, we see that the only possible case is |Ic| = |J | = 1. Then A contains
the M -fiber in the pi direction rooted at the unique point x ∈ Ic × J ×K, and the
M -fiber in the pj direction rooted at the unique point x′ ∈ Ic × J ×Kc. Any other
points in A∩Λ would add M/pipj to Div(A∩Λ). Thus the conclusion of the lemma
holds.
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• If A1 contains no diagonal boxes, then it must contain a fiber in at least one other
direction. This case is identical to the corresponding case of Lemma 6.3 (i), for some
permutation of {i, j, k}.

�

Lemma 6.5. Let M = pnii p
nj
j p

nk
k with 2|M , and N = M/pαii p

αj
j p

αk
k with αι < nι for all

ι ∈ {i, j, k}. Assume that A ∈ M(ZN) satisfies ΦN |A. Let Λ be a D(M)-grid such that
A ∩ Λ 6= ∅. Assume further that pk = 2, and that

• (6.12) holds for all x ∈ Λ,
• A ∩ Λ is not fibered in any direction,
• {N/pi, N/pj, N/pk} 6⊂ Div(A ∩ Λ).

Then

(6.17) N/pk 6∈ Div(A ∩ Λ),

and there is a pair of diagonal boxes

A0 = (I × J ×K) ∪ (Ic × J c ×Kc) ⊂ Λ,

as in Definition 5.1, such that for all z ∈ A ∩ Λ we have

AN
N [z] =

{
c0 if z ∈ A0,

0 otherwise.

Figure 6. An even almost corner structure on a D(M) grid
with M/pk /∈ Div(A), pk = 2.

Proof. We may assume that M = N and c0 = 1. If M/pi or M/pj is not in Div(A∩Λ), then
A∩Λ is fibered by Lemma 4.9, contradicting the assumptions of the lemma. Therefore (6.17)
holds. Invoking Proposition 6.1 again, we see that A∩Λ must contain either diagonal boxes
or at least two non-overlapping M -fibers in different directions. The second case cannot be
reconciled with (6.17). Therefore A ∩ Λ must contain a set A0 of diagonal boxes. Notice
that adding an M -fiber in any direction to A0 would introduce M/pk as a divisor of A ∩ Λ.
Therefore A ∩ Λ = A0. �

7. Resolving diagonal boxes

Theorem 7.1. Let A ⊕ B = ZM be a tiling, M = p2
i p

2
jp

2
k with pi, pj, pk ≥ 3, |A| = |B| =

pipjpk, and assume that ΦM | A. Let D = D(M), and let Λ be a D(M)-grid such that
A ∩ Λ 6= ∅. Assume further that A ∩ Λ is not fibered in any direction, and that one of the
following holds: either

(7.1) {m : D(M)|m|M} ⊂ Div(A ∩ Λ)
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and A∩Λ contains diagonal boxes as in Definition 5.1, or else A∩Λ has one of the structures
described in Lemma 6.2 (full plane) or Lemma 6.3 (ii) (almost corner). Then at least one
of the following is true:

• The tiling A⊕B = ZM is T2-equivalent to Λ⊕B = ZM via fiber shifts. Thus Λ is a
translate of A[, and by Corollary 2.2, both A and B satisfy (T2).
• The tiling A⊕B = ZM is T2-equivalent to a tiling A′ ⊕B, where A′ ∩ Λ contains a
pν corner structure as in Definition 5.4 (i) for some ν ∈ {i, j, k}.

We remark that, in the case when (7.1) holds, A ∩ Λ might be larger than just a pair of
diagonal boxes. For example, it could contain diagonal boxes and some number of M -fibers
in various directions disjoint from the boxes. However, any such additional structures can
only make our task easier.

We split the proof into cases. Since pi, pj, pk ≥ 3, at least one of I and Ic must have
cardinality greater than 1, and similarly for each of the pairs J, J c and K,Kc. We claim that
it suffices to consider the following two cases.

Case (DB1): The tiling A⊕B satisfies the assumptions of Theorem 7.1, and additionally
min(|I|, |J c|, |Kc|) ≥ 2.

Case (DB2): The tiling A⊕B satisfies the assumptions of Theorem 7.1, and additionally
|Ic| = |J c| = |Kc| = 1.

Indeed, if either |I| = |J | = |K| = 1 or |Ic| = |J c| = |Kc| = 1, then we are in the
case (DB2), possibly after relabelling I, J,K as Ic, J c, Kc and vice versa. Suppose now that
neither of these holds, say |I| ≥ 2 and |J c| ≥ 2. Since pk ≥ 3, at least one of K and Kc

must have cardinality at least 2. If |Kc| ≥ 2, we are in the case (DB1). If |K| ≥ 2, we are
in the case (DB1) again, with pi and pj interchanged, and with the sets I, J,K relabelled
as Ic, J c, Kc and vice versa. All other cases are identical up to a permutation of the indices
i, j, k.

We will proceed to resolve the cases (DB1) and (DB2) in Sections 7.2 and 7.3, respectively.
Throughout this section, we continue to use the notation of Section 5.1.

7.1. Preliminary results.

Lemma 7.2. Let A ⊕ B = ZM be a tiling, M = p2
i p

2
jp

2
k, |A| = |B| = pipjpk, and assume

that ΦM | A. Let D = D(M), and let Λ be a D-grid such that A∩Λ 6= ∅. Assume that (7.1)
holds. Suppose that A ∩ Λ is not fibered, and that it contains diagonal boxes

(7.2) A0 := (I × J ×K) ∪ (Ic × J c ×Kc) ⊂ A ∩ Λ,

with I, J,K, Ic, J c, Kc as in Definition 5.1. If one of the “complementary boxes” is contained
in A, say

(7.3) (Ic × J ×K) ⊂ A,

then the tiling A⊕ B = ZM is T2-equivalent to Λ⊕ B = ZM . Consequently, A and B both
satisfy T2.

Proof. Throughout the proof, we assume that A⊕B = ZM is a tiling satisfying the assump-
tions of the lemma.
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Claim 1. Assume that (7.3) holds. Then either A⊕B = ZM is T2-equivalent to Λ⊕B = ZM ,
or

(7.4) (Ic × J ×Kc) ∩ A = ∅.

Proof. Suppose that there is an a ∈ (Ic × J ×Kc) ∩ A, and let

Z = Π(a, p2
i ) ∩ Ic × J c ×K.

For any z ∈ Z, let aj, ak be points such that (z − aj,M) = (ak − a,M) = M/pj and
(z − ak,M) = (aj − a,M) = M/pk. Then aj, ak ∈ A, since aj ∈ Ic × J × K and ak ∈
Ic × J c × Kc. By Lemma 4.6, either z ∈ A, or else Az ⊂ `i(x), with a (1, 2) cofibered
structure for (A,B) in the pi direction and an M -fiber in A at distance M/p2

i from z as a
cofiber. We can use Lemma 2.9 to shift that fiber to z. Repeating this procedure for all
z ∈ Z \ A, we get a new set A1 ⊂ ZM such that A1 ⊕ B = ZM and A1 is T2-equivalent to
A. Moreover, Z ⊂ A1, and, since A ∩ Λ ⊂ A1 ∩ Λ, (7.1) holds with A replaced by A1.

Now, any x ∈ (Ic × J c × K) \ Z satisfies the assumptions of Lemma 4.5 applied to A1,
with (x− z,M) = M/pi for some z ∈ Z, (x− a′j,M) = M/pj for some a′j ∈ Ic× J ×K, and
(x− a′k,M) = M/pk for some a′k ∈ Ic × J c ×Kc. It follows that

(7.5) Ic × J c ×K ⊂ A1.

We can then apply Lemma 4.6 and the fiber shifting argument again, first to all points in
Ic × J ×Kc with the flat corner configurations in planes perpendicular to the pi direction,
then to all points in I×J c×K with the flat corner configurations in planes perpendicular to
the pk direction. Thus A1 is T2-equivalent to a set A2 that satisfies A2⊕B = ZM , continues
to obey (7.3)–(7.5), and moreover has the property that

(Ic × J ×Kc) ∪ (I × J c ×K) ⊂ A2.

Finally, we cannot have any points in I × J c × Kc that are not in A2, since that would
contradict Lemma 4.5. Thus A2 = Λ. �

Claim 1’. Assume that (7.3) holds. Then either A⊕B = ZM is T2-equivalent to Λ⊕B =
ZM , or

(7.6) (Ic × J c ×K) ∩ A = ∅.

Proof. This is identical to the proof of Claim 1, with the pj and pk directions interchanged,
and with J and Kc replaced by J c and K. �

Claim 2. Assume that (7.3), (7.4), and (7.6) hold. Then

(7.7) I × J c ×Kc ⊂ A.

Proof. Let x ∈ I × J c×Kc. Considering any M -cuboid with one vertex at x and another in
Ic × J ×K, we see that it can only be balanced if x ∈ A. �

We can now finish the proof of the lemma. It suffices to consider the case when (7.3) and
(7.7) hold, so that

(7.8) Y := (I × J × Zpi) ∪ (Ic × J c × Zpi) ⊂ A.

If there are any elements a ∈ (A∩Λ) \ Y , we can repeat the argument in the proof of Claim
1 to prove that the tiling A ⊕ B = ZM is T2-equivalent to Λ ⊕ B = ZM . If on the other



THE COVEN-MEYEROWITZ TILING CONDITIONS FOR 3 ODD PRIME FACTORS 31

hand A ∩ Λ = Y , then this set is fibered in the pi direction, contradicting the assumptions
of the lemma. �

Corollary 7.3. Let A⊕ B = ZM be a tiling, M = p2
i p

2
jp

2
k, |A| = |B| = pipjpk, and assume

that ΦM | A. Let D = D(M), and let Λ be a D-grid such that A ∩ Λ 6= ∅. Assume that
(5.5) holds. Suppose that A ∩ Λ is not fibered, that it contains diagonal boxes (7.2) with
I, J,K, Ic, J c, Kc as in Definition 5.1, and that it also contains at least one M-fiber disjoint
from these boxes. Then the tiling A⊕B = ZM is T2-equivalent to Λ⊕B = ZM . Consequently,
A and B both satisfy T2.

Proof. We may assume without loss of generality that the M -fiber F ⊂ A ∩ Λ is in the pj
direction, with F ⊂ Ic × Zpj ×K. By translational invariance, we may further assume that

F = {0} × Zpj × {0},

with 0 ∈ Ic and 0 ∈ K.
We first claim that there is a set A1 ⊂ ZM , either equal to A or T2-equivalent to it, such

that A1 ⊕B = ZM and

(7.9) {0} × J ×K ⊂ A1.

Indeed, if K = {0}, then {0}×J×K ⊂ F ⊂ A and there is nothing to prove. Otherwise, let
lj ∈ J and lk ∈ K \ {0}. Then the point x = (0, lj, lk) either belongs to A, or else it satisfies
the assumptions of Lemma 4.6, with (0, lj, 0), (li, lj, 0), and (li, lj, lk) all in A for any li ∈ I,
so that the flat corner configuration is perpendicular to the pj direction. By Lemma 4.6, in
the latter case we have Ax ⊂ `j(x), implying a (1, 2) cofibered structure. We can then use
Lemma 2.9 to shift the M -cofiber in A to x. After all such shifts have been performed, we
arrive at A1.

By a similar argument but with pi and pk interchanged, we may further replace A1 by a
T2-equivalent set A2 such that A2 ⊕B = ZM , (7.9) continues to hold for A2, and

(7.10) Ic × J c × {0} ⊂ A2.

Next, we replace A2 by a T2-equivalent set A3 such that A3 ⊕ B = ZM , (7.9) and (7.10)
both continue to hold for A3, and

(7.11) Ic × J × {0} ⊂ A3.

Indeed, consider a point z = (l′i, lj, 0} ∈ Ic × J × {0}, with l′i 6= 0. (If no such l′i exists,
(7.11) holds with A3 = A2.) If z 6∈ A2, then it satisfies the assumptions of Lemma 4.6, with
(0, lj, 0), (0, l′j, 0), and (li, l

′
j, 0) all in A2 for any l′j ∈ J c, so that the flat corner configuration

is perpendicular to the pk direction. Then Az ⊂ `k(z), and again our conclusion follows by
Lemma 2.9.

Finally, we may pass to another T2-equivalent set A4 such that A4 ⊕B = ZM and

(7.12) Ic × J ×K ⊂ A4.

If Ic = {0} or K = {0}, this follows from (7.9) or (7.11), with A4 = A3. Otherwise, we let
w = (l′i, lj, lk} ∈ Ic × J ×K with l′i 6= 0 and lk 6= 0, and repeat the argument from the proof
of (7.9) with the first coordinate 0 replaced by l′i.

With (7.12) in place, the corollary now follows from Lemma 7.2. �
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7.2. Case (DB1). Assume that A ⊕ B = ZM is a tiling satisfying the assumptions of
Theorem 7.1. Let D = D(M), and let Λ be the D(M) grid provided by the assumption of
the theorem. Additionally, we assume that

(7.13) min(|I|, |J c|, |Kc|) ≥ 2.

If A ∩ Λ has one of the structures described in Lemma 6.2 (full plane) or Lemma 6.3 (ii)
(almost corner), then in both cases we have A ∩ Λ = (I × J ×K) ∪ (Ic × J c ×Kc) with no
other points permitted, so that

(7.14) (Ic × J ×K) ∩ A = ∅.

(Note that (7.13) covers the cases of a pi full plane and a pj almost corner structure. See
the end of this section for more details.)

If on the other hand (7.1) holds and Ic×J×K ⊂ A, the conclusion of Theorem 7.1 follows
by Lemma 7.2. We may therefore assume that there exists a point

(7.15) x ∈ (Ic × J ×K) \ A.

Lemma 7.4. Assume (DB1), and let x satisfy (7.15). Then for every b ∈ B we have exactly
one of the following:

(7.16) Ax,b ⊂ `j(x), with AM/p2j
[x]BM/p2j

[b] = φ(p2
j),

(7.17) Ax,b ⊂ `k(x), with AM/p2k
[x]BM/p2k

[b] = φ(p2
k).

Furthermore:

• AM/pj [x] · AM/pk [x] = 0,
• if AM/pj [x] > 0, then (7.16) cannot hold for any b ∈ B, and if AM/pk [x] > 0, then

(7.17) cannot hold for any b ∈ B,
• if (7.16) holds for some b ∈ B, then the product 〈A[x],B[b]〉 is saturated by a (1, 2)-

cofiber pair in the pj direction, with the A-cofiber at distance M/p2
j from x and the

B-fiber rooted at b. The same is true for (7.17), with j and k interchanged.

Proof. The assumptions (DB1) and (7.15) imply in particular that

(7.18) AM/pi [x] ≥ 2,

so that Ax ⊂ Π(x, p2
i ). Moreover,

Ax ⊂
⋂

a:(x−a,M)=M/pjpk

Bispan(x, a) = Π(x, p2
j) ∪ Π(x, p2

k),

which together with (7.18) proves that Ax ⊂ `j(x)∪ `k(x). By Lemma 4.1, for each b ∈ B we
must in fact have either Ax,b ⊂ `j(x) or Ax,b ⊂ `k(x). If Ax,b ⊂ `j(x), then the second part of
(7.16) follows since M/pj ∈ Div(A), and Lemma 2.10 implies the existence of a cofiber pair
as described in the last part of the lemma. The same applies with j and k interchanged.

Next, suppose that AM/pj [x] > 0. Then Ax ⊂ Bispan(x, a) for any a ∈ A with (x−a,M) =
M/pj. But this is clearly not compatible with (7.16) for any b ∈ B. The same applies with
j and k interchanged.

On the other hand, one of (7.16) and (7.17) must hold for each b, therefore we cannot
have both AM/pj [x] > 0 and AM/pj [x] > 0. This ends the proof of the lemma. �
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Lemma 7.5. Assume (DB1). Suppose that there is a point x ∈ Λ such that (7.15) holds
and

(7.19) max(AM/pj [x],AM/pk [x]) > 0.

Then the conclusion of Theorem 7.1 holds.

Proof. Assume without loss of generality that AM/pj [x] > 0. Then Ax ⊂ `j(x) by Lemma
7.4. By Lemma 2.10, the pair (A,B) has a (1,2)-cofibered structure in the pj direction with
a cofiber in A at distance M/p2

j from x. We apply Lemma 2.9 to shift the M -cofiber in A
to x. Let A1 be the set thus obtained.

We note that (7.19) does not hold for either the full plane structure or the almost corner
structure. Therefore (7.1) must hold, and since A ∩ Λ ⊂ A1 ∩ Λ, the same holds for A1.
Furthermore, A1 contains the diagonal boxes inherited from A as well as the added M -
fiber through x in the pj direction, disjoint from the boxes. By Corollary 7.3, the tiling
A1 ⊕B = ZM (therefore also A⊕B = ZM) is T2-equivalent to Λ⊕B = ZM . �

It remains to consider the complementary case when

(7.20) AM/pj [x] = AM/pk [x] = 0 ∀x ∈ (Ic × J ×K) \ A.

Lemma 7.6. Assume that (DB1) holds, that (Ic × J ×K) \ A 6= ∅, and that (7.20) holds.
Fix an index li ∈ Ic such that ({li} × J ×K) \ A is nonempty, and define

X = X (li) := {li} × J ×K.
Then either A is T2-equivalent to a set A′ ⊂ ZM such that A′ ⊕ B = ZM and every point
x′ ∈ X belongs to a fiber in A′ in the pj direction, or else the same holds with j and k
interchanged.

Proof. We fix li as in the statement of the lemma, and keep it fixed for the duration of the
proof. Let also Π := Π(x, p2

i ) for any x ∈ X , and note that X ⊂ Π.
Let x ∈ X \ A. By (7.20), we must have x′ 6∈ A for all x′ ∈ X with (x′ − x,M) ∈
{M/pj,M/pk}. Applying (7.20) to all such x′, we see that X ∩ A = ∅. Let

Xj = {x ∈ X : ∃b ∈ B such that Ax,b ⊂ `j(x)},
and similarly for Xk. By Lemma 7.4, we have X = Xj ∪ Xk.

Suppose that Xk 6= ∅, with x0 ∈ Xk, and let x1, x2, . . . , x|J |−1, be the distinct points in X
such that (x0 − xν ,M) = M/pj for ν 6= 0. By the definition of Xk, there exists b ∈ B such
that

(7.21) Axν ,b ⊂ `k(xν)

for ν = 0. We claim that (7.21) also holds for ν = 1, . . . , |J |−1, with the same b ∈ B. Indeed,
suppose that Axν ,b ⊂ `j(xν) for some ν ≥ 1. By Lemma 2.10, the product 〈A[xν ],B[b]〉
would be saturated by a (1, 2) cofiber pair in the pj direction. But then we would also
have Ax0,b ⊂ `j(x0), with the product saturated by the same cofiber pair, contradicting the
assumption that (7.21) holds for ν = 0.

By Lemma 2.10 again, it follows that if Xk 6= ∅, then A contains an M -fiber in the pk
direction at distance M/p2

k from each of the points x0, x1, x2, . . . , x|J |−1. Since `k(xν) ⊂ Π,
all these fibers are contained in Π.

If we had both Xj 6= ∅ and Xk 6= ∅, we would get such sets of fibers in both directions, all
contained in Π. But then Π contains |J c| |Kc| points of Ic× J c×Kc, at least |J | fibers in A
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in the pk direction, and at least |K| fibers in A in the pj direction, disjoint from Λ ∩ Π and
from each other. Thus

|A ∩ Π| ≥ (pj − |J |)(pk − |K|) + pk|J |+ pj|K| = pjpk + |J ||K|.

This contradicts Lemma 4.3.
It follows that at least one of Xj and Xk must be empty. Assume without loss of generality

that Xj = X and Xk = ∅. It follows that Ax ⊂ `j(x) for all x ∈ X . By Lemma 2.10, the
pair (A,B) has a (1, 2)-cofibered structure in the pk direction, and for every x ∈ X there
is a cofiber in A at distance M/p2

j from x. We can now use Lemma 2.9 to shift all of the
aforementioned cofibers in the pj direction, obtaining the new set A′ as indicated in the
conclusion of the lemma. �

We can now conclude the proof of Theorem 7.1 under the assumption that (7.13), (7.15),
and (7.20) hold.

• If (7.1) holds, then the set A′ ⊂ ZM from Lemma 7.6 still satisfies (7.1), and A′ ∩ Λ
contains the diagonal boxes inherited from A as well as the additional fibers added
in Lemma 7.6. By Corollary 7.3, A′ is T2-equivalent to Λ, and the theorem follows.
• Suppose that A ∩ Λ has the pi full plane structure (Lemma 6.2), with |Ic| = |J | =
|K| = 1. Then there is only one index li ∈ Ic, and for that li, X = {x} is a single
point. In this case, Lemma 7.6 identifies a direction pν for some ν ∈ {j, k}, such that
the pair (A,B) has a (1, 2)-cofibered structure in the pν direction with a cofiber in A
at distance M/p2

ν from x. Assume without loss of generality that ν = j. After shifting
the cofiber to x as permitted by Lemma 2.9, we arrive at a pj corner structure, where
A′ ∩Λ is the union of one M -fiber in the pi direction and (pj − 1) M -fibers in the pk
directions, each in a different plane perpendicular to the pj direction.
• Assume now that A ∩ Λ has the pj almost corner structure (Lemma 6.3 (ii)), with
|K| = |Ic| = 1 and |J |, |J c| > 1. Then there is again only one index li ∈ Ic, and the
set X = {li}× J ×K for that value of li has dimensions 1× |J | × 1. We again apply
Lemma 7.6. If the fiber identified and shifted in the lemma was in the pj direction,
then we are in the pj corner situation again, with A′∩Λ consisting of non-overlapping
fibers in the pi and pk directions. If on the other hand the shifted fibers were in the pk
direction, then we have {D|m|M} ⊂ Div(A′), and A′∩Λ contains the diagonal boxes
inherited from A as well as the added fibers disjoint from the boxes. By Corollary 7.3,
the tiling A′⊕B = ZM (therefore also A⊕B = ZM) is T2-equivalent to Λ⊕B = ZM .

7.3. Case (DB2). We now assume that A⊕B = ZM is a tiling satisfying the assumptions
of Theorem 7.1 on a D-grid Λ. Additionally, we assume that

(7.22) |Ic| = |J c| = |Kc| = 1.

Since pi, pj, pk are all odd, the assumption (7.22) implies that min(|I|, |J |, |K|) ≥ 2, and in
particular (7.1) holds. Let also

Ic × J c ×Kc = {a0}.

Lemma 7.7. Assume (DB2). Suppose that there exists a point x ∈ Λ \ A such that Ax is
contained in one of the lines `i(x), `j(x), `k(x). Then the tiling A⊕B = ZM is T2-equivalent
to Λ⊕B = ZM . Hence the conclusion of Theorem 7.1 holds.
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Proof. Suppose that x ∈ Λ \ A and Ax ⊂ `k(x). By Lemma 2.10, the pair (A,B) has a
(1,2)-cofibered structure in the pk direction. By Lemma 2.9, the cofiber in A \ Λ can be
shifted to a fiber in Λ rooted at x. This yields a new tiling A′ ⊕ B = ZM , T2-equivalent to
A⊕B = ZM , such that A′ ∩Λ contains both the diagonal boxes {a0}∪ (I × J ×K) and the
added M -fiber. In light of (7.1), we can apply Corollary 7.3 to conclude the proof. �

Lemma 7.8. Assume (DB2). If (A∩Λ)\({a0}∪(I×J×K)) 6= ∅, then the tiling A⊕B = ZM
is T2-equivalent to Λ⊕B = ZM .

Proof. Observe first that if A∩Λ contains a flat corner configuration in the sense of Lemma
4.6, then the conclusion holds. Indeed, Lemma 4.6 implies that the point x 6∈ A in the flat
corner configuration satisfies the assumptions of Lemma 7.7, which we then apply.

Suppose that there is an element a ∈ A ∩ (Ic × J × K). In order to avoid a flat corner
configuration perpendicular to the pj direction at points x ∈ Ic×{λja}×K, all such points
must belong to A. Similarly, we must have Ic × J × {λka} ⊂ A, in order to avoid a flat
corner perpendicular to the pk direction at those points. By Lemma 4.5 and (7.1), we must
in fact have Ic × J × K ⊂ A. But then the conclusion follows by Lemma 7.2. Since the
assumption (DB2) is symmetric with respect to all permutations of the indices {i, j, k}, the
same argument applies when A ∩ (I × J c ×K) or A ∩ (I × J ×Kc) is nonempty.

Assume now that a ∈ A ∩ (Ic × J c ×K). Consider an M -cuboid with one vertex at a0,
another at a, and a third one at a′ ∈ I×J×K with (a−a′,M) = M/pipj and (a0−a,M) = D.
In order to balance this cuboid, at least one of the vertices in Ic × J ×K, I × J c ×K, or
I × J ×Kc, must be in A. But then we are in the situation from the last paragraph. Since
this case is also symmetric with respect to all permutations of {i, j, k}, we are done. �

Lemma 7.9. Assume (DB2), and let Nk = M/pk. If M/p2
k ∈ Div(A), then ΦNk |A.

Proof. Assume for contradiction that ΦNk |B, and apply Lemma 4.9 to B, on scale N = Nk.
Since Nk, Nk/pk 6∈ Div(B), it follows that B is Nk-fibered in one of the pi and pj directions.
However, that is impossible, given that Div(B) ∩ {D|m|M} = {M} due to (7.1). �

We now begin the proof of Theorem 7.1 under the assumption (DB2). By Lemma 7.8, it
suffices to consider the case when

(7.23) (A ∩ Λ) \ ({a0} ∪ (I × J ×K)) = ∅.

Let x ∈ I × J c ×K, so that in particular x 6∈ A. Fix b ∈ B. Then

Ax,b ⊂ `i(x) ∪ `i(a0) ∪ `k(x) ∪ `k(a0).

We claim that Ax,b cannot intersect more than one of the above lines. Indeed, by (7.1) we
have

• Ax,b ∩ `i(x) 6= ∅ implies AM/p2i
[x]BM/p2i

[b] > 0, hence M/p2
i pk ∈ Div(A) and M/p2

i ∈
Div(B).
• Ax,b ∩ `k(x) 6= ∅ implies AM/p2k

[x]BM/p2k
[b] > 0, hence M/pip

2
k ∈ Div(A) and M/p2

k ∈
Div(B).
• Ax,b ∩ `i(a0) 6= ∅ implies AM/p2i pk

[x|`i(a0)]BM/p2i pk
[b] > 0, hence M/p2

i ∈ Div(A) and

M/p2
i pk ∈ Div(B).

• Ax,b ∩ `k(a0) 6= ∅ implies AM/pip2k
[x|`k(a0)]BM/pip2k

[b] > 0, hence M/p2
k ∈ Div(A) and

M/pip
2
k ∈ Div(B).
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It is then easy to check that Ax,b cannot have nonempty intersection with any two of the
above lines, either by Lemma 4.1 or due to direct divisor conflict.

Lemma 7.10. Assume (DB2) and (7.23), and let x be as above. Then Ax,b ∩ `k(a0) = ∅.

Proof. Assume for contradiction that

(7.24) Ax,b ⊂ `k(a0).

Then M/p2
k ∈ Div(A), hence by Lemma 7.9 we have ΦM/pk |A. We are also assuming as

part of (DB2) that ΦM |A. It follows that A is null with respect to all cuboids of type
(M, (1, 1, 2), 1).

Consider any such cuboid with one vertex at a0, a second one at a point xj ∈ Ic× J ×Kc

so that (xj − a0,M) = M/pj, and a third one at a point z ∈ `k(x) with (x− z,M) = M/p2
k.

By (7.22), none of the cuboid vertices in the plane Π(a0, p
2
k) except for a0 are in A. In order

to balance this cuboid, one of the vertices zi and zj must be in A, where (zi− z,M) = M/pi
and (zj−z,M) = M/pj. However, if zj ∈ A, then M/pip

2
k ∈ Div({zj}, I×J×K) ⊂ Div(A),

which contradicts (7.24) due to divisor conflict. It follows that zi ∈ A.
Repeating this argument for all z ∈ `k(x) with (x− z,M) = M/p2

k, we get that

(7.25) AM/p2k
[a0] = φ(p2

k).

If pi < pk, then we must in fact have pi ≤ pk − 2 (since both are odd primes), so that
φ(p2

k) = pk(pk − 1) > pipk. In this case, (7.25) contradicts Lemma 4.3.
Assume now that pi > pk. In this case, (7.24) and (7.25) imply that

1 =
1

φ(pip2
k)
AM/pip2k

[x|`k(a0)]BM/pip2k
[b]

=
1

φ(pip2
k)
AM/p2k

[a0]BM/pip2k
[b]

=
1

φ(pi)
BM/pip2k

[b].

But when pi > pk, this is not possible without introducing M/pi or M/pipk as divisors of B,
which would contradict (7.1). �

Repeating Lemmas 7.9 and 7.10 with k replaced by i, we get that for each b ∈ B we must
have one of

Ax,b ⊂ `i(x) or Ax,b ⊂ `k(x).

Now let x′ ∈ (I × J × Kc) ∩ Π(x, p2
i ). The same analysis, with the pj and pk directions

interchanged, shows that for each b ∈ B we must have one of

Ax′,b ⊂ `i(x
′) or Ax′,b ⊂ `j(x

′).

If Ax,b ⊂ `k(x) and Ax′,b′ ⊂ `j(x
′) for some b, b′ ∈ B, we use the same fiber crossing argument

as in the case (DB1). By Lemma 2.10, A must contain an M -fiber in the pk direction at
distance M/p2

k from x, as well as an M -fiber in the pj direction at distance M/p2
j from x′,

both of them in the plane Π := Π(x, p2
i ) and disjoint from each other. The same plane also

contains (pj − 1)(pk − 1) elements of I × J ×K. Therefore

|Π ∩ A| ≥ (pj − 1)(pk − 1) + pj + pk = pjpk + 1 > pjpk,

which contradicts Lemma 4.3.
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It follows that either Ax,b ⊂ `i(x) for all b ∈ B, or else Ax′,b ⊂ `i(x
′) for all b ∈ B. An

application of Lemma 7.7 concludes the proof of the theorem.

8. Corners

In this section we address the extended corner structure, defined in Definition 5.4. We
will assume the following.

Assumption (C): Assume that A ⊕ B = ZM , where M = pnii p
nj
j p

nk
k , |A| = pipjpk, and

ΦM |A. Moreover, assume that A contains a pi extended corner in the sense of Definition 5.4
on a D(M) grid Λ, that is, there exist a, ai ∈ A ∩ Λ with (a− ai,M) = M/pi such that

• A ∩ (a ∗ Fj ∗ Fk) is M -fibered in the pj direction but not in the pk direction,
• A ∩ (ai ∗ Fj ∗ Fk) is M -fibered in the pk direction but not in the pj direction.

In particular, we may choose a, ai so that

(8.1) a ∗ Fj ⊂ A, ai ∗ Fk ⊂ A,

(8.2) ai ∗ Fj 6⊂ A, a ∗ Fk 6⊂ A.

We fix such a, ai for the rest of this section.

The following theorem is our main result for the extended corner structure.

Theorem 8.1. Assume that (C) holds with nj = nk = 2. Then the tiling A ⊕ B = ZM is
T2-equivalent to Λ⊕B = ZM via fiber shifts. By Corollary 2.2, both A and B satisfy (T2).

We first note that when A contains a pi corner,

(8.3) {D(M)|m|M} \Div(A) ⊆ {M/pjpk}

Lemma 8.2 (Size-Divisor Lemma). Assume that A ⊂ ZM , and that there exist a, ai ∈ A
with (a− ai,M) = M/pi such that

(8.4) a ∗ Fj ⊂ A, ai ∗ Fk ⊂ A, a ∗ Fk 6⊂ A.

(In particular, this is true if (C) holds.) Suppose that ΦMΦM/pj |A. Then we have the
following.

(i) For all ak ∈ A such that (ak − ai,M) = M/pk and AM/pi [ak|`k(a)] = 0, we have

AM/p2j
[a] + AM/p2j

[ak] ≥ φ(p2
j),

(ii) M/p2
j , M/pip

2
jpk ∈ Div(A). Moreover, if AM/p2j

[a] > 0, then M/pip
2
j ∈ Div(A), and if

AM/p2j
[a] < φ(p2

j), then M/p2
jpk ∈ Div(A).

Proof. Under the assumptions of the lemma, A is T -null with respect to the cuboid type

T = (M,~δ, 1), where ~δ = (1, 2, 1). Now the lemma follows by considering all possible T
cuboids with vertices at a, ai, ak and xk, where xk 6∈ A satisfies (xk − a,M) = M/pk and
(xk − ak,M) = M/pi. �

Corollary 8.3. Assume (C). Then ΦNjΦNk - A.

Proof. Assume that ΦNjΦNk |A. By Lemma 8.2 (i), we have

|A ∩ (Π(a, pnii ) ∪ Π(ai, p
ni
i ))| ≥ pj + φ(p2

j) + pk + φ(p2
k) = p2

j + p2
k > 2pjpk

hence max{|A ∩ Π(a, pnii )|, |A ∩ Π(ai, p
ni
i )|} > pjpk, which contradicts Lemma 4.3. �
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By Corollary 8.3, it suffices to consider the following sets of assumptions.

Assumption (C1): Assume that (C) holds, pk < pj, and ΦNk |B.

Assumption (C2): Assume that (C) holds, pk < pj, ΦNj |B, and

(8.5) M/pjpk /∈ Div(B).

(In particular, (8.5) holds if either AM/pjpk [a] > 0 or AM/pjpk [ai] > 0.)

Assumption (C3): Assume that (C) holds, pk < pj, ΦNj |B, and

AM/pjpk [a] = AM/pjpk [ai] = 0.

We first prove in Section 8.1 that under either of the assumptions (C1) or (C2), the
conclusion of Theorem 8.1 holds. We then prove in Section 8.2 that if (C3) holds, then we
must also have ΦNk |B, so that we may return to (C1) to complete the proof.

8.1. Cases (C1) and (C2). The first two cases are similar and will be considered together.

Lemma 8.4. Assume that (C1) holds with nk = 2. Then:

(i) Every element of B belongs to an Nk-fiber in B in either the pj or pk direction (not
necessarily the same for all b).

(ii) Furthermore, suppose that there is a b ∈ B that does not belong to an Nk fiber in
the pj direction in B. Then for all xj ∈ ZM \ A such that (ai − xj,M) = M/pj we have
Axj ,b ⊂ `k(xj), with the product saturated by an Nk-fiber in B in the pk direction, rooted at
b, and an M-cofiber in A at distance M/p2

k from xj.

Moreover, this lemma does not require the assumption pk < pj, therefore the same conclusions
with j and k interchanged hold under the assumptions (C2) and (C3).

Proof. Observe that, by (8.3),

(8.6) BNkNk/pi [b] = 0 for all b ∈ B.

Assume first that pi = 2, and suppose that there is a b0 ∈ B that does not belong to an
Nk-fiber in either the pk or the pj direction. In this case, by (8.6) and Lemma 6.5 with
N = Nk we have

(8.7) Nk/pk = M/p2
k ∈ Div(B).

Let xj ∈ ZM \ A with (ai − xj,M) = M/pj, and consider the saturating set Axj . Let aj be
the element of A satisfying (a− aj,M) = M/pj, (xj − aj,M) = M/pi. We have

Axj ,b0 ⊂ `k(xj) ∪ `k(ai) ∪ `k(a) ∪ `k(aj).
By (8.3), no top level divisors except possibly M/pjpk are available to contribute to the
product 〈A[xj],B[b0]〉. Therefore, if Axj ,b0 ∩ `k(aj) 6= ∅, we must have

AM/pip2k
[xj|`k(aj)] = AM/p2k

[aj] > 0

which contradicts (8.7). Similarly Axj ,b0 ∩ `k(a) 6= ∅ implies

AM/pipjp2k
[xj|`k(a)] = AM/p2k

[a] > 0

which, again, contradicts (8.7). Next, if Axj ,b0 ∩ `k(ai) 6= ∅, then by (8.7)

(8.8) ANk
Nk/pj

[xj|`k(ai)]BNkNk/pj [b0] = AM/pjpk [xj|`k(ai)]BM/pjpk [b0] > 0,
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and if Axj ,b ∩ `k(xj) 6= ∅, then

(8.9) ANk
Nk/pk

[xj]BNkNk/pk [b0] = AM/p2k
[xj]BM/p2k

[b0] > 0.

By Lemma 4.1, for a fixed b0 we cannot have both (8.8) and (8.9). Hence either Axj ,b0 ⊂ `k(ai)
or Axj ,b0 ⊂ `k(xj). In the first case, we have

AM/pjpk [xj|`k(ai)]BM/pjpk [b0] = AM/pk [ai]BM/pjpk [b0] = φ(pjpk);

since AM/pk [ai] = φ(pk), it follows that BM/pjpk [b0] = BNkNk/pj [b0] = φ(pj), hence b0 belongs to

an Nk-fiber in the pj direction, contradicting the choice of b0. In the second case, we have

AM/p2k
[xj]BM/p2k

[b0] = φ(p2
k);

since M/pk ∈ Div(A), this is only possible if A and B contain a configuration as in part
(ii) of the lemma. In this case, it follows that b0 belongs to an Nk-fiber in the pk direction,
contradicting our initial choice of b0. This concludes the proof of (i). Furthermore, if the
conclusion of (ii) fails for any xj chosen as above, then we must always be in the first case
for that xj, and therefore every b ∈ B must in fact belong to an Nk fiber in the pj direction,
a contradiction.

Assume now that pi > 2. Then part (i) of the lemma follows directly from Lemma 4.9,
(8.6) and the fact that B satisfies (6.12) with N = Nk and c = 1. For (ii), suppose that
there is a b ∈ B that does not belong to an Nk fiber in B in the pj direction. By (i), there is
an Nk fiber in B in the pk direction containing b. In particular, this implies that (8.7) holds.
The rest of the proof of (ii) is the same as for the pi = 2 case. �

Corollary 8.5. (i) Assume (C1) with nk = 2. Then the pair (A,B) has a (1, 2)-cofibered
structure in the pk direction. Moreover, for each xj ∈ ZM \A such that (ai−xj,M) = M/pj,
A has a cofiber at distance M/p2

k from xj.

(ii) Assume (C2) with nj = 2, then the same conclusion holds with k and j interchanged.

Proof. (i) Let b ∈ B. By Lemma 8.4, it suffices to prove that we cannot have BM/pjpk [b] =
φ(pj). In fact, we will show

(8.10) BM/pjpk [b] ≤ φ(pk);

moreover, this holds independently of the assumption ΦNk |B. Indeed, by the corner assump-
tion we have AM/pjpk [xk] ≥ φ(pj) for all xk ∈ ZM \ A with (xk − a,M) = M/pk. Hence

1 ≥ 1

φ(pjpk)
AM/pjpk [xk]BM/pjpk [b] ≥

1

φ(pk)
BM/pjpk [b]

as required.

(ii) By (8.5), we have BM/pjpk [b] = 0. The conclusion follows again from Lemma 8.4. �

The rest of the proof is the same in cases (C1) and (C2), except that pj and pk are
interchanged. Without loss of generality, we assume that (C1) holds.

By Lemma 2.9, we may shift each of the cofibers provided by Corollary 8.5 to its respective
point xj. Let A′ ⊂ ZM be the set thus obtained. Then A is T2-equivalent to A′, we have
A′ ⊕ B = ZM , and for every xj ∈ ZM \ A with (xj − ai,M) = M/pj, we have xj ∗ Fk ⊂ A′.
Furthermore, A′ differs from A only along the lines `k(xj) with xj as above, hence it follows
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from (C) that for every aj ∈ A with (aj − ai,M) = M/pj, we also have aj ∗ Fk ⊂ A′.
Therefore ai ∗ Fj ∗ Fk ⊂ A′. By Lemma 4.3, we must in fact have

(8.11) A′ ∩ Π(ai, p
ni
i ) = ai ∗ Fj ∗ Fk.

Corollary 8.6. Assume that (C1) holds with nk = 2. Then A′ ⊂ Π(a, pni−1
i ), where a is as

in (C). Moreover, Φp
ni
i
|A′.

Proof. By (8.11) and (C), we have |A′ ∩ Π(ai, p
ni−1
i )| > pjpk. The conclusion now follows

from Corollary 4.4. �

If ni = nk = 2, we have pi ‖ |B|, hence Corollary 8.6 and Theorem 2.5 imply that
A′ and B satisfy (T2). Since A and A′ are T2-equivalent, the same is true for A. The
additional arguments below are needed to prove the full conclusion of Theorem 8.1, namely,
T2-equivalence between A′ (hence A) and Λ for ni ≥ 2. This is needed for the classification
result in Theorem 3.1, as well as for the applications in Section 9.

Corollary 8.7. Assume that (C1) holds with nj = nk = 2, and define A′ as above. Then the
pair (A′, B) has a (1, 2)-cofibered structure in the pj direction, with cofibers in A′ at distance
M/p2

j from each xk ∈ ZM \ A such that (xk − a,M) = M/pk.

Proof. By (8.11) and (C), we have {D(M)|m|M} ⊂ Div(A′). The corollary follows by
applying Lemma 4.6 to each xk. �

We can now complete the proof under the assumption (C1). By Corollary 8.6, we have
Φp

ni
i
| A′. This together with (8.11) implies that

(8.12) A′ ⊂
⋃

z∈ai∗Fi

Π(z, pnii ),

and that for each plane Πz := Π(z, pnii ) with z ∈ ai ∗ Fi, we have

(8.13) |A′ ∩ Πz| = pjpk.

Applying Lemma 4.8 to A′, and using (8.11), we get that each set A′ ∩ Πz is a disjoint
union of M -fibers in the pj and pk directions. However, we also know that B is Nj-fibered
in the pj direction and Nk-fibered in the pk direction, hence

(8.14) {M/p2
j ,M/p2

k,M/p2
jp

2
k} ⊂ Div(B).

It follows that each set A′ ∩Πz must in fact be M -fibered in one of the pj and pk directions.
Assuming without loss of generality that A′ ∩ Πz is M -fibered in the pj direction for some
z ∈ ai ∗ Fi, and taking (8.13) into account, we get

A′ ∩ Πz = {u1, . . . , upk} ∗ Fj,

where for each ν 6= ν ′ we have (uν−uν′ ,M) ∈ {M/pk,M/p2
jpk}. Using the cofibered structure

in the pj direction, and considering each uν ∗Fj as cofiber, we apply Lemma 2.9 if necessary
to reduce to the case where pj | ai − uν for all ν. This aligns the fibers in Πz to a grid
u1 ∗Fj ∗Fk, fibered in both directions. If we do not have pk | ai− u1 at this point, we apply
Lemma 2.9 again, this time in the pk direction. Repeating this procedure in each plane, we
get that A′ is T2-equivalent to A[ = Λ. This ends the proof in this case.
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8.2. Case (C3). In this case, we are assuming that ΦNj |B and AM/pjpk [a] = AM/pjpk [ai] = 0.
By (C), this implies that AM/pk [a] = AM/pj [ai] = 0.

Lemma 8.8. Assume (C3) with nk = 2. Let aj ∈ A and xj ∈ ZM \A satisfy (aj − xj,M) =
M/pi and (a− aj,M) = (ai − xj,M) = M/pj. If ΦNk - B, then Axj ⊂ `k(ai).

Proof. The assumptions of the lemma imply that ΦNk |A. Applying Lemma 8.2 to A with j
and k interchanged, we have

(8.15) M/p2
k, M/pipjp

2
k ∈ Div(A),

(8.16) AM/p2k
[ai] + AM/p2k

[aj] ≥ φ(p2
k).

Let b ∈ B, and consider the saturating set Axj ,b. We have

Axj ,b ⊂ `k(xj) ∪ `k(ai) ∪ `k(a) ∪ `k(aj).

Using (8.3) and (8.15), we conclude that Axj ,b∩ `k(xj) = ∅ since M/pk,M/p2
k /∈ Div(B), and

similarly Axj ,b ∩ `k(a) = ∅ since M/pipj,M/pipjpk,M/pipjp
2
k /∈ Div(B).

Suppose that Axj ,b ∩ `k(aj) 6= ∅. By (8.3) again, this implies that

AM/pip2k
[xj|`k(aj)]BM/pip2k

[b] > 0,

so that AM/pip2k
[a|`k(ai)] = AM/p2k

[ai] = 0. By (8.16) we have AM/p2k
[aj] = φ(p2

k) for all

(aj − a,M) = M/pj. We will prove this contradicts Lemma 4.3. Indeed, we have

|A ∩ Π(a, pnii )| ≥ AM [a] + AM/pj [a] +
∑

(a−aj ,M)=M/pj

AM/p2k
[aj] = pj + φ(pjp

2
k)

A simple calculation shows that the last expression exceeds pjpk if and only if pj > 1 + 1
φ(pk)

,

which holds true since pj > pk ≥ 2. We therefore conclude that Axj ,b ⊂ `k(ai). �

Proposition 8.9. (i) Assume (C3) with nj = nk = 2. Then ΦNk |B.

(ii) Assume that pi = 2, and that (C3) holds with nk = 2. (In this case, we do not need
to assume that nj = 2.) Then ΦNk |B.

Proof. We prove (ii) first, since the proof in this case is immediate and straightforward.
Assume, by contradiction, that pi = 2 and ΦNk - B, so that ΦNk |A. By Lemma 8.2, (8.16)
holds for all aj ∈ A with (a− aj,M) = M/pj. By Lemma 4.3 we have

pipk ≥ |A ∩ Π(a, p2
j)|

≥ AM [a] + AM [ai] + AM/pk [ai] + AM/p2k
[ai]

= pk + 1 + AM/p2k
[ai].

Since pi = 2, we get AM/p2k
[ai] ≤ φ(pk). From (8.16) we deduce AM/p2k

[aj] ≥ φ(p2
k) − φ(pk),

hence

|A ∩ Π(a, pnii )| ≥ AM [a] + AM/pj [a] +
∑

aj :(aj−a,M)=M/pj

AM/p2k
[aj]

≥ pj + φ(pj)(φ(p2
k)− φ(pk))

= pj + φ(pj)φ(pk)
2
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We show the latter exceeds pjpk, which contradicts Lemma 4.3. Indeed, pj + φ(pj)φ(pk)
2 >

pjpk if and only if φ(pj)φ(pk)
2 > pjφ(pk). This, in turn, is equivalent to pk > 2 + 1

φ(pj)
, which

clearly holds true since pk ≥ 3.
We now prove (i). Assume that pi > 2, and let b ∈ B. Applying Lemma 8.4 to B with pj

and pk interchanged, we get that at least one of the following holds:

(8.17) BNjNj/pj [b] = φ(pj),

(8.18) BNjNj/pk [b] = φ(pk).

Assume, by contradiction, that ΦNk - B. Then ΦNk |A. Let a, ai, aj, and xj be as in Lemma
8.8. By Lemma 8.8, we have Axj ,b ⊂ `k(ai), hence

(8.19)
1

φ(pjpk)
AM/pjpk [xj|`k(ai)]BM/pjpk [b] +

1

φ(pjp2
k)
AM/pjp2k

[xj|`k(ai)]BM/pjp2k
[b] = 1.

Notice that

(8.20) AM/pjpk [xj|`k(ai)] = φ(pk), BM/pjpk [b] ≤ φ(pk)

where the former follows from the corner structure and the latter from (8.10). Applying this
to (8.19), we get

(8.21) AM/pjp2k
[xj|`k(ai)]BM/pjp2k

[b] > 0,

and in particular M/pjp
2
k ∈ Div(B). We claim that this implies that

(8.22) AM/pjp2k
[xj|`k(ai)] = AM/p2k

[ai] = φ(p2
k)

Indeed, suppose that (8.22) fails, then AM/p2k
[ai] < φ(p2

k). By (8.16), we have AM/p2k
[aj] > 0,

hence AM/pjp2k
[a] > 0. It follows that M/pjp

2
k ∈ Div(A) ∩Div(B), which is a contradiction.

Lemma 8.10. Assume that (C3) holds with nj = nk = 2, but ΦNk - B. Then there is at
least one b0 ∈ B for which (8.17) holds and (8.18) fails.

Proof. Suppose that the lemma is false, so that (8.18) holds for all b ∈ B. We first prove
that then

(8.23) ∀b ∈ B, pk |BM/pjp2k
[b].

Indeed, by the corner structure and (8.15) we have

(8.24) M/pj,M/pk,M/p2
k 6∈ Div(B),

Let b ∈ B. By (8.18), there is a pk-tuple of elements {b0 = b, b1, . . . , bpk−1} ⊂ B such that
bν ∈ Λ(b,M/pjpk). By (8.24), we must have (bν − bν′ ,M) = M/pjpk for all ν 6= ν ′.

Suppose now that b′ ∈ B satisfies (b− b′,M) = pjp
2
k, then b′ belongs to a similar pk-tuple

{b′0 = b′, b′1, . . . , b
′
pk−1} ⊂ B with (b′ν − b′ν′ ,M) = M/pjpk for all ν 6= ν ′. By (8.24) again, we

must have (bν − b′ν′ ,M) = pjp
2
k for all ν, ν ′. Hence the pk-tuples associated with different

elements of B are either identical or disjoint. This proves (8.23).
Applying (8.20), (8.18), (8.22), and (8.23) to (8.19), we get that

1 =
φ(pk)

2

φ(pjpk)
+
φ(p2

k) · Cpk
φ(pjp2

k)
=
φ(pk) + Cpk

φ(pj)

for some integer C. But this implies pj = pk(C + 1), which is impossible since pj is prime.
This proves the lemma. �
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By Lemma 8.10, there exists a b0 ∈ B such that BNjNj/pk [b0] < φ(pk) and BNjNj/pj [b0] = φ(pj).

In particular, M/p2
j ∈ Div(B, b0). Applying (8.21) to b0, we get that M/pjp

2
k ∈ Div(B, b0).

Finally, if b′, b′′ are elements of B with (b0− b′,M) = M/p2
j and (b0− b′,M) = M/pjp

2
k, then

(b′′ − b′,M) = M/p2
jp

2
k. Therefore

(8.25) M/p2
j ,M/pjp

2
k,M/p2

jp
2
k ∈ Div(B).

Lemma 8.11. Assume that (C3) holds with nj = nk = 2, but ΦNk - B. Then

(8.26) |A ∩ Π(ai, p
ni
i )| = p2

k.

Proof. Using (8.22) and the fact that AM/pk [ai] = φ(pk), we have

(8.27) |A ∩ `k(ai)| = p2
k.

On the other hand, we claim that

(8.28) Am[ai] = 0 ∀m|M such that pnii |m|M, m 6= M,M/pk,M/p2
k.

Indeed, we can exclude the divisors in (8.25). Furthermore, M/pj,M/pjpk 6∈ Div(A, ai) by
the pi corner assumption. It remains to check that M/p2

jpk 6∈ Div(A, ai). If we had an

element a′ ∈ A with (ai−a′,M) = M/p2
jpk, then there would be an element ak ∈ ai ∗Fk ⊂ A

with (ak − a′,M) = M/p2
j , which is again prohibited by (8.25).

By (8.28), all elements of A in the plane Π(ai, p
ni
i ) must in fact lie on the line `k(ai), so

that
|A ∩ Π(ai, p

ni
i )| = |A ∩ `k(ai)| = p2

k

as claimed. �

Lemma 8.12. Assume that (C3) holds with nj = nk = 2, but ΦNk - B. Let ak ∈ A, xk ∈
ZM \A with (ak−xk,M) = M/pi, (ai−ak,M) = (a−xk,M) = M/pk. Then for b0 as above,

(8.29) Axk,b0 ⊂ `j(xk)

Proof. We have
Axk,b0 ⊂ `j(xk) ∪ `j(ai) ∪ `j(a) ∪ `j(ak).

Observe first that Axk,b0 ∩ (`j(ak) ∪ `j(ai)) = ∅, for otherwise, by (8.3) we would have either
AM/p2j

[ai] > 0 or AM/p2j
[ak] > 0; both are not allowed due to (8.25).

Next, we claim that we cannot have both Axk,b0∩`j(a) 6= ∅ and Axk,b0∩`j(xk) 6= ∅. Indeed,
the former implies AM/pjpk [xk|`j(a)]BM/pjpk [b0] > 0 and the latter implies AM/p2j

[xk]BM/p2j
[b0] >

0; having both would contradict Lemma 4.1.
Suppose that Axk,b0 ⊂ `j(a). Then

(8.30) 1 =
1

φ(pjpk)
AM/pjpk [xk|`j(a)]BM/pjpk [b0] +

1

φ(p2
jpk)

AM/p2jpk
[xk|`j(a)]BM/p2jpk

[b0]

We chose b0 so that BM/pjpk [b0] < φ(pk). By the corner assumption, AM/pjpk [xk|`j(a)] =
φ(pj). We also have AM/p2jpk

[xk|`j(a)] = AM/p2j
[a] = 0, by (8.25). Therefore the right side of

(8.30) is strictly less than 1
φ(pjpk)

φ(pj)φ(pk) = 1, a contradiction. The lemma follows. �

We now complete the proof of the proposition. By Lemma 8.12, we have Axk,b0 ⊂ `j(xk),
hence

AM/p2j
[xk]BM/p2j

[b0] = φ(p2
j)
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for all xk ∈ ZM \ A with (xk − a,M) = M/pk. This can only happen when

(8.31) AM/p2j
[xk] = pj

and BM/p2j
[b0] = φ(pj). Applying this to all xk as above (while keeping in mind that

AM/pk [a] = 0), we have |A ∩ `j(xk)| ≥ pj. It follows that

|A ∩ (Π(a, pnii ))| ≥ pjpk > p2
k.

On the other hand, by (8.26) we have |A ∩ Π(ai, p
ni
i )| = p2

k. It follows that Φp
ni
i

- A, since

otherwise the number of elements of A in both planes would be the same.
It remains to prove that we must also have Φp

ni
i

- B, which provides the final contradiction.

Indeed, we use the following

1

φ(pj)
AM/pj [a] =

1

pj
AM/p2j

[xk] =
1

φ(p2
k)
AM/p2k

[ai] =
1

φ(pk)
AM/pk [ai] = 1,

where the first and last part follow from the corner structure, the second part from (8.31),
and the third part from (8.22). It is easy to see that this configuration implies that {pni−1

i ‖
m|M} ⊂ Div(A). This means that for every b ∈ B

|B ∩ (Π(b, pni−1
i ))| = |B ∩ (Π(b, pnii ))|

hence Φp
ni
i

- B. This gives the desired contradiction and ends the proof of the proposition. �

Proposition 8.9 implies that (C1) holds, and we can now follow the rest of the proof for
that case.

9. Fibered grids

Throughout most of this section we will work under the following assumption.

Assumption (F): We have A ⊕ B = ZM , where M = p2
i p

2
jp

2
k is odd. Furthermore, |A| =

|B| = pipjpk, ΦM |A, and A is fibered on D(M)-grids.

Let I be the set of elements of A that belong to an M -fiber in the pi direction, that is,

I = {a ∈ A |AM/pi [a] = φ(pi)}.

The sets J and K are defined similarly. The assumption (F) implies that every element of
A belongs to an M -fiber in some direction, hence A = I ∪ J ∪ K. We emphasize that this
does not have to be a disjoint union and that it is possible for an element of A to belong to
two or three of these sets.

Our main result on fibered grids is the following theorem.

Theorem 9.1. Assume that (F) holds.

(I) If I ∩ J ∩ K 6= ∅, then the tiling A ⊕ B = ZM is T2-equivalent to Λ ⊕ B = ZM , where
Λ := Λ(0, D(M)). By Corollary 2.2, both A and B satisfy (T2).

(II) Assume that I ∩J ∩K = ∅. Then, after a permutation of the i, j, k indices if necessary,
the following holds.

(II a) At least one of the sets I,J ,K is empty. Without loss of the generality, we may
assume that I = ∅, so that A ⊂ J ∪ K.
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(II b) If A ⊂ J or A ⊂ K, then A is M-fibered in the pj or pk direction, respectively. Con-
sequently, the conditions of Theorem 2.6 are satisfied in that direction. By Corollary
2.7, both A and B satisfy (T2).

(II c) Suppose that I = ∅, and that J \ K and K \ J are both nonempty.
• If Φpi |A, then, after interchanging A and B, the conditions of Theorem 2.6 are

satisfied in the pi direction. By Corollary 2.7, both A and B satisfy (T2).
• If Φp2i

|A, then A ⊂ Π(a, pi) for any a ∈ A. By Theorem 2.5, both A and B

satisfy (T2).

The proof of Theorem 9.1 is organized as follows. We will consider the following sets of
assumptions.

Assumption (F’): We have A⊕B = ZM , where M = p2
i p

2
jp

2
k. (Note that M is not required

to be odd). Furthermore, |A| = |B| = pipjpk, ΦM |A, and A is fibered on D(M)-grids.

Assumption (F1): We have A ⊕ B = ZM , where M = p2
i p

2
jp

2
k is odd. Furthermore,

|A| = |B| = pipjpk, ΦM |A, A is fibered on D(M)-grids, and I,J ,K are pairwise disjoint.

Assumption (F2): We have A ⊕ B = ZM , where M = p2
i p

2
jp

2
k is odd. Furthermore,

|A| = |B| = pipjpk, ΦM |A, A is fibered on D(M)-grids, I ∩ J ∩ K = ∅, and J ∩ K 6= ∅.
Assumption (F3): We have A ⊕ B = ZM , where M = p2

i p
2
jp

2
k is odd. Furthermore,

|A| = |B| = pipjpk, ΦM |A, A is fibered on D(M)-grids, I = ∅, J \ K 6= ∅, and K \ J 6= ∅.
We prove part (I) of Theorem 9.1 in Corollary 9.6; in fact, this part holds under the weaker

assumption (F’). Assume now that I ∩ J ∩K = ∅. In that case, we first prove part (II a) of
Theorem 9.1. While the conclusion is the same, the methods of proof will be very different,
so that it is preferable to split this part into two results.

Proposition 9.2. Assume that (F1) holds. Then one of the sets I,J ,K is empty.

Proposition 9.3. Assume that (F2) holds. Then I = ∅.

Relabeling the primes if necessary, we may assume that I = ∅ in the case (F1) as well.
If A is M -fibered in one of the pj or pk directions, then (II b) holds, and we are done. It
remains to consider the case covered in (F3). The following result completes the proof of
the theorem.

Proposition 9.4. Assume (F3). Then the conclusion (II c) of Theorem 9.1 holds.

We briefly discuss the notation used in this section. For N |M , we will use IN , JN , KN to
denote the N -boxes associated with I, J , K. We continue to write

(9.1) Fi = {0,M/pi, . . . , (pi − 1)M/pi},
with Fj, Fk defined similarly. Recall also that

(9.2) Mi = M/p2
i , Mj = M/p2

j , Mk = M/p2
k.

Note that Mi = p2
jp

2
k has only two distinct prime factors, and similarly for Mj,Mk. In

particular, all Mν-cuboids are 2-dimensional for ν ∈ {i, j, k}, and all conclusions of Lemma
4.7 apply on that scale. Thus, if ΦMi

|A, then A mod Mi is a linear combination of Mi-fibers
in the pj and pk directions, with non-negative integer coefficients. In particular, if ΦMi

|A
and

AMi
Mi

[x] ∈ {0, c0} ∀x ∈ ZM ,
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then A is Mi-fibered in one of the pj and pk directions on every D(Mi)-grid. Similar state-
ments hold with A replaced by B, as well as for other permutations of the indices i, j, k.

9.1. Intersections of I,J ,K. It is possible for any of the sets I,J and K to intersect
the others. Furthermore, given a D(M)-grid Λ, A ∩ Λ can contain fibers in some direction
without necessarily being fibered in that direction. For example, consider the set

(9.3) A0 = Fi ∗
[
(Fj ∗ a) ∪ (Fk ∗ a)

]
.

Then a ∈ I ∩ J ∩ K, but A0 is not fibered in either the pj or the pk direction.
Nonetheless, the condition (F) places significant limits on the ways in which I,J ,K may

intersect, as provided by the following structure lemma. In fact, the weaker condition (F’)
is sufficient for this purpose.

Lemma 9.5. Assume (F’), and suppose that a ∈ J ∩ K for some a ∈ A. Let D = D(M).

(i) If A ∩ Λ(a,D) is M-fibered in at least one of the pj and pk directions, then

A ∩ Π(a, p2
i ) = a ∗ Fj ∗ Fk.

In particular, this holds if a 6∈ I.

(ii) If A ∩ Λ(a,D) is M-fibered in the pi direction, then A0 ⊂ A ∩ Λ(a,D), where A0 is
the set in (9.3).

Proof. (i) Assume, without loss of generality, that A∩Λ(a,D) isM -fibered in the pk direction.
Since a ∈ J , we have a ∗ Fj ⊂ A, and the fibering assumption implies that a ∗ Fj ∗ Fk ⊂ A.
The set a ∗ Fj ∗ Fk is contained in the plane Π(a, pnii ) and has cardinality pjpk. By Lemma
4.3, there are no other elements of A in that plane.

Part (ii) is obvious. �

Corollary 9.6. Assume (F’), and suppose that I ∩J ∩K 6= ∅. Then the tiling A⊕B = ZM
is T2-equivalent to Λ(a,D(M))⊕B = ZM . Consequently, A and B satisfy (T2).

Proof. Let a ∈ I ∩ J ∩K. Without loss of generality, we may assume that A ∩ Λ(a,D(M))
is M -fibered in the pi direction. It follows that {D(M)|m|M} ⊂ Div(A), and, by Lemma
9.5 (ii), we have A0 ⊂ A.

For every ajk ∈ A with (a− ajk,M) = M/pjpk, we have ajk ∗ Fi ⊂ A. Suppose now that
there is a z ∈ ZM \A with (a−z,M) = M/pjpk. By Lemma 4.6, we have Az ⊂ `i(z), so that
the pair (A,B) has a (1,2)-cofibered structure in the pi direction with the cofiber in A at
distance M/p2

i from z. For each such z, we apply Lemma 2.9 to shift the cofiber, obtaining
a new set A′ with A′ ⊕ B = ZM such that z ∗ Fi ⊂ A′ and A′ is T2-equivalent to A. After
all such shifts have been performed, we see that A is T2-equivalent to Λ(a,D(M)). �

9.2. Toolbox for fibered grids. We start by pointing out a special case when Theorem
9.1 is very easy to prove.

Lemma 9.7. Let A ⊕ B = ZM , where M = p2
i p

2
jp

2
k. If ΦM divides both A and B, then at

least one of the sets A and B is M-fibered in some direction. By Corollary 2.7, both A and
B satisfy (T2).

Proof. Each of the differences M/pi, M/pj, M/pk can belong to at most one of Div(A) and
Div(B). By pigeonholing, at least one of Div(A) and Div(B) must avoid at least two of
these differences. Assume without loss of generality that M/pi,M/pj /∈ Div(A). By the
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assumptions of the lemma, we also have ΦM |A. Applying Lemma 4.9 (ii) to A, we get that
A is M -fibered in the pk direction, as claimed. �

Next, we discuss cyclotomic divisibility. Since Fi(X) = (XM − 1)/(XM/pi − 1), we have

(9.4) Φs|Fi ⇔ p2
i |s|M,

and similarly for Fj and Fk. In particular,

(9.5)
2∏

αi=1

ΦM/p
αi
i

(X)
2∏

αj=1

Φ
M/p

αj
j

(X)
∣∣∣K(X),

and similarly for other permutations of the indices i, j, k.

Lemma 9.8. Assume (F’). For each αk ∈ {1, 2}, we have

ΦM/p
αk
k
|A ⇔ ΦM/p

αk
k
|K.

In particular, if ΦM/p
αk
k

- A for some αk ∈ {1, 2}, then K 6= ∅. Similar conclusions hold for

other permutations of the indices i, j, k.

Proof. The lemma follows immediately from (9.5) if I,J ,K are mutually disjoint, since then
we have A(X) = I(X) +J (X) +K(X). In the general case, we need a mild workaround as
follows.

Write A(X) = I ′(X) +J ′(X) +K′(X), where the sets I ′,J ′,K′ are pairwise disjoint and
I ′,J ′,K′ are M -fibered in the pi, pj, and pk direction, respectively. This can be done by
splitting up ZM into pairwise disjoint D(M) grids Λτ and adding A∩Λτ to one of I ′,J ′,K′,
according to the direction in which A ∩ Λτ is M -fibered. (If A ∩ Λτ is fibered in more than
one direction, choose one arbitrarily and add A ∩ Λτ to the corresponding set.)

It follows from (9.5) that ΦM/p
αk
k
|A if and only if ΦM/p

αk
k
|K′. To pass from K′ to K, we

write K(X) = K′(X) + Ki(X) + Kj(X), where Ki ⊂ I ′ and Kj ⊂ J ′. By Lemma 9.5, Ki is
a union of pairwise disjoint sets of the form a ∗ Fi ∗ Fk, where a ∈ A. In particular, by (9.5)
we have ΦM/p

αk
k
|Ki(X). Applying the same argument to Kj, we see that ΦM/p

αk
k
|K′ if and

only if ΦM/p
αk
k
|K, and the lemma follows. �

We finish with two counting lemmas.

Lemma 9.9. Let A⊕B = ZM ,M = p2
i p

2
jp

2
k, |A| = |B| = pipjpk. Then

(9.6) {m/pαk : α ∈ {0, 1, 2},m ∈ {M,M/pi,M/pj,M/pipj}} ∩Div(B) 6= ∅.

Proof. Suppose that (9.6) fails. It follows that any M/pipjp
2
k-grid may contain at most one

element of B. Since ZM is a disjoint union of pipj such grids, it follows that |B| ≤M/pipjp
2
k,

contradicting our assumption that |B| = M/pipjpk. �

Lemma 9.10. Assume that (F’) holds.

(i) Let ak ∈ K and Πk := Π(ak, p
αi
i ) for some αi ∈ {1, 2}. Suppose that |A ∩ Πk| = pjpk

and I ∩ Πk = ∅. Then A ∩ Πk ⊂ K.

(ii) Let ai ∈ I and Πi := Π(ai, pi). Suppose that |A ∩ Πi| = pjpk, A ∩ Πi ⊂ I ∪ K, and
I ∩ K ∩ Πi = ∅. Then pi < pj.

The same conclusions hold with j and k interchanged.
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Proof. (i) Suppose first that J ∩ K ∩ Πk 6= ∅, and let a ∈ J ∩ K ∩ Πk. Then a 6∈ I. By
Lemma 9.5 (i), we have A ∩ Πk = a ∗ Fj ∗ Fk, so that A ∩ Πk ⊂ J ∩ K.

Assume now that J ∩K∩Πk = ∅. Since ak ∈ K, there exists a nonnegative integer cj and
a positive integer ck such that

pjpk = |A ∩ Πk| = cjpj + ckpk

This clearly implies cj = 0 and ck = pj, thus proving J ∩ Πk = ∅.
(ii) In this case, A ∩ Πi is a disjoint union of M -fibers in the pi and pk directions. Since

ai ∈ I, there exists a positive integer ci and a nonnegative integer ck such that

pjpk = |A ∩ Πk| = cipi + ckpk.

It follows that ci = c′ipk for some positive integer c′i. But then pj = c′ipi + ck, so that pj > pi
as claimed. �

9.3. Fibering on lower scales.

Lemma 9.11. Assume that (F) holds.

(i) Let Λ := Λ(a0, D(Ni)) for some a0 ∈ I. If I ∩ J ∩ Λ = ∅ and A is Ni-fibered on Λ, it
cannot be fibered in the pj direction.

(ii) If ΦNi |B and

(9.7) {M/pj,M/pk,M/pipj,M/pipk} ∩Div(B) = ∅,
then B must be Ni-fibered in the pi direction. Note in particular that if {D(M)|m|M} ⊂
Div(A), then (9.7) holds.

Proof. (i) Assume, by contradiction, that A is Ni-fibered in the pj direction on Λ. Then

ANi
Ni

[a] = pi and ANi
Ni/pj

[a] = piφ(pj) for all a ∈ I ∩ Λ, meaning that I ∩ Λ is also M -fibered

in the pj direction. This contradicts the assumption that I ∩ J ∩ Λ is empty.

(ii) By (9.7), we have BNiNi/pj [b] = BNiNi/pk [b] = 0 for all b ∈ B. It follows from Lemma 4.9

(ii) that B is Ni-fibered in the pi direction. �

By Lemma 9.8, if ΦNk |A, then ΦNk |K. We consider the question of whether, in these
circumstances, K is permitted to have an unfibered grid on a lower scale.

Lemma 9.12. Assume that (F) holds. Suppose that ΦNk |A and that there exists an D(Nk)
grid on which K is not fibered. Then:

• {D(M)|m|M} ∪ {M/p2
k,M/pipjp

2
k} ⊂ Div(A),

• there exists an x ∈ ZM such that KNk
Nk/pk

[x] = φ(p2
k).

Proof. Assume that ΦNk |A. By Lemma 9.8, we have ΦNk |K. Consider K as a multiset in
ZNk with constant multiplicity pk. We claim that if K is not fibered on a D(Nk)-grid Λ, it
must satisfy the conclusion of either Lemma 6.2 or Lemma 6.3 with N = Nk on that grid.
Indeed, if this is not the case, then we must have

{m : D(Nk)|m|Nk} ⊂ DivNk(K).

But then, for every D(Nk)|m|Nk there exist a, a′ ∈ K (depending on m) such that (a −
a′, Nk) = m. Since KNk

Nk
[a] = KNk

Nk
[a′] = φ(pk), we have{

m/pαk : α ∈ {0, 1, 2},m ∈ {M,M/pi,M/pj,M/pipj}
}
⊂ Div(K).
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The latter contradicts Lemma 9.9.
On the other hand, suppose that K ∈M(ZNk) has at least pj + 1 distinct points in some

plane Π(x, p2
i ) in ZNk , each of multiplicity pk. Then |A ∩ Π(x, p2

i )| ≥ (pj + 1)pk in ZM ,
contradicting Lemma 4.3. The same argument applies with i and j interchanged.

Among the structures described in Lemmas 6.2 and 6.3 with N = Nk, the only ones that
avoid configurations as in the last paragraph are as follows.

• K ∩ Λ has the pk full plane structure as in Lemma 6.2, so that for some x ∈ ZM we
have KNk

Nk/pk
[x] = φ(p2

k) and KNk
Nk/pipj

[x] = pkφ(pipj).

• K ∩ Λ has a pi or pj corner structure as in Lemma 6.3 (i).
• K ∩ Λ has a pi or pj almost corner structure as in Lemma 6.3 (ii), so that (possibly

after a permutation of i and j) there exist x1, x2, x3, x4 ∈ ZM such that (xν−x′ν , Nk) =
Nk/pi for ν 6= ν ′, KNk

Nk/pk
[x1] = KNk

Nk/pk
[x2] = φ(p2

k) and KNk
Nk/pj

[x3] = KNk
Nk/pj

[x4] =

pkφ(pj).

We address the second case, the first and third case being similar. Indeed, a pi corner
structure in K on the Nk scale means that there exist a, a′ ∈ K with (a− a′, Nk) = Nk/pi so
that

(9.8) KNk
Nk/pk

[a] = KM/p2k
[a] = φ(p2

k)

and

(9.9) KNk
Nk/pj

[a′] = KM/pj [a
′] + KM/pjpk [a

′] = pkφ(pj).

Now consider K on scale M . We have (a− a′,M) ∈ {M/pi,M/pipk}, with the fiber chain in
(9.8) attached to a. By (9.9) and the fact that a′ ∈ K, we also have a′ ∗ Fj ∗ Fk ⊂ K. Hence
the conclusions of the lemma hold with x = a. �

Corollary 9.13. Assume (F). If ΦNk |A and pk > minν pν, then K is Nk-fibered on each
D(Nk)-grid in one of the pi and pj directions. In particular, K ⊂ I ∪ J .

Proof. Assume without loss of generality that pi = minν pν . By Lemma 9.8, we have ΦNk |A
if and only if ΦNk |K. By Lemma 9.12, if there exists a D(Nk)-grid on which K is unfibered,

then there must exist x ∈ ZM such that KNk
Nk/pk

[x] = φ(p2
k), thus

|A ∩ Π(x, p2
j)| ≥ KNk

Nk/pk
[x] = φ(p2

k)

> pipk

which contradicts Lemma 4.3. Thus K must be fibered on all D(Nk)-grids. On the other
hand, by the same argument as above, K cannot be Nk-fibered in the pk direction on any
D(Nk)-grid. �

9.4. Proof of Proposition 9.2. In this section, we are assuming (F1), which we state here
again for the reader’s convenience.

Assumption (F1). We have A ⊕ B = ZM , where M = p2
i p

2
jp

2
k is odd. Furthermore,

|A| = |B| = pipjpk, ΦM |A, A is fibered on D(M)-grids, and

(9.10) I,J ,K are pairwise disjoint.
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We must prove that at least one of the sets I,J or K has to be empty. To this end we
assume the contrary, i.e.,

(9.11) I,J ,K 6= ∅,
and prove by contradiction that (9.11) cannot hold. We may assume, without loss of gener-
ality, that

(9.12) pi < pj < pk.

By Corollary 9.13, this implies that ΦNj and ΦNk cannot divide A, so that

(9.13) ΦNjΦNk |B.
We start with a cyclotomic divisibility result.

Proposition 9.14. Assume that (F1), (9.11), and (9.13) hold. Then ΦNi - A.

Proof. The proof is divided into several steps. In each of the following claims, the assump-
tions of the proposition are assumed to hold.

Claim 1. If ΦNi |A, then I is Ni-fibered in the pi direction, so that for every ai ∈ I,

(9.14) IM [ai] + IM/pi [ai] + IM/p2i
[ai] = p2

i .

Proof. It suffices to prove that I is Ni-fibered on each D(Ni)-grid. Once we know that,
Lemma 9.11 (i) together with (9.10) implies that the Ni-fibering must be in the pi direction,
and the claim follows.

Assume, by contradiction, that there exists a D(Ni) grid over which I is not fibered. By
Lemma 9.12,

(9.15) {D(M)|m|M} ∪ {M/p2
i ,M/p2

i pjpk} ⊂ Div(A)

and there exists x0 ∈ ZM with

(9.16) INiNi/pi [x0] = φ(p2
i ).

The proof of Lemma 9.12 implies further that I ∩ Λ(x0, D(Ni)) must contain one of the
structures described in Lemmas 6.2 and 6.3 with N = Ni. Additionally, (9.13) and Lemma
9.11 (ii) imply that B is Nj-fibered in the pj direction and Nk-fibered in the pk direction,
hence

(9.17) M/p2
j ,M/p2

k,M/p2
jp

2
k ∈ Div(B).

We claim that

(9.18) INiNi [x0] = 0.

Suppose this is not true, then

(9.19) AM [x0] + AM/pi [x0] + AM/p2i
[x0] = p2

i .

Let aj ∈ J and ak ∈ K. Recall from Lemma 2.9 that the fibering in B allows one to shift
the fibers rooted at aj and ak by distance M/p2

j and M/p2
k, respectively. Let xj, xk ∈ ZM

with
(aν − xν ,M) = M/p2

ν and p2
ν |x0 − xν for ν ∈ {j, k}.

Let A′ be the set obtained by shifting the fibers rooted at aj and ak to xj and xk respectively,
so that xj ∗ Fj, xk ∗ Fk ∈ A′. By Lemma 2.9, A′ ⊕B = ZM and A′ is T2-equivalent to A.
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Let a1, a2 ∈ `i(x0) be the points with p2
i |a1− xj, p2

i |a2− xk. By (9.19), `i(x0) ⊂ A∩A′. It
follows from (9.17) that we cannot have M/p2

k ∈ Div(A′), hence (a1 − xj,M) = M/pk. Sim-
ilarly, (a2 − xk,M) = M/pj. But now M/p2

i pj,M/p2
i pk ∈ Div(A′), hence M/p2

i pj,M/p2
i pk /∈

Div(B). Together with (9.15), this contradicts Lemma 9.9. This proves (9.18).
We therefore conclude that I has either a full plane structure (Lemma 6.2) or an almost

corner structure (Lemma 6.3 (ii)). In either one of these cases, there exists a point

(9.20) a∗i ∈ I ∩ Λ(x0, D(M))

such that for each ν ∈ {j, k}, A ∩ (a∗i ∗ Fi ∗ Fν) is M -fibered in the pi direction, but is not
M -fibered in the pν direction.

Let aj ∈ J , and let xj ∈ `j(aj) be the point such that p2
j |x0 − xj. We consider two cases.

(a) If it is possible to choose aj so that xj ∈ aj ∗ Fj, we fix that choice, and let A′ := A.
(b) Otherwise, let A′ be the set obtained from A by shifting the fiber aj ∗ Fj to xj if

necessary, so that xj ∗Fj ⊂ A′. By Lemma 2.9, A′⊕B = ZM and A′ is T2-equivalent
to A. Since we are not in case (a), A′ ∩ (xj ∗ Fi ∗ Fj) contains no other M -fibers in
the pj direction.

We show that either xj ∈ Λ(x0, D(M)) or

(9.21) M/p2
i pk /∈ Div(B).

• Suppose that pi|x0 − xj. If (x0 − xj,M) ∈ {M,M/pi,M/pk,M/pipk}, then clearly
xj ∈ Λ(x0, D(M)). If on the other hand (x0 − xj,M) ∈ {M/p2

k,M/pip
2
k}, then by

(9.20), there exists a fiber a ∗ Fi ⊂ I with a ∈ Λ(x0, D(M)) and p2
i |a − xj. Then

M/p2
k ∈ Div(a, xj ∗ Fj) ⊂ Div(A′), contradicting (9.17).

• Assume now that pi - x0 − xj. If (x0 − xj,M) = M/p2
i pk, then by (9.16) together

with the fact that pi ≥ 3, there must be an a ∈ A with (a − x0,M) = M/p2
i and

(a − xj,M) = M/p2
i pk, proving (9.21) since xj ∈ A′. Otherwise, we have (x0 −

xj,M) = M/p2
i p

2
k, but then by (9.16), there must be a ∈ A with (a−x0,M) = M/p2

i

and (a− xj,M) = M/p2
k, contradicting (9.17).

Suppose now that xj ∈ Λ(x0, D(M)). We claim that, in this case, A′ contains a pk
extended corner structure consisting of the fiber in xj ∗ Fi ∗ Fj in the pj direction and at
least one fiber in a∗i ∗ Fi ∗ Fj in the pi direction. Indeed, by (9.20) and (9.10), we have

(9.22) Λ(xj, D(M)) ∩ (J ∪ K) = ∅.
In particular, we must be in case (b) above, and A ∩ (xj ∗ Fi ∗ Fj) = xj ∗ Fj. This together
with the choice of a∗i proves that the conditions of Definition 5.4 (ii) hold.

In that case, however, we proved in Theorem 8.1 that A′ (therefore A) is T2-equivalent to
a D(M) grid. It follows that A satisfies (T2), therefore A⊕ B[ = ZM , where Φpν |B[ for all
ν ∈ {i, j, k}. This contradicts (9.15), since clearly M/p2

i ∈ Div(B[).
We are therefore left with (9.21). By the same argument with pj and pk interchanged,

we must also have M/p2
i pj /∈ Div(B). Together with (9.15), this again contradicts Lemma

9.9. �

Claim 2. If ΦNi |A, then ΦMi
- A, and therefore ΦMi

|B.

Proof. By Lemma 9.8, if ΦMi
|A, then ΦMi

|I. Since Mi has only 2 distinct prime divisors,
we may apply Lemma 4.7 on the scale Mi. We conclude that every element of I belongs to
either an Mi-fiber in the pj direction, in which case we have |A ∩Π(ai, p

2
k)| ≥ p2

i pj, or to an
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Mi-fiber in the pk direction, in which case we have |A∩Π(ai, p
2
j)| ≥ p2

i pk. Since both bounds
contradict Lemma 4.3, we deduce ΦMi

|B, and the lemma follows. �

The next claim is a direct consequence of Claim 2, (9.14), and Lemma 4.7.

Claim 3. If ΦNi |A, then BMi
Mi

[y] ∈ {0, 1} for all y ∈ ZM . Moreover, for every b ∈ B, either

(9.23) BMi

Mi/pj
[b′] = φ(pj) for all b′ ∈ B ∩ Λ(b,D(Mi)),

and, since pi = minν pν,

(9.24) M/pipj,M/p2
i pj ∈ Div(B),

or

(9.25) BMi

Mi/pk
[b′] = φ(pk) for all b′ ∈ B ∩ Λ(b,D(Mi))

and

(9.26) M/pipk,M/p2
i pk ∈ Div(B).

Claim 4. If ΦNi |A, then for all ai ∈ I we have IMi

Mi/pj
[ai] = IMi

Mi/pk
[ai] = 0.

Proof. If there exist b1, b2 ∈ B such that (9.23) holds with b = b1 and (9.25) holds with
b = b2, then the claim follows from (9.24) and (9.26). Assume therefore that (9.23) holds for
all b ∈ B, and, consequently, IMi

Mi/pj
[ai] = 0 for all ai ∈ I.

Assume, by contradiction, that IMi

Mi/pk
[ai] > 0 for some ai ∈ I. It follows from (9.14) that

(9.27) M/pi,M/p2
i ,M/pipk,M/p2

i pk ∈ Div(A).

We claim that

(9.28) M/pjpk /∈ Div(B).

Assuming this, we prove Claim 4 as follows. By (9.11), (9.27), and (9.28), we haveNk/pi, Nk/pj 6∈
DivNk(B). By (9.13) and Lemma 4.9 (ii), B must be Nk-fibered in the pk direction, so that

BNkNk/pk [b] = φ(pk) ∀b ∈ B.

Let ak ∈ K. Since ai satisfies (9.14), we may assume (moving ai to a different point in the
same fiber chain if necessary) that

(9.29) p2
i |ak − ai.

Then the pair (A,B) has a (1,2)-cofibered structure, with ak∗Fk as a cofiber. Let x′k ∈ `k(ak)
be the point such that p2

k|ai − x′k. If pk|ak − x′k, we note that x′k ∈ A, and let A′ := A. If on
the other hand (ak − x′k,M) = M/p2

k, we use Lemma 2.9 to shift ak ∗ Fk to x′k, obtaining a
new set A′ such that x′k ∈ A′, A′ ⊕B = ZM , and A′ is T2-equivalent to A.

By (9.24) and (9.29), we must have (ai − x′k,M) = M/p2
j , so that M/p2

j ∈ Div(A′). In

particular, M/p2
j /∈ Div(B). On the other hand, we also have ΦNj |B, and

BNjNj/pk [b] = BNjNj/pj [b] = 0 for all b ∈ B.

By Lemma 4.9, B must be Nj-fibered in the pi direction, so that BNjNj/pi [b] = φ(pi) for every

b ∈ B. Together with (9.11), this means that every grid Λ(b,M/pipj) with b ∈ B contains
exactly pi points of B. On the other hand, the assumption that (9.23) holds for all b ∈ B
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implies that every such grid contains exactly pj points of B. This contradiction proves the
claim, assuming (9.28).

We now prove (9.28). Assume, by contradiction, that b, b′ ∈ B with (b− b′,M) = M/pjpk.
Let y, y′ ∈ ZM \B with (b− y,M) = (b′− y′,M) = M/pk, (b− y′,M) = (b′− y,M) = M/pj,
and consider the saturating set By,ai . Then

By,ai ⊂ `i(b) ∪ `i(y) ∪ `i(b′) ∪ `i(y′).
If By,ai ∩ (`i(y) ∪ `i(y′)) is nonempty, then {M/pipk,M/p2

i pk} ∩ Div(B) must be nonempty,
while if By,ai ∩ (`i(b)∪ `i(b′)) is nonempty, then {M/pi,M/p2

i } ∩Div(B) must be nonempty.
Both of these contradict (9.27). �

Claim 5. If ΦNi |A and M/pjpk /∈ Div(B), then there must exist bj, bk ∈ B such that (9.23)
holds with b = bj and (9.25) holds with b = bk.

Proof. Assume, by contradiction, that the conclusion is false. Without loss of generality, we
may assume that (9.23) holds for all b ∈ B.

Since M/pjpk /∈ Div(B), we have BNjNj/pk [b] = 0 for all b ∈ B. By (9.13) and Lemma 4.9,

B must be fibered on D(Nj) grids, so that for every b ∈ B either

(9.30) BNjNj/pj [b] = φ(pj),

or

(9.31) BNjNj/pi [b] = BMM/pipj
[b] = φ(pi).

Suppose that there exists b0 ∈ B satisfying (9.30). Applying (9.23) to all b′ ∈ B with
(b0 − b′,M) = M/p2

j , we get

|B ∩ Π(b0, p
2
k)| ≥ p2

j > pipj,

which contradicts Lemma 4.3.
Hence (9.31) must hold for all b ∈ B, so that B is a union of disjoint Nj-fibers in the pi

direction, each of cardinality pi. On the other hand, by Claim 3 and (9.23), for any b ∈ B
we have

BNj/p
2
i

Nj/p2j
[b] = BMi/pj

Mi/pj
[b]

= 1 + BMi

Mi/pj
[b]

= 1 + φ(pj) = pj.

This implies that pj is divisible by pi, which is obviously false. �

Claim 6. If M/pjpk /∈ Div(B), then ΦNi - A.

Proof. Assume, by contradiction, that M/pjpk /∈ Div(B) and ΦNi |A. Then the conclusions
of Claims 1-5 apply. By Claim 5, we may find bj, bk such that (9.23) holds with b = bj and
(9.25) holds with b = bk. We fix these elements for the duration of the proof.

We claim that

(9.32) M/p2
j ,M/p2

k ∈ Div(B).

We prove the first part of (9.32), the second part being identical with pj and pk interchanged.
As in the proof of Claim 5, we use (9.13) and the assumption that M/pjpk /∈ Div(B) to

conclude that either (9.30) or (9.31) holds for every b ∈ B. Suppose that (9.31) holds for
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b = bj. Then B ∩ Λ(bj, D(Mi)) is a union of disjoint Nj-fibers in the pi direction, and the
same argument as in the proof of Claim 5 implies that pj is divisible by pi, which is obviously
false. Thus (9.30) holds with b = bj, and in particular M/p2

j ∈ Div(B).
With (9.32) in place, we complete the proof as follows. Fix let aj ∈ J and ai ∈ I such that

pnii |aj−ai. (This is possible by (9.14).) Taking (9.24), (9.26) and (9.32) into account, we see
that (ai − aj,M) = M/p2

jp
2
k = p2

i . By (9.14) again, we must in fact have 1, pi, p
2
i ∈ Div(A).

We deduce that Mi/p
2
jp

2
k 6∈ DivMi

(B), and, therefore, one of B ⊂ b ∗ pjZ or B ⊂ b ∗ pkZ
must hold for any fixed b ∈ B. That, however, contradicts (9.32). �

Claim 6 proves Proposition 9.14 in the case when M/pjpk /∈ Div(B). From here on, we
will therefore assume that

(9.33) M/pjpk ∈ Div(B).

Claim 7. If ΦNi |A and (9.33) holds, then ΦMi/pjΦMi/pk |B.

Proof. Assume, by contradiction, that ΦMi/pj |A. Let ai ∈ I, and let xk ∈ ZM with (ai −
xk,M) = M/pk. By Claim 4, we have AMi

Mi
[xk] = 0. Furthermore, (9.14) and the assumption

that M/pjpk /∈ Div(A) imply that

AMi/pj
Mi/pj

[xk] = AMi
Mi

[xk] +
∑

x′k:(xk−x′k,M)=M/pj

AMi
Mi

[x′k] = 0,

Considering all Mi/pj cuboids with vertices at ai and xk, we see that for every xj ∈ ZM with
(ai − xj,M) = M/p2

j we have

AMi/pj
Mi/pj

[xj] = p2
i ,

thus

|A ∩ Π(ai, p
2
k)| ≥ pjp

2
i > pipj

contradicting Lemma 4.3. Since this argument is symmetric with respect to j and k, the
claim follows. �

Claim 8. If ΦNi |A and (9.33) holds, then B is Mi-fibered in both of the pj and pk directions,
so that for all b ∈ B we have

(9.34)
1

φ(pj)
BMi

Mi/pj
[b] =

1

φ(pk)
BMi

Mi/pk
[b] = 1.

Proof. By Claims 2 and 7, we have ΦMi
ΦMi/pk |B. Therefore B is T -null with respect to

the cuboid type T = (Mi, ~δ, 1), where ~δ = (0, 1, 2). Suppose that for some b0 ∈ B we
have BMi

Mi/pj
[b0] < φ(pj). Fix yj ∈ ZM such that (b0 − yj,M) = M/pj and BMi

Mi
[yj] = 0,

and consider all cuboids of type T with vertices at b0 and yj. In order to balance these

cuboids, we must have BMi
Mi

[y] = 1 for all y ∈ ZM with (b0 − y,M) = M/p2
k. But now we get

|B ∩Π(b0, p
2
j)| ≥ p2

k > pipk, which contradicts Lemma 4.3. Since this argument is symmetric
in j and k, the claim follows. �

Claim 9. If ΦNi |A and (9.33) holds, then for all b ∈ B we have BNjNj/pi [b] = φ(pi).
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Proof. Assume, by contradiction, that there exists b0 ∈ B with BNjNj/pi [b0] < φ(pi). Since

pk > pj and M/pk ∈ Div(A), we must also have BNjNj/pk [b0] < φ(pk). Let yi, yk ∈ ZM with

(b0− yi, Nj) = Nj/pi, (b0− yk, Nj) = Nj/pk and such that BNjNj [yi] = BNjNj [yk] = 0. Recall that

ΦNj |B, and consider all Nj cuboids with vertices at b, yi and yk. We get that for every z
with (z − b0, Nj) = Nj/pj, we have

(9.35) BNjNj [z] + BNjNj/pipk [z] ≥ 1.

But by Claim 8, we also have

|B ∩ Π(b, pj)| ≥ pjpk ∀b ∈ B.

Applying this to all b ∈ B contributing to (9.35), and summing over z with (z − b0, Nj) =
Nj/pj, we get |B| ≥ pj · (pjpk) > pipjpk, a contradiction. �

Claim 10. If (9.33) holds, then ΦNi - A.

Proof. Assume, for contradiction, that (9.33) holds and ΦNi |A. By Claim 8, B must satisfy
(9.34), and in particular

BMi

Mi/pj
[b] = φ(pj) for all b ∈ B.

By Claim 9,

BNjNj/pi [b] = BM/pipj [b] = φ(pi) for all b ∈ B.
As in the proof of Claim 6, these two properties imply that pj is divisible by pi, which is
false. �

Claim 10 concludes the proof of Proposition 9.14. �

By Proposition 9.14, it remains to prove Proposition 9.2 under the assumption that

(9.36)
∏

ν∈{i,j,k}

ΦM/pν |B.

Lemma 9.15. Assume (F1) and (9.36). Then at least one of the sets I,J , or K must be
empty.

Proof. Assume, by contradiction, that (9.11) holds. By (9.36), ΦNi |B. Since pi = minν pν
and M/pj,M/pk /∈ Div(B), we must have

1

φ(pj)
BNiNi/pj [b],

1

φ(pk)
BNiNi/pk [b] < 1 for all b ∈ B,

and, in particular, B cannot be Ni-fibered in either the pj or the pk direction. By Lemma
4.9, it follows that M/p2

i ∈ Div(B).
Suppose first that ΦMi

|A, so that ΦMi
|I. We have IMi

Mi
[x] ∈ {0, pi} for all x ∈ ZM , and

Ni/pi 6∈ DivNi(A). By Lemma 4.9, I must be Ni-fibered in one of the pj and pk directions,
so that we either have

(9.37) IMi

Mi/pj
[ai] = piφ(pj) for all ai ∈ I,

or IMi

Mi/pk
[ai] = piφ(pk) for all ai ∈ I.
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Assume, without loss of generality, that (9.37) holds, and fix ai ∈ I. It follows that
|I ∩ Π(ai, p

2
k)| ≥ pipj. By Lemma 4.3, the last inequality holds as equality, i.e.,

(9.38) |I ∩ Π(ai, p
2
k)| = pipj and so A ∩ Π(ai, p

2
k) ⊂ I.

We now consider two cases.

• If Φp2k
|A, then A ⊂ Π(ai, pk). Let ak ∈ K. Since I ∩ K = ∅, we must have ak /∈

Λ(ai, D(Ni)), thus |A ∩ Π(ai, p
2
k)| > pipj, contradicting (9.38).

• If Φpk |A, then
|A ∩ Π(a, pk)| = pipj for all a ∈ A.

By (9.38), we must have I ∩ Π(ak, pk) = ∅. Hence A ∩ Π(ak, pk) ⊂ J ∪ K. Lemma
9.10 (ii) implies now that pi > pk, contradicting (9.12).

We conclude that ΦMi
- A, hence ΦNiΦMi

|B. This implies that B is T -null with respect to

the cuboid type T = (M,~δ, T ), where ~δ = (0, 1, 1) and T (X) = 1+XM/pi + . . .+X(pi−1)M/pi .
Since M/pi /∈ Div(B), we have BT [y] ∈ {0, 1} for all y ∈ ZM . Note that T is a 2 dimensional
cuboid type, so that for every b ∈ B we either have

BT [yj] = BM [yj] + BM/pi [yj] = 1 for all yj ∈ ZM with (b− yj,M) = M/pj,

or
BT [yk] = BM [yk] + BM/pi [yk] = 1 for all yk ∈ ZM with (b− yk,M) = M/pk.

As pi = minν pν , the former implies M/pj ∈ Div(B), and the latter implies M/pk ∈ Div(B),
both contradicting (9.11). �

9.5. Proof of Proposition 9.3. In this section, we will prove that I = ∅ under the following
conditions.

Assumption (F2). We have A ⊕ B = ZM , where M = p2
i p

2
jp

2
k is odd. Furthermore,

|A| = |B| = pipjpk, ΦM |A, A is fibered on D(M)-grids, J ∩ K 6= ∅, and

(9.39) I ∩ J ∩ K = ∅.

Let a ∈ J ∩ K. By Lemma 9.5 (i), we have

(9.40) a ∗ Fj ∗ Fk = A ∩ Π(a, p2
i ),

and in particular

(9.41) {M/pj,M/pk,M/pjpk} ⊂ Div(A).

We first prove Proposition 9.3 under the assumption that Φp2i
|A.

Lemma 9.16. Assume (F2), and let a ∈ J ∩ K. If Φp2i
|A, then

(9.42) A ⊂ Π(a, pi).

Proof. The assumption Φp2i
|A, together with (9.40), implies that |A ∩ Π(a, pi)| = pipjpk =

|A|. �

Corollary 9.17. Assume that (F2) holds, and that Φp2i
|A. Then I = ∅.

Proof. Let a ∈ J ∩K. Suppose, by contradiction, that I is nonempty. By (9.42), there must
exist an element ai ∈ I ∩ Π(a, pnii ). It follows from (9.40) that ai ∈ a ∗ Fj ∗ Fk. But then
ai ∈ I ∩ J ∩ K, contradicting (9.39). �
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In the rest of this section, it remains to consider the following case.

Assumption (F2’). Assume that (F2) holds, and that

(9.43) Φp2i
- A.

Lemma 9.18. Assume (F2’). Let a ∈ J ∩K, and let x ∈ ZM \A with (a− x,M) = M/pi.
Then

(9.44) Ax ⊂ Π(a, p2
i ).

Proof. Let b ∈ B. We have Ax,b ⊂ Π(a, p2
i ) ∪ Π(x, p2

i ). Assume, by contradiction, that

(9.45) Ax,b ∩ Π(x, p2
i ) 6= ∅.

Then |A∩Π(x, p2
i )| > 0. Together with (9.40), this implies that |A∩Π(x, p2

i )| > pjpk. Since
|A| = pipjpk, by Corollary 4.4 we have Φp2i

|A, contradicting (9.43). �

Lemma 9.19. Assume (F2’). Then:

(i) For every b ∈ B, and for every y ∈ ZM with (b− y,M) = M/pi, we have

(9.46) BM [y] + BM/pj [y] + BM/pk [y] + BM/pjpk [y] = 1.

(ii) For all d with p2
i |d|(M/pjpk), we have Φd|B. Additionally,

(9.47) {M/pi,M/pipj,M/pipk,M/pipjpk} ∩Div(B) 6= ∅.
(iii) We have Φpi|A. Moreover,

(9.48) A ∩ Π(a, pi) = A ∩ Π(a, p2
i ) ∀a ∈ J ∩ K.

(9.49) |A ∩ Π(x′, pi)| ∈ {0, pjpk} ∀x′ ∈ ZM .

Proof. Fix b ∈ B, and write Njk = M/pjpk for short. Let a ∈ J ∩ K, and let x ∈ ZM \ A
with (a− x,M) = M/pi.

By (9.40) and (9.44), we have

1 =
1

φ(pi)
AM/pi [x|Π(a, p2

i )]BM/pi [b] +
1

φ(pipj)
AM/pipj [x|Π(a, p2

i )]BM/pipj [b]

+
1

φ(pipk)
AM/pipk [x|Π(a, p2

i )]BM/pipk [b] +
1

φ(pipjpk)
AM/pipjpk [x|Π(a, p2

i )]BM/pipjpk [b]

=
1

φ(pi)
(BM/pi [b] + BM/pipj [b] + BM/pipk [b] + BM/pipjpk [b])

=
1

φ(pi)

∑
y:(y−b,M)=M/pi

BNjkNjk
[y].

On the other hand, by (9.41) and divisor exclusion, any Njk-grid may contain at most one

element of B, so that BNjkNjk
[y] ≤ 1 for all y ∈ ZM . Therefore

BNjkNjk
[y] = 1 for all y such that (y − b,M) = M/pi,

which is (9.46). We also note that the first equation in the above calculation implies (9.47).
Next, since |A| = pipjpk, exactly one of Φpi and Φp2i

must divide A. By (9.43), we must

in fact have Φpi |A. Then

pjpk ≥ |A ∩ Π(a, pi)| ≥ |A ∩ Π(a, p2
i )| = pjpk,
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by (9.40). Hence the above must hold with equality, which proves (9.48). It also follows that
for any x′ ∈ ZM , we must have |A ∩ Π(x′, pi)| = pjpk if pi|x′ − a and 0 otherwise, so that
(9.49) holds.

Finally, let d 6= p2
i and p2

i |d|(M/pjpk), and consider any d-cuboid with one vertex at
a ∈ J ∩K. By (9.40), we have Ad

d[a] ≥ pjpk. However, we also have |A∩Π(a, pi)| = pjpk by
the third claim in the lemma, so that Ad

d′ [a] = 0 for all d′ < d with D(d)|d′. It follows that
the cuboid cannot be balanced. Therefore Φd - A, which proves (ii). �

Lemma 9.20. Assume (F2’). Then I ∩ (J ∪ K) = ∅.

Proof. Suppose that the conclusion fails. Without loss of generality, we may assume that
I ∩ K 6= ∅. Taking into account that J ∩ K 6= ∅, we have from (9.41)

M/pi,M/pj,M/pk,M/pipk,M/pjpk ∈ Div(A)

so that (9.47) reduces to {M/pipj,M/pipjpk} ∩Div(B) 6= ∅, and (9.46) to

BM/pj [y] + BM/pjpk [y] = 1 for all y with (y − b,M) = M/pi.

This means we must have

(9.50) pi < pj,

otherwise one must introduce M/pi or M/pipk as differences in B.
We now repeat the same procedure with i and j interchanged. Let a′ ∈ I ∩ K. We note

that A ∩ Λ(a′, D(M)) cannot be M -fibered in the pj direction, since that would contradict
(9.39). It follows from Lemma 9.5 (i) that a′ ∗ Fi ∗ Fk ⊂ A, and, together with Lemma 4.3,
this implies that

(9.51) a′ ∗ Fi ∗ Fk = A ∩ Π(a′, p2
j).

Let x′ ∈ ZM \ A satisfy (a′ − x′,M) = M/pj. As in the proof of Lemma 9.18, we have

Ax′ ⊂ Π(a′, p2
j) ∪ Π(x′, p2

j).

Assume, by contradiction, that there exists a b ∈ B such that Ax′,b ⊂ Π(a′, p2
j). Repeating

the proof of Lemma 9.19 (i)-(ii) with that b, we get the analogues of (9.46) and (9.47) with
i and j interchanged. The same argument as in the proof of (9.50) shows then that pj < pi,
a contradiction.

It follows that Ax′ ∩Π(x′, p2
j) 6= ∅, and, in particular, |A ∩Π(a′, pj)| > pipk. By Corollary

4.4, A ⊂ Π(a′, pj). In particular, J ⊂ Π(a′, pj), with each fiber in J containing a point
in A ∩ Π(a′, p2

j). But by (9.51), any such point would belong to I ∩ J ∩ K, contradicting
(9.39). �

Lemma 9.21. Assume (F2’). If I 6= ∅, then ΦNi - A.

Proof. By Lemma 9.8, it suffices to prove that ΦNi - I. Let ai ∈ I. By Corollary 9.20, we
have ai 6∈ J and ai 6∈ K, so that there must exist xj, xk ∈ ZM \ A with (ai − xj, Ni) =

Ni/pj, (ai − xk, Ni) = Ni/pk and such that INiNi [xj] = INiNi [xk] = 0.
Consider the Ni cuboid with one face containing vertices at ai, xj and xk, and the other

face in Π(a, pi), where a ∈ J ∩K. In order for this cuboid to be balanced, I ∩Π(a, pi) must
be nonempty, and in particular I ∩ Π(a, p2

i ) 6= ∅. But this together with (9.40) contradicts
(9.39). �

Lemma 9.22. Assume (F2’). If pi = minν pν, then I = ∅.
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Proof. By Lemma 9.21, ΦNi - A, hence ΦNi |B. Since I 6= ∅, we have M/pi ∈ Div(A), so that
BNiNi [y] ∈ {0, 1} for all y ∈ ZM . By (9.43), Φp2i

|B. Hence Φpi - B, and in particular B cannot
be Ni-fibered in the pi direction. It follows that there must exist b0 ∈ B and y ∈ ZM with
(b0 − y,Ni) = Ni/pi and BNiNi [y] = 0.

In order to simplify notation, we shall denote βν = BNiNi/pν [b0] for ν ∈ {j, k}. By (9.46) we

must have

(9.52) βj + βk + 1 ≤ |B ∩ Λ(b0, D(M))| ≤ pi

thus

(9.53) βν ≤ (pi − 1)/2 for some ν ∈ {j, k}.
In addition, considering all Ni cuboids with vertices at b0 and y such that the vertices at
distance Ni/pj and Ni/pk from b0 do not belong to B, we see that

BNiNi/pjpk [y] ≥ (pj − βj − 1)(pk − βk − 1).

Now, if βj = 1 then βk ≤ pi − 2 and so

(pj − βj − 1)(pk − βk − 1) ≥ (pj − 2)(pk − pi + 1)

≥ (pk − pi + 1)pi

> pi

which contradicts (9.46). We may therefore assume βν ≥ 2 for ν = j, k. In this case, however,
assuming (9.53) for ν = k, applying (9.52) and the fact that pj − pi ≥ 2, we have

(pj − βj − 1)(pk − βk − 1) = (pj − pi + pi − βj − 1)(pk − βk − 1)

≥ (pj − pi + βk)(pk − βk − 1)

≥ 4(pi − (pi − 1)/2− 1)

= 2pi − 2

The latter exceeds pi whenever pi > 2. Since M is odd, again we get a contradiction to
(9.46) and the lemma follows. �

Lemma 9.22 proves Proposition 9.3, assuming that (F2’) holds and that pi is the smallest
prime. From now on, we will therefore assume that

(9.54) pi > min
ν
pν .

The rest of the proof will be split into the following cases:

• Assume (F2’), (9.54), and ΦNjΦNk |A. This case is addressed in Lemma 9.23 and
Corollary 9.24.
• Assume (F2’), (9.54), and (interchanging j and k if necessary) ΦNj - A, ΦNk - B.

This case is addressed in Lemmas 9.27, 9.28, and 9.29.
• Assume (F2’), (9.54), and ΦNj - A, ΦNk - A. This case is addressed in Lemma 9.30,

Corollary 9.31, and Lemma 9.32.

Lemma 9.23. Assume (F2’) and (9.54). If pk < pi < pj and ΦNk |A, then K ⊂ J .

Proof. We first claim that K is Nk-fibered on each D(Nk)-grid in one of the pj and pk
directions. Indeed, if K were not Nk-fibered on some D(Nk)-grid, then it would follow from
Lemma 9.12 that {D(M)|m|M} ⊂ Div(A); however, that is not compatible with (9.47).
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Furthermore, by Lemma 9.20 and Lemma 9.11 (i), K cannot be Nk-fibered in the pi direction
on any D(Nk) grid. This proves the claim.

Recall from Lemma 9.19 (iii) that for any a0 ∈ A,

(9.55) |A ∩ Π(a0, pi)| = pjpk.

If K is Nk-fibered in the pj direction on some D(Nk) grid Λj, then for every ak ∈ K ∩Λj we
have

(9.56) KNk
Nk/pj

[ak] = pkφ(pj),

so that ak ∈ J ∩K. By (9.55), A∩Π(ak, pi) = ak ∗Fj ∗Fk is fibered in both directions, and
in particular Π(ak, pi) contains no elements of A outside of Λj.

Assume now that there exists a′k ∈ K such that K is Nk-fibered in the pk direction on
Λk := Λ(a′k, D(Nk)). Then

(9.57) KNk
Nk/pk

[a′] = pkφ(pk) for all a′ ∈ K ∩ Π(a′k, pi),

so that

(9.58) AM [a′] + AM/pk [a
′] + AM/p2k

[a′] = p2
k for all a′ ∈ K ∩ Π(a′k, pi).

Fix a′k ∈ K satisfying (9.57) and (9.58). We first claim that

(9.59) I ∩ Π(a′k, pi) = ∅.

Indeed, suppose that (9.59) fails, and let ai ∈ I ∩ Π(a′k, p
2
i ). Since K ∩ Λk is Nk fibered in

the pk direction, by Lemma 9.20 we must have ai /∈ Λk, so that ai must be at distance M/p2
j

from the fiber chain in the pk direction rooted at a′k. We can now extend (9.41) to

(9.60) M/pj,M/pk,M/pjpk,M/p2
j ,M/p2

k,M/p2
jp

2
k,M/p2

jpk ∈ Div(A),

where all the differences that do not appear in (9.41), come from the interaction between ai
and `k(a

′
k).

By (9.60), we see that for every b ∈ B

|B ∩ Π(b, p2
i )| ≤ 1 + BM/pjp2k

[b]

≤ pk.

But, since ZM has only p2
i residue classes modulo p2

i , it follows that

pipjpk = |B| ≤ p2
i pk,

so that pj ≤ pi, contradicting the assumption that (9.59) fails.
It, therefore, follows that A ∩Π(a′k, pi) ⊂ J ∪ K. By (9.55) and Lemma 9.10 (i), we have

A ∩ Π(a′k, pi) ⊂ K. But since all a′ ∈ K ∩ Π(a′k, pi) satisfy (9.57) and (9.58), we get

pjpk = cp2
k

for some positive integer c. The latter implies pk divides pj, which is not allowed. This
completes the proof of the lemma. �

Corollary 9.24. Assume (F2’) and (9.54). Assume further that ΦNjΦNk |A and that pk < pj.
Then I = ∅, and A is M-fibered in the pk direction.
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Proof. By (9.54), we have pk = minν pν . We first apply Corollary 9.13, with j and k inter-
changed. Since ΦNj |A and pj 6= minν pν , we get that J ⊂ (I ∪K). However, by Lemma 9.20
we have I ∩ J = ∅, so that we must in fact have J ⊂ K.

Assume, by contradiction, that I is nonempty. We first prove that this implies

(9.61) pi < pj.

Let ai ∈ I. Observe that Π(ai, pi) cannot contain any elements a′ ∈ J , since any such
element would be associated with a grid a′ ∗Fj ∗Fk ⊂ A, and by (9.55) and Lemma 9.20, we
would have I ∩ Π(ai, pj) = ∅. Thus A ∩ Π(ai, pi) ⊂ I ∪ K, and (9.61) follows from Lemma
9.10 (ii).

Applying Lemma 9.23, we see that K ⊂ J . This, together with the first part of the proof,
implies K = J . Hence any element ak ∈ K is associated with a grid ak ∗Fj ∗Fk ⊂ A, and as
shown above, such grids cannot intersect Π(ai, pi). Therefore A∩Π(ai, pi) must be contained
in I. That, however, is clearly false since pjpk = |A ∩ Π(ai, pi)| cannot be a multiple of pi.
This contradiction concludes the proof. �

Before we move on to the next two cases, we need two lemmas on the fibering properties
of B.

Lemma 9.25. Assume (F2). If ΦNk |B, then B is Nk-fibered on each D(Nk) grid, either in
the pk direction or in the pi direction. The same is true with j and k interchanged.

Proof. Suppose that ΦNk |B. By (9.41), we have BNkNk/pj [b] = 0 and BNkNk [b] = 1 for all b ∈ B.

Since M is odd, the lemma follows from Lemma 4.9. �

Lemma 9.26. Assume (F2’). If I 6= ∅ and B is Ni-fibered on a D(Ni) grid, then it must
be fibered in the pi direction on that grid.

Proof. We argue by contradiction. Let Λ0 := Λ(b,D(Ni)) for some b ∈ B, and assume that
B ∩ Λ0 is Ni-fibered in one of the other directions, say pj. Let also Λ := Λ(b,D(M)). By
(9.46), we have

(9.62) |B ∩ Λ| = pi.

On the other hand, the Ni-fibering assumption means that B ∩ Λ0 can be divided into
mutually disjoint Ni-fibers in the pj direction, each one of cardinality pj, and each one either
entirely contained in Λ or disjoint from it. This implies that pj divides |B ∩ Λ|. That,
however, contradicts (9.62). �

Next, we consider the case ΦNj - A,ΦNk - B. This case will be split further, according to
whether pj or pk is the smallest prime.

Lemma 9.27. Assume (F2’) and (9.54). Assume further that ΦNj - A, ΦNk - B, and
pj = minν pν. If I 6= 0, then:

• B is Nj-fibered in the pj direction,
• K ⊆ J ,
• |A ∩ Π(a′, pi)| = pjpk for any a′ ∈ A,
• pi < pk.

Proof. We first note that the second claim follows from Corollary 9.13 and Lemma 9.20, and
the third one from Lemma 9.19 (iii). Next, let ai ∈ I. Then I ∩ Π(ai, pi) is nonempty and,
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by Lemma 9.20, disjoint from J ∪ K = J . By Lemma 9.10 (ii) with j and k interchanged,
it follows that pi < pk.

It remains to prove the first claim. We have ΦNj |B, hence by Lemma 9.25, B is Nj-
fibered on D(Nj) grids in one of the pi and pj directions. Since pj < pi, it follows that

BNjNj/pi [b] < φ(pi) for all b ∈ B, hence B must be Nj-fibered in the pj direction. �

Lemma 9.28. Assume (F2’) and (9.54). Assume further that ΦNj - A, ΦNk - B, and
pj = minν pν, Then I = ∅, and A is M-fibered in the pj direction.

Proof. Assume, by contradiction, that I 6= ∅. By Lemma 9.21, ΦNi |B.
Assume first that Ni/pi /∈ Div(B). By Lemma 4.9, B is fibered on D(Ni) grids in one of

the pj and pk direction. That, however, contradicts Lemma 9.26.
Suppose now that b, b′ ∈ B with (b− b′, Ni) = Ni/pi. By Lemma 9.27, B is Nj-fibered in

the pj direction. This together with (9.46) implies that |B ∩ Π(b, pk)| > pipj. By Corollary
4.4, we have Φp2k

|B, hence Φpk |A. The latter, in turn, implies

(9.63) |A ∩ Π(a′, pk)| ≤ pipj ∀a′ ∈ A.
On the other hand, let a ∈ J ∩ K with a ∗ Fj ∗ Fk ⊂ A as provided by (9.40). Then

|A ∩ Π(a, pk)| ≥ pjpk > pipj,

where at the last step we used Lemma 9.27 again. This contradicts (9.63).
This proves that I = ∅. By the second claim in Lemma 9.27, we have K ⊆ J , hence A is

M fibered in the pj direction. �

Lemma 9.29. Assume (F2’) and (9.54). Assume further that ΦNj - A, ΦNk - B, and
pk = minν pν. Then I = ∅ and K ⊆ J . Consequently, A is M-fibered in the pj direction.

Proof. The proof splits between two cases.

Case 1: pk < pi < pj. In this case, by Lemma 9.23 we have K ⊆ J . Assume, by
contradiction, that I is nonempty, and let ai ∈ I. By Lemma 9.19 (iii), we have |A ∩
Π(ai, pi)| = pjpk. By Lemma 9.10 (ii) with j and k interchanged, it follows that pk > pi,
contradicting our assumption. Therefore I = ∅.

Case 2: pk < pj < pi. We first note that if I is nonempty, then BNjNj/pi [b] < φ(pi) for all

b ∈ B. Since ΦNj |B, by Lemma 9.25

(9.64) B must be Nj fibered in the pj direction.

Next, we follow the first part of the proof of Lemma 9.23. (This part does not use the
Lemma 9.23 assumption that pi < pj.) By the same argument as there, K must be Nk-fibered
on every D(Nk) grid in either the pj or the pk direction, and for every ak ∈ K we have one
of the following:

• (9.56) holds, hence ak ∈ J ∩ K and ak ∗ Fj ∗ Fk = A ∩ Π(ak, pi),
• (9.57) and (9.58) hold for all a′ ∈ K ∩ Λ(ak, D(Nk)).

If (9.56) holds for all a′ ∈ K, then K ⊆ J , and it follows by the same argument as in Case
1 that I = ∅.

We now prove that the second case is impossible. Indeed, assume by contradiction that
there exists ak ∈ K such that (9.57) and (9.58) hold for all a′ ∈ K ∩ Λ(ak, D(Nk)). We first
claim that

(9.65) I ∩ Π(ak, pi) = ∅.
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Indeed, if (9.65) fails, we continue as in the proof of Lemma 9.23 and find an element ai ∈ I
at distance M/p2

j from the fiber chain through ak. But (9.64) implies M/p2
j ∈ Div(B), which

is a contradiction. Hence (9.65) holds.
By (9.49), we have |A ∩Π(ak, pi)| = pjpk. It follows from (9.65) and Lemma 9.10 (i) that

A∩Π(ak, pi) ⊂ K. As in the proof of Lemma 9.23, all elements of A in Π(ak, pi) must satisfy
(9.57). Hence

pjpk = |A ∩ Π(ak, pi)| = cp2
k

for some positive integer c, so that pk divides pj, a contradiction. This completes the proof
of the lemma. �

We now address the case in which ΦNν - A for ν ∈ {j, k}.

Lemma 9.30. Assume (F2’) and (9.54). Assume further that B is Nk-fibered in the pk
direction, M/p2

j ∈ Div(B), and that I 6= ∅. Then for all ai ∈ I we have K ∩ Π(ai, pi) = ∅.

Proof. Assume, by contradiction, that ai ∈ I and K ∩ Π(ai, pi) 6= ∅. Replacing ai by a
different element of ai ∗ Fi if necessary, we may further assume that p2

i |ai − ak for some
ak ∈ K ∩ Π(ai, pi) Moreover, it follows from the fibering assumption on B that the pair
(A,B) has a (1,2)-cofibered structure in the pk direction, with the cofiber in A rooted at ak.

Suppose that (ai − ak,M) = M/pjp
2
k. Applying Lemma 2.9, we could then shift the

cofiber ak ∗ Fk in the pk direction, obtaining a new T2-equivalent tiling A′ ⊕ B = ZM in
which the shifted cofiber a′k ∗ Fk satisfies (ai − ak,M) = M/pj. We claim that A′ contains a
pj extended corner structure. Indeed, by Lemma 9.20 we have Λ(ai, D(M)) ∩ (J ∪ K) = ∅.
Hence A ∩ (ai ∗ Fi ∗ Fk) is M -fibered in the pi direction but not in the pk direction, and
A∩ (a′k ∗Fi ∗Fk) must be empty, so that A′ ∩ (a′k ∗Fi ∗Fk) = a′k ∗Fk. This proves the claim.
However, Theorem 8.1 now implies that Φp2i

|A, contradicting (F2’).

Since M/p2
k ∈ Div(B) by the fibering assumption, we are now left with (ai − ak,M) =

M/p2
jp

2
k. But then, by the same fiber-shifting argument as above, we get a T2-equivalent

tiling A′′ ⊕B = ZM , where M/p2
j ∈ Div(A′′). This contradicts the assumption that M/p2

j ∈
Div(B) �

Corollary 9.31. Assume (F2’) and (9.54). If B is Nν-fibered in the pν direction for both
ν = j and ν = k, then I = ∅.

Proof. By the fibering assumption,

(9.66) M/p2
j ,M/p2

k ∈ Div(B).

Suppose that I 6= ∅, and let ai ∈ I. It follows from Lemma 9.30 that J and K are both
disjoint from Π(ai, pi). Therefore A∩Π(ai, pi) ⊂ I, and in particular, pi divides |A∩Π(ai, pi)|.
But this contradicts (9.49). �

Lemma 9.32. Assume (F2’) and (9.54). Assume further that ΦNjΦNk |B. Then I = ∅.

Proof. Suppose that I 6= ∅. Without loss of generality, we may assume that pk = minν pν .
By Lemma 9.25, B is Nk-fibered on D(Nk) grids in one of the pi and pk directions. However,
B cannot be Nk fibered in the pi direction on any D(Nk) grid, since the assumptions that
I 6= ∅ and pk < pi imply that BNkNk/pi [b] < φ(pi) for all b ∈ B. Hence

(9.67) B must be Nk-fibered in the pk direction.
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By the same argument as above, if pj < pi, then B must also be Nj-fibered in the pj direction,
and an application of Corollary 9.31 concludes the proof.

It remains to consider the case when

(9.68) pk < pi < pj.

We claim that in this case,

(9.69) M/pipk ∈ Div(B).

Indeed, since I 6= ∅, the failure of (9.69) would imply that Ni/pk 6∈ DivNi(B). It would then
follow from Lemma 4.9 that B is Ni-fibered on D(Ni) grids. By Lemma 9.26, B can only be
Ni-fibered in the pi direction. In particular, Φpi |B, contradicting Lemma 9.19 (ii).

Let b1, b2 ∈ B with

(9.70) (b1 − b2,M) = M/pipk.

By (9.46), one may find b3, . . . , bpi ∈ B satisfying (bν−bν′ ,M) ∈ {M/pipk,M/pipj,M/pipjpk}
for all ν 6= ν ′.

By Lemma 9.25, B is Nj-fibered on each D(Nj) grid in one of the pi and pj directions.

However, it is clear from (9.46) and (9.70) that BNjNj/pi [bν ] < φ(pi) for all ν ∈ {1, 2, . . . , pi},
so that B cannot be Nj fibered in the pi direction on the grid Λ := Λ(bν , D(Nj)). It follows
that B is Nj-fibered in the pj direction on Λ. Taking also (9.67) into account, we see that

(9.71) |B ∩ Π(bν , p
2
i )| ≥ pjpk for all ν ∈ {1, 2, . . . , pi}.

Since |B| = pipjpk, (9.71) must in fact hold with equality for each ν, and

(9.72) B \
pi⋃
ν=1

Π(bν , p
2
i ) = ∅.

Let b ∈ B be arbitrary. We claim that

(9.73) M/pipk ∈ Div(B ∩ Λ(b,D(Ni))).

To prove this, we start by arguing as in the proof of (9.69) that if (9.73) fails, then B is
Ni-fibered in the pi direction on Λ(b,D(Ni)). However, if that were the case, then we would
have M/p2

i ∈ Div(B), contradicting (9.72).
We further note that by (9.72), B∩Λ(b,D(Ni)) = B∩Λ(b,D(M)), so that in fact we have

M/pipk ∈ Div(B ∩ Λ(b,D(M)) ∀b ∈ B.

With this in place, we repeat the argument starting with (9.70) to prove that B is Nj-fibered
in the pj direction on all D(Nj) grids.

It follows that B is Nν-fibered in the pν direction for both ν = j and ν = k. By Corollary
9.31, we have I = ∅ as claimed. �

9.6. Proof of Proposition 9.4. In this section, we are working under the following as-
sumption.

Assumption (F3): We have A ⊕ B = ZM , where M = p2
i p

2
jp

2
k is odd. Furthermore,

|A| = |B| = pipjpk, ΦM |A, A is fibered on D(M)-grids, I = ∅, and

(9.74) the sets J \ K and K \ J are nonempty.
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The proof below works regardless of whether J and K are disjoint or not. If J ∩ K 6= ∅,
then (since I = ∅) any element a ∈ J ∩ K must satisfy the conditions of Lemma 9.5 (i), so
that

(9.75) A ∩ Π(a, p2
i ) = a ∗ Fj ∗ Fk.

It follows that the set J \K is M -fibered in the pj direction, and K \ J is M -fibered in the
pk direction.

We begin with the case when at least one of ΦMj
and ΦMk

divides A.

Lemma 9.33. Assume (F3), and that ΦMk
|A. Then

(9.76) Φp2j
|A.

Furthermore, K is Mk-fibered in the pj direction, so that for every ak ∈ K we have

(9.77) KMk

Mk/pj
[ak] = pk · φ(pj).

and

(9.78) A ∩ Π(ak, p
2
i ) ⊂ Λ(ak, p

2
i pj).

The same holds with pk and pj interchanged.

Proof. Notice first that the fibering statement holds trivially for all ak ∈ K ∩ J .
Let now L := K \ J , with the corresponding N -boxes LN for N |M . The assumption

ΦMk
|A implies, by (9.5), that ΦMk

|L. By Lemma 4.7, L mod Mk is a disjoint union of
Mk-fibers in the pi and pj direction. Hence, any element a0 ∈ L which does not belong to
an Mk-fiber in the pj direction must satisfy

(9.79) LMk

Mk/pi
[a0] = pk · φ(pi)

and |A ∩ Π(a0, p
2
j)| ≥ pipk. By Lemma 4.3,

(9.80) |A ∩ Π(a0, p
2
j)| = pipk,

in particular

(9.81) A ∩ Π(a0, p
2
j) ⊂ L and J ∩ Π(a0, p

2
j) = ∅.

We first prove (9.76). Indeed, assume for contradiction that Φpj |A. Then

(9.82) |A ∩ Π(a, pj)| = pipk for all a ∈ A.
Let aj ∈ J , and consider the plane system Π(aj, pj). These planes cannot contain any
elements a ∈ L satisfying (9.79), since any such element would belong to an Mk-fiber in the
pi direction in L, of cardinality pipk and contained in Π(aj, pj), and this would leave no room
for the additional element aj 6∈ L.

Thus every element of A∩Π(aj, pj) must either belong to J , or else it must be an element
of L belonging to an Mk-fiber in the pj direction in L, of cardinality pjpk. Since the two sets
are disjoint, (9.82) implies that

pipk = |A ∩ Π(a, pj)| = c1pj + c2pjpk,

where c1, c2 are nonnegative integers. But then pj divides either pi or pk, a contradiction.
Therefore Φp2j

|A. Suppose now that there actually exists an element a0 ∈ L such that

(9.79) holds. Then A ⊂ Π(a0, pj). Since J is nonempty, it follows that J must intersect
Π(a0, p

2
j), contradicting (9.81). This proves the fibering conclusion of the lemma. �
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Lemma 9.34. Assume (F3). The following holds true:

(i) If Φp2i
ΦMk
|A, then A is contained in a subgroup.

(ii) If Φpi |A, then |A∩Π(a, pi)| = pjpk for all a ∈ A. Moreover, for every a ∈ A we have
either A ∩ Π(a, pi) ⊂ J or A ∩ Π(a, pi) ⊂ K.

Proof. For part (i), by Lemma 9.33 every ak ∈ K satisfies (9.77). By Lemma 4.3,

(9.83) |A ∩ Π(ak, p
2
i )| = pjpk, hence A ∩ Π(ak, p

2
i ) ⊂ K.

If Φp2i
|A, then A ⊂ Π(ak, pi). This proves the first part of the lemma.

For part (ii), assume that Φpi|A. Then |A ∩ Π(a, pi)| = pjpk for all a ∈ A. The second
part follows from Lemma 9.10 (i) with αi = 1. �

Lemma 9.35. Assume (F3) and

(9.84) ΦpiΦMk
|A.

Then ΦNj - A.

Proof. Assume, by contradiction, that ΦNj |A. By (9.74) and Corollary 9.13, we must have
pj = minν pν . We first claim that

(9.85) if ΦNj |A, then J must be Nj-fibered on D(Nj) grids.

Indeed, suppose that (9.85) fails. By Lemma 9.12, we have

(9.86) {D(M)|m|M} ⊂ Div(A).

Applying Corollary 9.13 and (9.74) again in the pk direction, we get ΦNk |B. By (9.86) and
Lemma 9.11 (ii), B is Nk-fibered in the pk direction, implying a (1,2)-cofibered structure for
(A,B) with all fibers in K as cofibers.

Fix ak ∈ K, and recall that it must satisfy (9.77). This produces a family of M -fibers in
the pk direction, all contained in A ∩ Π(ak, p

2
i ). Using Lemma 2.9 to shift and align these

fibers if necessary, we get a T2-equivalent set A′ such that A′⊕B = ZM and ak ∗Fj ∗Fk ⊂ A′.
By T2-equivalence, Φpi |A′, and by Lemma 4.3,

(9.87) ak ∗ Fj ∗ Fk = A ∩ Π(ak, p
2
i ).

Since I = ∅, ak cannot belong to an M -fiber in the pi direction, and in particular there
exists an x ∈ ZM \A with (ak−x,M) = M/pi. We have A′x ⊂ Π(ak, p

2
i )∪Π(x, p2

i ). However,
if A′x ∩ Π(x, p2

i ) 6= ∅, then |A′ ∩ Π(x, p2
i )| > 0. By Corollary 4.4 and (9.83), we have Φp2i

|A′,
which contradicts the fact that Φpi |A′.

Thus A′x ⊂ Π(ak, p
2
i ), and by (9.87), for any b ∈ B we have

1 =
∑

m∈{1,pj ,pk,pjpk}

1

φ(mpi)
AM/mpi [x|Π(ak, p

2
i )]BM/mpi [b].

Hence {D(M)|m|M} ∩Div(B) is nonempty, contradicting (9.86). This proves (9.85).
By (9.74), we may find aj ∈ J \K. It follows from Lemma 9.11 (i) that A∩Λ(aj, D(Nj))

can only be Nj-fibered in the pj direction. Recall from Lemma 9.34 that |A∩Π(aj, pi)| = pjpk
and A ∩ Π(aj, pi) ⊂ J \ K. But the fibering in J \ K implies that

pjpk = c · p2
j ,

thus pj must divide pk, which is clearly false. The lemma follows. �

Lemma 9.36. Assume (F3) and (9.84). Then ΦMk/pi |A.
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Proof. Denote N = Mk/pi, and write

A(X) = J (X)− (J ∩ K)(X) +K(X).

By Lemma 9.5 (i) and (9.4), ΦN divides both J and J ∩ K. Hence it suffices to prove that
ΦN |K.

Let ak ∈ K. By Lemma 9.33, we have KMk
Mk

[ak] = KMk
Mk

[xj] = pk for all xj ∈ ZM with

(ak − xj,M) = M/pj. In particular, |K ∩ Π(ak, p
2
i )| = pjpk, and, since Φpi |A, there are no

other elements of A in Π(ak, pi). It follows that, for any xj as above,

(9.88) KN
N [ak] = KN

N [xj] = pk

We need to prove that KN
N [∆] = 0 for every N -cuboid ∆. It suffices to check this under

the assumption that at least one vertex of ∆ belongs to K, so that two of its vertices are at
points ak and xj as above. The other two vertices are at x, x′ ∈ ZM with

(ak − x,N) = (xj − x′, N) = N/pi and (x− x′, N) = N/pj.

By (9.88), the cuboid face containing ak and xj is balanced. Consider now the face containing
x and x′. By Lemma 9.34 (ii) we need to consider two cases. If A ∩ Π(x, pi) ⊂ J , then this
face must be balanced on the scaleN , since ΦN |J . Otherwise, we must have A∩Π(x, pi) ⊂ K,
and then by the same argument as above, either KN

N [x] = KN
N [x′] = pk or KN

N [x] = KN
N [x′] = 0.

In both cases, the cuboid is balanced, which proves the lemma. �

Lemma 9.37. Assume (F3) and (9.84). Then

Φd|B ∀d ∈ {Nj, Nk,M/pjpk,M/p2
jpk,M/pjp

2
k}.

Proof. For d = Nj, this follows from Lemma 9.35.
Assume, by contradiction, that ΦNk |A. By Lemma 9.8, we must have ΦNk |K. As in the

proof of Lemma 9.36, we have |K ∩ Π(ak, p
2
i )| = pjpk for all a ∈ K, with each line `k(x) for

x ∈ ak ∗ Fj containing an M -fiber in the pk direction. In particular,

(9.89) |K ∩ `k(ak)| = pk ∀ak ∈ K.

On the other hand, let a′k ∈ K \ J . Then ΦNk |K implies one of the following:

• K is not fibered on Λ(a′k, D(Nk)). By Lemma 9.12, there exists an x ∈ ZM such that

KNk
Nk/pk

[x] = φ(p2
k).

• K is Nk-fibered on Λ(a′k, D(Nk)). By Lemma 9.11 (i), it can only be fibered in the
pk direction.

Both of these are clearly incompatible with (9.89). This proves that ΦNk |B.
To prove that ΦM/pjpk - A, let ak ∈ K \ J , and consider M/pjpk-cuboids with vertices

at ak and x ∈ `k(ak) with (x − ak,M) = M/p2
k. By (9.78) and Lemma 9.34 (ii), we have

AM/pjpk
M/pjpk

[v] = 0 for any cuboid vertex v other than ak and x. Varying x as above, we see that

in order for all such cuboids to be balanced we must have

|A ∩ Π(ak, p
2
i )| = pkA

M/pjpk
M/pjpk

[ak].

But this is not possible, since the left side is equal to pjpk and the right side is divisible by
p2
k. The same argument, with the cuboids collapsed further to scale M/p2

jpk, proves that
ΦM/p2jpk

- A.
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Finally, we prove that ΦMk/pj - A. Consider any Mk/pj-cuboid with one vertex at ak ∈
K \J . By the same argument as above, we have AMk/pj

Mk/pj
[v] = 0 for all vertices v 6= ak, hence

the cuboid cannot be balanced. �

Lemma 9.38. Assume (F3) and (9.84). Then the conditions of Theorem 2.6 are satisfied
in the pi direction, after interchanging A and B.

Proof. By assumption, Φp2i
|B. We need to verify that for every d such that pnii |d|M and

Φd - B, we have

(9.90) Φd/pαi
|A, α ∈ {1, 2}.

By Lemma 9.37, it remains to check (9.90) for d ∈ {M,Mj,Mk}.
• For d = M , (9.90) follows from Lemma 9.8 since I = ∅.
• For d = Mk, we have ΦMk/piΦp2j

|A by Lemmas 9.33 and 9.36.

• For d = Mj, if ΦMj
|B, there is nothing to prove. If on the other hand ΦMj

|A, then
Lemma 9.33 and Lemma 9.36 hold with j and k interchanged, and so (9.90) also
holds in this case.

�

This resolves the case ΦMk
|A. The case ΦMj

|A is similar, with j and k interchanged. It
remains to prove Proposition 9.4 under the assumption that

(9.91) ΦMν - A for ν ∈ {j, k}.
Without loss of generality, we may also assume that

(9.92) pk > pj.

By Corollary 9.13, this implies that ΦNkΦMk
|B. It follows that B is T -null with respect to the

cuboid type T = (Nk, ~δ, 1), where ~δ = (1, 1, 0). Since cuboids of this type are 2-dimensional,
it follows by Lemma 4.7 that for every b ∈ B at least one of the following holds:

(9.93) BM [y] + BM/pk [y] = 1 for every y ∈ ZM with (b− y,M) = M/pj,

(9.94) BM [y] + BM/pk [y] = 1 for every y ∈ ZM with (b− y,M) = M/pi.

In particular, this implies that

(9.95) {D(M)|m|M} ∩Div(B) 6= ∅.

Lemma 9.39. Assume (F3), (9.91), and (9.92). Then Φpi |A and ΦNj - A.

Proof. We start with the second part. Assume for contradiction that ΦNj |A. By Lemma
9.12 applied to pj, (9.95), and Lemma 9.11 (i), the set J \ K must be Nj fibered in the pj
direction. Let aj ∈ J \ K. We now consider two cases.

• Suppose that Φpi |A. By Lemma 9.34 (ii), we have A ∩ Π(aj, pi) ⊂ J \ K and
|A ∩ Π(aj, pi)| = pjpk. But then the fibering of J \ K implies that pjpk is divisible
by p2

j , a contradiction.
• Assume now that Φp2i

|A. Let A′ be a translate of A such that aj ∈ A′pi . By the

cyclotomic divisibility assumption, we have |A′pi | = pjpk. On the other hand, by the
fibering properties of A,

pjpk = |A′pi | = cjp
2
j + ckpk, cj > 0.
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Thus cj = pkc
′
j and pj = c′jp

2
j + ck with c′j > 0, a contradiction.

Therefore ΦNj - A. By (9.91), we have ΦNjΦMj
|B. Applying the same argument as in

(9.93), (9.94) to pj instead of pk, we get that every b ∈ B must satisfy at least one of

BM [y] + BM/pj [y] = 1 for every y ∈ ZM with (b− y,M) = M/pk,

(9.96) BM [y] + BM/pj [y] = 1 for every y ∈ ZM with (b− y,M) = M/pi.

But since pk > pj, if the former holds for some b ∈ B, we must have M/pk ∈ Div(B), which
is not allowed. Thus (9.96) holds for all b ∈ B. Hence the assumptions of Lemma 4.2 hold
for B, with m = M/pipj and s = p2

i . It follows that Φp2i
|B, and therefore Φpi |A. �

Lemma 9.40. Assume (F3), (9.91), and (9.92). Then the conditions of Theorem 2.6 are
satisfied in the pi direction, after interchanging A and B.

Proof. We verify the conditions of Theorem 2.6. By (9.91) and Lemma 9.39, we have Φd|B
for d ∈ {p2

i ,Mj,Mk, Nj}. Next, we claim that

(9.97) Φd|B for d ∈ {M/pjpk,M/p2
jpk,M/pjp

2
k}.

Bince (9.96) holds for all b ∈ B, we may write B as

(9.98) B(X) = Bi(X) +Q(X)(XM/pj − 1)

for some polynomial Q(X), where Bi is M -fibered in the pi direction. By (9.4), we have
Φd|Bi for all p2

i |d. Using also that Φd|(XM/pj − 1) for all d|M/pj, we get (9.97).
Finally, since ΦM |A, we need to prove that ΦM/pαi

|A for α ∈ {1, 2}. Indeed, since I is
empty, this follows from Lemma 9.8. �

This concludes the proof of Proposition 9.4.
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