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Arithmetic combinatorics, or additive combinatorics, is a fast developing area of
research combining elements of number theory, combinatorics, harmonic analysis
and ergodic theory. Its arguably best-known result, and the one that brought it to
global prominence, is the proof by Ben Green and Terence Tao of the long-standing
conjecture that primes contain arbitrarily long arithmetic progressions. There are
many accounts and expositions of the Green-Tao theorem, including the articles by
Kra [119] and Tao [182] in the Bulletin.

The purpose of the present article is to survey a broader, highly interconnected
network of questions and results, built over the decades and spanning several areas
of mathematics, of which the Green-Tao theorem is a famous descendant. An old
geometric problem lies at the heart of key conjectures in harmonic analysis. A
major result in partial differential equations invokes combinatorial theorems on
intersecting lines and circles. An unexpected argument points harmonic analysts
towards additive number theory, with consequences that could have hardly been
anticipated.

We will not try to give a comprehensive survey of harmonic analysis, combina-
torics, or additive number theory. We will not even be able to do full justice to our
specific areas of focus, instead referring the reader to the more complete exposi-
tions and surveys listed in Section 7. Our goal here is to emphasize the connections
between these areas; we will thus concentrate on relatively few problems, chosen as
much for their importance to their fields as for their links to each other. The article
is written from the point of view of an analyst who, in the course of her work, was
gradually introduced to the questions discussed here and found them fascinating.
We hope that the reader will enjoy a taste of this experience.

1. The Kakeya problem

1.1. Life during wartime. By all accounts, Abram Samoilovitch Besicovitch
(1891-1970) had an interesting life. He was born in Berdyansk, in the south of
Russia. Having demonstrated exceptional mathematical abilities at an early age,
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he went on to study under the direction of the famous probabilist A.A. Markov at
the University of St. Petersburg, from which he graduated in 1912.

The University of Perm was established in October 1916, first as a branch of the
University of St. Petersburg and then as an independent institution. Perm, located
in the Ural Mountains, was closed off to foreign visitors from the 1920s until 1989,
and the university, which remains the main intellectual center of the region, has
seen difficult times. But in the hopeful early years, from 1916 to about 1922, it
managed to attract many brilliant and ambitious young academics. Besicovitch was
appointed professor of mathematics at the University of Perm in 1917. Among his
colleagues were the mathematician I.M. Vinogradov, of the three-primes theorem
in analytic number theory, and the physicist A.A. Friedmann, best known for his
mathematical models of the “big bang” and the expanding universe.

After several months of political unrest, the Bolshevik Revolution erupted in
October 1917. Soon thereafter a civil war engulfed Russia. The White Army, led
by former Tsarist officers, opposed the communist Red Army. Perm was controlled
by the Red Army until December 1918, when the White Army took over. In
August 1919 the Red Army returned. According to Friedmann, all the staff except
Besicovitch left the university:

The only person who kept his head and saved the remaining prop-
erty was Besicovitch, who is apparently A.A. Markov’s disciple not
only in mathematics but also with regard to resolute, precise defi-
nite actions.

In 1920 Besicovitch returned to St. Petersburg, which had been renamed Petro-
grad six years earlier, and accepted a position at Petrograd University. (Petrograd
would change names twice more: it became Leningrad after Lenin’s death in 1924,
and in 1991 it reverted to its original name St. Petersburg.) The war years had
not been kind to Petrograd. The city lost its capital status to Moscow in 1918, the
population dwindled to a third of its former size, and the economy was in tatters.
This is how Encyclopedia Britannica describes the education reform in the newborn
Soviet Union:

To destroy what they considered the elitist character of Russia’s ed-
ucational system, the communists carried out revolutionary changes
in its structure and curriculum. All schools,from the lowest to the
highest, were nationalized and placed in charge of the Commissariat
of Enlightenment. Teachers lost the authority to enforce discipline
in the classroom. Open admission to institutions of higher learn-
ing was introduced to assure that anyone who desired, regardless of
qualifications, could enroll. Tenure for university professors was
abolished, and the universities lost their traditional right of self-
government.

Besicovitch was awarded a Rockefeller Fellowship in 1924, but was denied permis-
sion to leave Russia. He escaped illegally, along with his colleague J.D. Tamarkin,
and took up his fellowship in Copenhagen, working with Harald Bohr. After a brief
stay in Liverpool (1926-27), he finally settled down in Cambridge, where he spent
the rest of his life. From 1950 until his retirement in 1958, he was the Rouse Ball
Professor of Mathematics; this is the same chair that was held by John Littlewood
prior to Besicovitch’s tenure, and is currently being held by W.T. Gowers, whose
work will play a major part later in this story.
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Besicovitch will be remembered for his contributions to the theory of almost
periodic functions (a subject to which Bohr introduced him in Copenhagen) and
other areas of function theory, and especially for his pioneering work in geometric
measure theory, where he established many of the fundamental results. He was
a powerful problem solver who combined a mastery of weaving long and intricate
arguments with a capacity to approach a question from unexpected angles. His
solution of the Kakeya problem, to which we are about to turn, is a prime example
of his ingenuity.

1.2. Riemann integrals and rotating needles. In the midst of the civil war, be-
tween the alternating takeovers of Perm by the Red and White Armies, Besicovitch
was working on a problem in Riemann integration:

Given a Riemann-integrable function f on R2, must there exist a
rectangular coordinate system (x, y) such that f(x, y) is a Riemann-
integrable function of x for each fixed y, and the two-dimensional
integral of f is equal to the iterated integral

∫∫
f(x, y)dxdy?

He observed that to answer the question in the negative it would suffice to
construct a set of zero Lebesgue measure in R2 containing a line segment in every
direction. Specifically, suppose that E is such a set, and fix a coordinate system in
R2. Let f be defined so that f(x, y) = 1 if (x, y) ∈ E and if at least one of x, y is
rational, and f(x, y) = 0 otherwise. We may also assume, shifting E if necessary,
that the x- and y-coordinates of the line segments parallel to the y- and x-axes,
respectively, are irrational. Then for every direction in R2, there is at least one line
segment in that direction along which f is not Riemann-integrable as a function of
one variable. However, f is Riemann-integrable in two dimensions, as the set of its
points of discontinuity has planar measure 0.

Besicovitch then proceeded to construct the requisite set E. This, along with
the solution of the Riemann integration problem, was published in a Perm scientific
journal in 1919 [4].

The idea is roughly as follows. Fix a triangle ABC and observe that it contains
line segments of all slopes between those of AB and AC. Next, cut it into many
long and thin triangles with one vertex at A and the other two on the base line
segment BC, then rearrange these triangles by sliding them along the base as in
Figure 1. The new set still contains line segments of all slopes as noted above;
on the other hand, given ε > 0, we can arrange for the set to have area less than
ε by making sufficiently many cuts and optimizing the configuration of the small
triangles. To produce a set of measure 0, still containing line segments of all slopes
between those of AB and AC, iterate the construction and then take the limit.
Finally, a union of finitely many rotated copies of the set just constructed will have
measure 0 and contain a line segment in every direction. The details can be found
in many references, including Davis-Chang [42], Falconer [58], Stein [169], Wolff
[193].

Besicovitch’s original construction was subsequently simplified by other authors,
notably Perron and Schoenberg. Several alternative constructions based on different
ideas were found later, including one due to Kahane [105] and another due to
Besicovitch himself [7].

Due to the civil war, there was hardly any scientific communication between
Russia and the Western world at the time. Besicovitch was thus unaware that
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Figure 1. The first two steps of a Besicovitch set construction.

a similar question, now known as the Kakeya needle problem, was independently
proposed by the Japanese mathematician Soichi Kakeya around the same time:

What is the smallest area of a planar region within which a unit
line segment (a “needle”) can be rotated continuously through 180
degrees, returning to its original position but with reversed orien-
tation?

Kakeya [106] and Fujiwara-Kakeya [65] conjectured that the smallest convex
planar set with this property was the equilateral triangle of height 1, and mentioned
that one could do better if the convexity assumption was dropped. For example,
the region bounded by a three-cusped hypocycloid inscribed in a circle of radius 1
has the required property and has area π/8 ≈ .39, whereas the area of the triangle is√

3/3 ≈ 0.58. Kakeya’s conjecture for the convex case was soon confirmed by Julius
Pál [142], but the more interesting non-convex problem remained open. Besicovitch
learned of Kakeya’s problem after he left Russia, possibly from a 1925 book by
G.D. Birkhoff which he cites in [6], and realized that a modification of his earlier
construction (together with an additional trick due to Pál) provided the unexpected
answer:

For any ε > 0, there is a planar region of area less then ε within
which a needle can be rotated through 180 degrees.

His solution was published in 1928 [5]. There are now many other such construc-
tions, some with additional constraints on the planar region in question. Cunning-
ham [40] rotates a needle within a simply connected region, contained in a unit
disc, of area smaller than any ε > 0.
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1.3. The Kakeya conjecture.

Definition 1.1. A Kakeya set, or a Besicovitch set, is a subset of Rd which contains
a unit line segment in each direction.

Besicovitch’s construction shows that Kakeya sets in dimension 2 can have mea-
sure 0. With this information, it is easy to deduce a similar result in higher dimen-
sions: let E be a planar Kakeya set of measure 0, then the set E× [0, 1]d−2 in Rd is
a Kakeya set and has d-dimensional measure 0. It turns out, however, that many
problems in analysis call for more detailed information on the size of Kakeya sets
in terms of their dimension. There are several non-equivalent formulations of the
problem, the best known of which is as follows.

Conjecture 1.2. A Kakeya set in Rd must have Hausdorff dimension d.

We will use dimH(E) to denote the Hausdorff dimension of a set E. We will
not define it here; the interested reader will find the definition and background
information in Falconer [58] or Mattila [127]). For the purpose of this exposition,
it will be easier to work instead with an alternative formulation in terms of the
Minkowski dimension (also known as the box dimension).

For a compact set E ⊂ Rd, let Eδ be the δ-neighbourhood of E, and consider
the asymptotic behaviour of the d-dimensional volume of Eδ as δ → 0. The upper
and lower Minkowski dimension of E are given by

(1.1) dimM (E) = inf{α ∈ [0, d] : |Eδ | ≤ Cαδd−α},

(1.2) dimM (E) = sup{α ∈ [0, d] : |Eδ | ≥ Cαδd−α},

with the constants Cα uniform in δ. We will say that E has Minkowski dimension
β if dimM (E) = dimM (E) = β.

Conjecture 1.3. A Kakeya set in Rd must have Minkowski dimension d.

We have

dimH(E) ≤ dimM (E) ≤ dimM (E)

for all compact sets E ⊂ Rd. There are sets for which the inequalities are sharp: for
instance, any countable set has Hausdorff dimension 0, but we invite the reader to
verify that the set {1, 1

2 , 1
3 , . . . } has Minkowski dimension 1/2. Thus Conjecture 1.3

is formally weaker than Conjecture 1.2. Similarly, any lower bound on the Hausdorff
dimension of Kakeya sets implies the same bound on the Minkowski dimension, but
the converse implication does not hold.

The Kakeya conjecture has been fully resolved in dimension 2. Davies [41] proved
that a Kakeya set E in R

2 must have Hausdorff dimension 2; a more robust argu-
ment due to Córdoba [38] gives the optimal quantitative estimate |Eδ | ≥ (log( 1

δ ))−1.
The problem remains open for all d ≥ 3.

The Kakeya problem has been linked to surprisingly diverse questions in several
areas of mathematics. The current interest in it is motivated by applications to
harmonic analysis and partial differential equations. On the other hand, the partial
results to date have relied on a variety of geometric, combinatorial and number-
theoretic methods. While this has resulted in substantial progress, most experts
believe that we are still quite far from resolving the problem.
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2. Questions in harmonic analysis

2.1. Maximal functions and averaging estimates. Averaging and maximal
estimates in analysis go back at least as far as the Lebesgue differentiation theorem:

Theorem 2.1. If f : Rd → R is integrable, then for almost all x we have

(2.1) lim
r→0

1

|B(x, r)|

∫

B(x,r)

f(y)dy = f(x),

where B(x, r) = {y : |x − y| ≤ r}.
Amazing variations can be spun on this very basic result if we allow averages over

more complicated sets, rather than balls, to be considered; but first, two remarks
are in order. One concerns the geometric content of the theorem: if f = χE is the
characteristic function of a measurable set E, (2.1) states that for almost all x ∈ E

(2.2) lim
r→0

|E ∩ B(x, r)|
|B(x, r)| = 1,

which is the Lebesgue theorem on density points. The second remark is that Theo-
rem 2.1 can be deduced, with very little additional effort, from a maximal function
estimate due to Hardy-Littlewood [93] in dimension 1 and to Wiener [192] in higher
dimensions. Given f ∈ L1(Rd), define its Hardy-Littlewood maximal function by

(2.3) Mf(x) = sup
r>0

1

|B(x, r)|

∫

B(x,r)

|f(y)|dy.

Then ‖Mf‖p ≤ Cp,d‖f‖p for all 1 < p ≤ ∞, and M is of weak type (1,1) (for the
non-specialist, this is just slightly weaker than boundedness on L1(Rd)).

The balls in (2.1)–(2.3) can be harmlessly replaced by cubes, equilateral sym-
plices, or similar images of any fixed d-dimensional solid. This is easy and somewhat
unexciting. Consider, though, a “lower-dimensional” Nikodym-type maximal func-
tion on R2,

MNf(x) = sup
`3x

∫

`

|f(y)|dσ`(y),

where ` ranges over all straight lines through a fixed x, and σ` is the 1-dimensional
Lebesgue measure on `. The operator MN cannot be bounded on any Lp space,
due to a result of Nikodym [136]:

There is a set N ⊂ [0, 1]2 of planar Lebesgue measure 1 such that
for every x ∈ N there is a line `x such that N ∩ `x = {x}.

If f is the characteristic function of the complement of N in [0, 1]2, we have f ≡ 0

almost everywhere, yet MNf(x) ≥ 2
√

2
3 for all x ∈ N ∩ [ 1

3 , 2
3 ]2. The same example

shows that there is no analogue of Theorem 2.1 with balls replaced by lines. We’re
not in Kansas anymore.

Maximal operators such as

(2.4) Mf(x) = sup
T3x

∫

T

|f(y)|dσT (y)

and similarly defined averaging operators, where T ranges over “thin” objects in a
specified class and σT is a probabilistic measure on T , have been attracting much
interest in contemporary harmonic analysis. The x-ray and Radon transforms,
widely used in medical imaging and other applied problems, involve averages over
lower-dimensional affine subspaces of R

d, see e.g. Oberlin-Stein [137], Drury [43],
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Christ [34], Bourgain [13]. Averages over curved submanifolds have found numerous
applications to Fourier integral operators and PDE theory, e.g. Christ et al. [36],
Mockenhaupt-Seeger-Sogge [130], Phong-Stein [143], [144]. A broad overview of
this area of research and many other references can be found in monographs such
as Stein [169].

The regularity properties (Lp boundedness, Sobolev regularity, mixed norm es-
timates) of averaging and maximal operators such as (2.4) depend on both analytic
and combinatorial-geometric properties of the T -objects under consideration. The
traditional approach is analytic, relying on properties such as smoothness and cur-
vature. The combinatorial-geometric considerations took longer to claim their share
of the spotlight. As in the Nikodym example, if many T -objects can be packed into
a set of small size, poor regularity properties are to be expected. Positive regularity
results call for a converse implication, which is usually deeper and more difficult to
prove.

Analysts quickly realized that Besicovitch’s construction of Kakeya sets of mea-
sure zero, as well as Nikodym’s result stated above (the two results were later shown
to be closely related), could be used to produce counterintuitive examples involv-
ing maximal functions and differentiation of integrals. In particular, the maximal
function

M∗f(x) = sup
R3x

1

|R|

∫

R

|f(y)|dy,

where R ranges over all rectangular boxes containing x, is not bounded on Lp(Rd)
for any finite p if d ≥ 2; similarly, there is no analogue of Theorem 2.1 with balls
replaced by rectangular boxes of arbitrary proportions and orientation. This was
observed in Nikodym [136] and Busemann-Feller [28].

Returning to the Nikodym maximal function example, it would not do to aban-
don it altogether. Nikodym and Kakeya-based constructions are too ubiquitous
in multidimensional harmonic analysis. Instead, the Nikodym maximal function is
usually defined as

MN
δ f(x) = sup

Tδ3x

1

|Tδ|

∫

Tδ

|f(y)|dy,

where δ > 0 is a small parameter, and the averages are taken over all rectangles (or
tubes, in higher dimensions) Tδ of fixed length 1 and diameter δ. Now a reasonable
course of action is to try to prove bounds on MN

δ in terms of δ and use them just
as we would, in an alternate universe without Kakeya or Nikodym sets, use the
boundedness of the maximal averages over lines.

The Kakeya conjecture is closely related to Lp bounds on the Kakeya twin of
MN

δ :

(2.5) MK
δ f(u) = sup

Tδ

1

|Tδ|

∫

Tδ

|f(y)|dy,

where u ∈ Sd−1 is a direction, δ > 0 is a small parameter as above, and Tδ ranges
over all tubes of length 1 and diameter δ whose long direction is parallel to u. This
maximal function was first explicitly defined by Jean Bourgain [13], who conjectured
that the estimate

(2.6) ∀ε > 0, ‖MK
δ f‖Ld(Sd−1) ≤ Cεδ

ε‖f‖Ld(Rd)

should hold. (2.6), formally slightly stronger than Conjecture 1.2, follows from sev-
eral outstanding conjectures in harmonic analysis and partial differential equations,
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including the Bochner-Riesz conjecture on the spherical summation of the Fourier
series of Lp functions, Sogge’s local smoothing conjecture on the spacetime Lp reg-
ularity of solutions to the wave equation [158], and the restriction conjecture, to
which we will turn shortly. The converse implication is not known, but harmonic
analysts believe that proving (2.6) would be a major step towards proving these
conjectures.

A classic example of a maximal theorem over hypersurfaces in Rd is the spherical
maximal theorem, due to E.M. Stein [167] for d ≥ 3 and Bourgain [11] for d = 2.

Theorem 2.2. Define the spherical maximal operator in Rd by

(2.7) MSf(x) = sup
t>0

∫

Sd−1

|f(x − ty)|dσ(y),

where σ is the normalized Lebesgue measure on Sd−1. Then

(2.8) ‖MSf(x)‖Lp(Rd) ≤ C‖f‖Lp(Rd), p > d
d−1 ,

and this range of p is optimal.

This implies a differentiation theorem for spheres: let

Atf(x) =

∫

Sd−1

f(x − ty)dσ(y),

then for all f ∈ Lp(Rd), p > d
d−1 , we have limt→0 Atf(x) = f(x) for almost all

x ∈ R
d. We also note the corresponding geometric statement in R

2, proved by
Bourgain [11] via Theorem 2.2 and, independently, by Marstrand [124] who used a
purely geometric argument.

Corollary 2.3. Let E ⊂ R2. Suppose that for every x ∈ R2 E contains a circle
centered at x. Then E must have positive 2-dimensional Lebesgue measure.

It might not be clear at first sight that estimates such as (2.8) have any relevance
to regularity results for partial differential equations. Recall, however, that the
Cauchy problem for the wave equation in R3

x × Rt,

utt − ∆xu = 0, u(x, 0) = f(x), ut(x, 0) = g(x)

is solved by the well-known explicit formula in terms of spherical averages,

u(x, t) =
∂

∂t
(tAtf(x)) + tAtg(x).

This connection could take us very far into PDE theory (see e.g. Mockenhaupt-
Seeger-Sogge [130], Sogge [157], Tao [181]); we will return to it briefly in Section
4.2, but will not pursue it here otherwise.

2.2. The restriction problem. The Fourier transform of a function f : R
d → C

is defined by

f̂(ξ) =

∫
f(x)e−2πix·ξdx.

This maps the Schwartz space of functions S to itself, and is clearly a bounded
operator from L1(Rd) to L∞(Rd). A basic result in harmonic analysis is that the
Fourier transform extends to an isometry on L2(Rd). By the Hausdorff-Young

inequality, it also extends to a bounded operator from Lp(Rd) to Lp′

(Rd) if 1 <
p < 2 and 1

p + 1
p′

= 1.

The following question has become known as the restriction problem:
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Let µ be a non-zero measure on Rd. For what values of p′, q′ does
the Fourier transform, defined on S, extend to a bounded operator
from Lq′

(Rd) to Lp′

(Rd, dµ)? In other words, when do we have an
estimate

(2.9) ‖f̂‖Lp′(Rd,dµ) ≤ C‖f‖Lq′ (Rd), f ∈ S?

We will usually assume that the measure µ is finite. Here and below, C and
other constants may depend on the dimension d, the measure µ, and the exponents
p, q, p′, q′, but not on f except where explicitly indicated otherwise. Whenever we
use the notation Lp(X) without indicating the measure, the latter is assumed to
be the Lebesgue measure on X .

In the classical version of the problem, µ is the Lebesgue measure on a d − 1-
dimensional hypersurface Γ in Rd, e.g. a sphere or a cone. The above question can
then be rephrased in terms of restricting the Fourier transform of an Lq′

function f

to the hypersurface. This is trivial if q′ = 1 and p′ = ∞, since then f̂ is continuous
and bounded everywhere, in particular on Γ. On the other hand, it is easy to see
that no such result is possible if q′ = 2. This is because the Fourier transform maps

L2 onto L2, so that we are not able to say anything about the behaviour of f̂ on a
set of measure 0. It is less clear what happens for q′ ∈ (1, 2). As it turns out, the
answer here depends on the geometry of Γ: for example, there can be no estimates
such as (2.9) with q′ > 1 if Γ is a hyperplane, but we do have nontrivial restriction
estimates for a variety of curved hypersurfaces such as a sphere or a cone.

The reason for the somewhat curious notation so far is that we reserved the
exponents p, q for the dual formulation of the problem. We will write f̂dµ(ξ) =∫

f(x)e−2πix·ξdµ(x).

Let µ be a non-zero measure on Rd. For what values of p, q do we
have an estimate

(2.10) ‖f̂dµ‖Lq(Rd) ≤ C‖f‖Lp(Rd,dµ), f ∈ S?

A reasonably simple argument shows that (2.10) and (2.9) are equivalent if p, p′

and q, q′ are pairs of dual exponents: 1
p + 1

p′
= 1

q + 1
q′

= 1. While the restriction

problem took its name from the first formulation (2.9), the second one turns out
to be much more useful in applications.

In the case when µ is the surface measure on a hypersurface Γ with nonvanish-
ing Gaussian curvature, classical stationary phase estimates (e.g. Herz [96]) yield

asymptotic expressions for f̂dµ(ξ) if f is a smooth compactly supported function
on Γ. In particular, we then have

(2.11) |f̂dµ(ξ)| = O((1 + |ξ|)− d−1

2 ),

and it follows that f̂dµ ∈ Lq(Rd) for q > 2d
d−1 . A wide variety of similar estimates

has been obtained under weaker assumptions on the curvature of Γ, for example
“finite type” surfaces and surfaces with less than d − 1 nonvanishing principal
curvatures are allowed. A comprehensive survey of such work up to 1993 is given
in Stein [169] (see also Hörmander [97]).

The point of restriction estimates is that the smoothness conditions on f can
be replaced by the weaker assumption that f ∈ Lp(Rd, dµ), provided that we are

willing to trade pointwise estimates on f̂dµ such as (2.11) for Lq bounds with
appropriate q = q(p). This is useful in applications to partial differential equations,
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where restriction techniques can yield Lq or mixed-norm regularity of solutions if the
initial data is only known to be in some Lp space. For example, restriction estimates
are very closely related to Strichartz estimates [170]. Restriction estimates are
also relevant to many other problems in harmonic analysis, including oscillatory
integrals, singular integrals, averaging and maximal operators, and Fourier integral
operators. We will not attempt to survey this rich and complex area here, instead
encouraging the reader to consult references such as Sogge [157], Stein [169], Tao
[177], [181], Wolff [200].

2.3. Restriction for the sphere and arrangements of needles. We will now
take a closer look at the restriction phenomenon for the unit sphere Sd−1 in R

d.
Let σ be the normalized surface measure on Sd−1. The following conjecture is due
to Elias M. Stein [168]:

Conjecture 2.4. For all q > 2d
d−1 , we have

(2.12) ‖f̂dσ(ξ)‖Lq(Rd) ≤ C‖f‖L∞(Sd−1,dσ),

where C depends only on d and q.

This is known for d = 2 (due to Fefferman and Stein [59]), but remains open for
all d > 2. The range of q is suggested by stationary phase formulas such as (2.11).

Plugging in f ≡ 1 shows that this range cannot be improved. Indeed, d̂σ can be
computed explicitly:

d̂σ(ξ) = 2|ξ|− d−1

2 cos(2π(|ξ| − d − 1

8
)) + O(|ξ|− d+1

2 ),

which belongs to Lq(Rd) only for q exactly as indicated above.
If instead of assuming that f ∈ L∞ we make the weaker assumption that f ∈

L2(Sd−1), then the best possible result is known.

Theorem 2.5. For all q ≥ 2d+2
d−1 , we have

(2.13) ‖f̂dσ(ξ)‖Lq(Rd) ≤ C‖f‖L2(Sd−1,dσ).

This was first proved by Stein in 1967 (unpublished) for a smaller range of q. In
1975 P.A. Tomas extended the result to q > 2d+2

d−1 [189], [190], and later that year

the endpoint was settled by Stein [168]. A simple construction known as the Knapp
counterexample shows that the range of q in Theorem 2.5 is optimal.

The Tomas-Stein argument is very general and uses only limited information
about the geometry of Sd−1, namely its dimensionality and the decay of σ̂ at
infinity. Large parts of the proof have since been adapted to rather different settings,
including fractal sets (Mockenhaupt [129]) and sequences of integers (Bourgain [15],
Green [79]).

One can interpolate between Tomas-Stein and the trivial L1-L∞ estimate to get
a range of intermediate estimates. Going beyond that, however, was much more
difficult, and for many years, until Bourgain’s breakthrough in 1991 [13], it was not
even known whether this was possible at all. It turns out that a substantially new
approach was required. While Theorem 2.5 is mostly based on analytic consider-
ations, restriction estimates such as (2.10) with p > 2 require deeper geometrical
information, and this is where we find Kakeya sets lurking under the surface.

Our starting point is that the restriction conjecture (2.12) implies the Kakeya
conjecture (Conjecture 1.2). This was first stated and proved formally by Bourgain
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Figure 2. Different spherical caps correspond to tubes in different
directions in the Fourier space.

in [13], but very similar arguments were used in the harmonic analysis literature
throughout the 1970s and 1980s (see in particular Córdoba [38]), all inspired by
Charles Fefferman’s use of Besicovitch sets to produce a counterexample to the
closely related ball multiplier conjecture [60]. Below is a rough sketch of this argu-
ment, adapted to the restriction setting.

Let fa,δ(x) = e2πiηaxχa(x), where a ∈ Sd−1, ηa ∈ Rd, and χa is the characteristic
function of the spherical cap centered at a of radius δ for some very small δ > 0.

Scaling considerations, standard in harmonic analysis, show that f̂a,δ is roughly
constant on tubes of length δ−2 and radius δ−1. Forgetting about mathematical

rigour for a moment, we will in fact think of f̂a,δ as the characteristic function of
one such tube. Moreover, by adjusting the phase factor ηa we can place that tube
at any desired point in the dual space Rd

ξ .

Now cover the sphere by finitely overlapping δ-caps, and let Fδ(x) be the sum
of the associated functions fa,δ just defined. Then ‖Fδ‖∞ ≤ C, uniformly in δ.

On the other hand, F̂δ is the sum of a large number of characteristic functions of
tubes as described above. If we now arrange these tubes as in the Besicovitch set

construction, then the size of the support of F̂δ will be very small compared to its
L1 norm. An application of Hölder’s inequality shows that this forces the Lq norm

of F̂δ to blow up as δ → 0, contradicting (2.12).
The truly groundbreaking contribution of [13] was the discovery that this rea-

soning was, to some extent, reversible. More precisely, Bourgain developed an
analytic machinery to deduce restriction estimates from Kakeya-type geometric in-
formation. It is a difficult and analytically sophisticated argument. Instead of a
dimension bound for Kakeya sets in Rd, we actually need a somewhat stronger
result – an Lp estimate on the Kakeya maximal function (2.5). This is followed by
simultaneous analysis on two different scales (local restriction estimates), combining
the maximal function result just mentioned with Tomas-Stein type orthogonality
arguments. The numerology produced here is somewhat complicated, in particu-
lar there is no natural explanation for the range of the exponents p in Bourgain’s
theorem.

Further progress on Conjecture 2.4 has followed two lines. One is to improve
the known Kakeya maximal function estimates (we will say more about such work
in Section 3), then plug them directly into the existing Kakeya-to-restriction con-
version machinery, obtaining better restriction exponents as a corollary. The other
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direction of research is to improve the machinery itself. There is a number of contri-
butions of this type, including work by Moyua-Vargas-Vega [132], Tao-Vargas-Vega
[184], Tao-Vargas [185], [186], Tao [176], Wolff [199]. The updated toolbox includes
bilinear restriction estimates, induction on scales, wave packet decompositions, local
restriction estimates, and more. A comprehensive review of the modern approach
to the subject is given in [177].

The current best result, due to Tao [176], can be explained as follows. Interpo-
lating between the Stein-Tomas theorem (2.13) and the conjectured estimate (2.12)
yields a family of conjectured intermediate estimates of the form (2.10). The chal-
lenge is to improve the range of p for which such estimates are known. Tao’s result

is that (2.10) holds with p > 2(d+2)
d , if q = q(p) is the corresponding exponent

from the interpolation. This is obtained as a consequence (via scaling) of a bilinear
restriction estimate for paraboloids, proved also in [176] and largely inspired by
Wolff’s sharp bilinear restriction estimate for the light cone [199].

3. The Kakeya problem revisited

3.1. Geometric arguments. We now return to Conjecture 1.2 and to the quest
for bounds on the dimension of Kakeya sets in dimensions d ≥ 3. Prior to 1991, it
was known that the Hausdorff dimension of a Kakeya set in Rd must be at least
(d+1)/2; this follows from the x-ray and k-plane transform estimates of Drury [43]
and Christ [34], although is not stated there explicitly. We begin by sketching an
alternative geometric proof due to Bourgain [13], known in the harmonic analysis
community as the “bush argument.” For simplicity, we will only outline the proofs
of upper Minkowski dimension results, rather than Hausdorff or maximal function
bounds.

Suppose that E is a Kakeya set in Rd. For each e ∈ Sd−1, E contains a unit
line segment T e in the direction of e. Let E be a maximal δ-separated subset of
Sd−1, so that |E| ≈ δ−(d−1), and let T e

δ be the δ-neighbourhood of T e. Abusing

notation only very slightly, we write Eδ =
⋃

e∈E T e
δ . Suppose that dimM (E) < α,

so that |Eδ| ≤ Cδd−α. Since
∑

e∈E |T e
δ | ≈ 1, there must be at least one point, say

x0, which belongs to at least δ−(d−α) tubes T e
δ . The key observation is that these

tubes have at most finite overlap away from a small neighbourhood of x0. (Two
straight lines can only intersect at one point.) Thus |Eδ | is bounded from below by
a constant times the sum of volumes of the tubes through x0:

|Eδ | ≥ Cδ−(d−α) · δd−1 = δα−1.

But this is only possible if α − 1 ≥ d − α, i.e. α ≥ d+1
2 .

In [13], this is supplemented by an additional geometrical argument improving
the dimension bound to d+1

2 + εd, with εd given by a recursive formula (for d = 3
this yields the bound 7/3).

A more efficient geometrical argument, leading to the estimate dimH(E) ≥ d+2
2 ,

was given a few years later by Tom Wolff [193]. Wolff observes that in order for
Eδ to have small volume, it is necessary for a large fraction of the set, not just one
point, to have high multiplicity. In fact, many of the tubes T e

δ must consist largely of
high multiplicity points. Take one such tube, along with the union of all tubes that
intersect it (this object is often called a “hairbrush”). By combining Bourgain’s
“bush” construction above with an earlier planar estimate due to Córdoba [38],
one can prove that the bristles of the hairbrush must be essentially disjoint. We
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Figure 3. A bush and a hairbrush.

then bound the volume of Eδ from below by the volume of the hairbrush, and the
Minkowski dimension estimate again follows upon taking δ → 0.

This comes with a few caveats. The hairbrush argument does not quite work
as stated and requires some modifications if the tubes of Eδ tend to intersect at
very low angles. More importantly, there are additional issues that arise in the
calculation of the Hausdorff dimension (as opposed to Minkowski). We will not
elaborate on this here, but we do want to mention the two ends reduction of [193],
which was introduced to resolve that problem and has inspired some of the induction
on scales techniques in restriction theory.

Wolff’s argument, although more elaborate than Bourgain’s, is still relatively
simple in the sense that only very basic geometric information is being used. It
was tempting to try to improve on it by using more sophisticated combinatorial
methods; thus harmonic analysts were introduced to combinatorial geometry. While
the Kakeya problem resisted this approach, many other connections between the
two areas were made and explored successfully. We will return to this in Section 4.

3.2. Additive and hybrid arguments. A radically different “arithmetic” ap-
proach to the problem was introduced by Bourgain in 1998 [17]. Forget about the
hairbrush construction for a moment: we will try to improve on the bush argument
instead, in another direction.

Consider a hypothetical Kakeya set E ⊂ Rd of dimension very close to (d+1)/2.
We perform a discretization procedure as in the last subsection, except that we
will now ignore the distinction between a tube and a line. We will also restrict
our attention to those lines which make an angle less than π/100 with the xd-axis.
Consider the intersections A, B, C of the discretized set E with the three parallel
hyperplanes xd = 0, xd = 1, xd = 1/2 (rescale and translate the set if necessary).
We consider A, B, C as subsets of Rd−1. Let S = {(a, b) : there is a line from a to
b}. Then

{(a + b)/2 : (a, b) ∈ S} ⊂ C.

The key result is the following lemma.

Lemma 3.1. Let A, B be two subsets of Zd of cardinality ≤ n, and let S ⊂ A×B.
If |{a + b : (a, b) ∈ S}| ≤ Cn, then

(3.1) |{a− b : (a, b) ∈ S}| ≤ C ′n2− 1
13 .

Assuming Lemma 3.1 for the moment, the proof is completed as follows. Due to
multiplicity considerations similar to those in Section 3.1, we have |A|, |B|, |C| ≤ n
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C

A

Figure 4. Three slices of a Kakeya set.

with n close to δ−(d−1)/2. The lemma then states that |{a − b : (a, b) ∈ S}| ≤
cn2−1/13. But the last set includes the set of “all” directions, hence it must have
cardinality about δ−(d−1), which is greater than the lemma allows if n is too close
to δ−(d−1)/2.

Bourgain worked out a quantitative version of this in [17], obtaining a lower
bound (13d + 12)/25 for the dimension of the Kakeya sets in Rd, which is better
than Wolff’s result in high dimensions. The Minkowski dimension argument is
more or less as described above, but the Hausdorff and maximal function versions
present substantial additional difficulties in arranging a setup where the lemma can
be applied.

The bounds in [17] have since been improved in several directions. The arithmetic
approach was developed further by Nets Hawk Katz and Terence Tao [112], [114],
who first simplified Bourgain’s proof of Lemma 3.1 and improved the exponent
1/13 in (3.1) to 1/6, then went on to use four and more “slices”. Instead of a single
bound on the size of {a + b : (a, b) ∈ S}, they assumed bounds on the size of sets
of more general linear combinations

{a + αib : a, b ∈ S}, i = 1, . . . , k,

where αi are fixed numbers; this allowed them to improve further the exponent in
(3.1).

The hybrid arguments of Katz- Laba-Tao [109], Katz-Tao [114] combine Wolff’s
geometric combinatorics with Bourgain’s arithmetic method. The first hybrid argu-
ment, in [109], was originally intended to be geometric. Our goal was to improve on
Wolff’s hairbrush estimate in R3, at least for the Minkowski dimension. Suppose,
for the sake of argument, that there were a Kakeya set in R3 of dimension very close
to 5/2. Elaborating on the hairbrush estimate (see also Wolff’s further arguments
in [195]), one can prove that such a set would have to satisfy very strict geometric
conditions, for instance it would have to be almost invariant under a rather large
family of mappings. Surely this was not possible. Except that we could not pin
down the contradiction.

Bourgain’s approach, however, provided a way out. Effectively, it said that our
hypothetical set would have structure, to the extent that many of its lines would
have to be parallel instead of pointing in different directions. Not a Kakeya set,
after all.
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The current best lower bound on the Hausdorff dimension of Kakeya sets in Rd,
d ≥ 3, is

dimH(E) ≥ max(
d + 2

2
, (2 −

√
2)(d − 4) + 3).

The first estimate is Wolff’s [193]; the second, which is better for d ≥ 5, is due
to Katz and Tao [114]. Further improvements for the Minkowski dimension are in
Katz- Laba-Tao [109],  Laba-Tao [121], Katz-Tao [114], and maximal function results
are in Wolff [193], Katz-Tao [114]. A summary of the known bounds is given in the
expository paper by Katz and Tao [115]. A theorem of Katz [108] states that the
arithmetic approach, as developed in [17], [112], [114], cannot by itself resolve the
Kakeya conjecture.

The reader may have forgotten by now that we still have not said anything about
the proof of Bourgain’s lemma. Lemma 3.1 originates in additive number theory
(Section 5); more specifically, it derives from a result known as the Balog-Szemerédi-
Gowers theorem, the relevant version of which was proved by Timothy Gowers in
the course of his work on Szemerédi’s theorem on arithmetic progressions [73],
[74]. The subsequent Katz-Tao improvements rely on additive number theoretic
techniques as well.

Bourgain’s argument was, to this author’s knowledge, the first application of
additive number theory to Euclidean harmonic analysis. It was significant, not
only because it improved Kakeya bounds, but perhaps even more so because it
introduced many harmonic analysts to additive number theory, including Tao who
contributed so much to the subject later on, and jump-started interaction and
communication between the two communities. The Green-Tao theorem and many
other developments might have never happened, were it not for Bourgain’s brilliant
leap of thought in 1998.

3.3. Extensions and generalizations. A brief mention should be made that
many other similar questions have been considered in the literature. A (d, k) set is
a set in Rd which contains a translate of each k-dimensional subspace. It is known
that such sets have positive measure when k is large compared to d (due to Bourgain
[13] for 2k+1 +k ≥ d, with earlier results due to Marstrand and Falconer). For small
k the problem remains open, but partial results are available, see e.g. Oberlin [138].
There is a variety of results on Kakeya and Nikodym sets with a restricted set of
directions, e.g. Nagel-Stein-Wainger [133], Katz [107], Bateman-Katz [3]. Another
open question, due to Furstenberg, concerns Kakeya-type sets which, instead of an
entire line segment in each direction, contain an α-dimensional subset of it for some
0 < α ≤ 1 (see Wolff [197] and Katz-Tao [113] for a discussion). Similar “packing”
questions have been asked for other lower-dimensional geometrical objects, such as
circles and spheres (cf. Corollary 2.3 and Section 4.2) or curves with non-vanishing
torsion in R

3 (see Pramanik-Seeger [145]). Kakeya-type problems on manifolds
(Minicozzi-Sogge [128]) and in finite fields (Wolff [197], Mockenhaupt-Tao [131])
have also been considered. More information on these and other similar questions
can be found in Falconer [58], Stein [169], Wolff [197].

4. Combinatorial geometry and harmonic analysis

4.1. Incidence theorems in combinatorics. Combinatorial geometry studies
arrangements of geometric objects (such as lines, planes, circles, convex bodies)
in Euclidean spaces. It encompasses a rather wide range of questions, including
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A
B

Figure 5. Point-line incidences. There are 2 incidences at A and
1 at B.

complexity of geometric arrangements, packing and covering questions, geometric
Ramsey theory, and much more. Here we will only discuss one group of problems, all
related to counting incidences between points and objects such as lines or surfaces.
We will further restrict our attention to a few well-known representative questions;
a comprehensive review of this area is in Pach-Sharir [141].

Let P be a set of points and S a family of lines in a 2-dimensional plane. An
incidence is a pair (x, `) such that x ∈ P , ` ∈ S, and x ∈ `; we will also say that ` is
incident to x if x ∈ `. Incidences between points and curves, or points and surfaces
in higher dimensions, are defined similarly. Paul Erdős, who could see patterns and
bounds in seemingly chaotic environments, conjectured in 1946 that there should
be a non-trivial upper bound on the number of incidences between n points and
m lines in the plane, and that a lattice-like arrangement would be optimal in that
respect if n ≈ m. This was indeed proved by Szemerédi and Trotter in 1983 [175].

Theorem 4.1. The number of incidences between n lines and m points in R2 is
at most

(4.1) O(m + n + m2/3n2/3)

and this estimate is sharp.

Two alternative proofs of Theorem 4.1 were quite influential in their own right.
The cell decomposition technique of Clarkson et al. [37] has quickly found many
other applications, for example to the incidence problems for circles which we will
discuss shortly. Székely’s surprisingly short and elegant proof [171], based on the
crossing lemma in graph theory, had the added advantage of allowing the rather
astronomical implicit constant in the original Szemerédi-Trotter proof to be reduced
to a more manageable 2.57 (see the discussion in Pach-Sharir [141]). Note that the
“important” term in (4.1) is m2/3n2/3; the m and n terms only dominate in certain
degenerate cases.

Consider now a similar question for circles in R
2: how many incidences can there

be between m circles and n points in the plane? The best current bound in the
case m ≈ n is O(n1.364), due to Aronov and Sharir [1]; for general n and m, the
estimate is more complicated and distinguishes between several cases. This bound
is weaker than (4.1) – as is to be expected, given that circles have more “degrees of
freedom” than lines. A straight line is determined uniquely by 2 points; the same
is not true for circles.

Circles are, however, determined by 3 points. Is this a sufficient basis for a non-
trivial incidence bound? Pach and Sharir [140] have indeed proved an incidence
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theorem for pseudolines, planar curves determined uniquely by k points, with ex-
ponents depending on k. The Aronov-Sharir bound cited above is slightly better
than the k = 3 case of [140]: it uses additional geometrical information about circles
which is not available for more general pseudolines.

Incidence theorems in higher dimensions can be rather more troublesome. It
is not even always clear how to formulate the question. Consider, for example, n
points and m planes in R3: if all points lie on a fixed line `, and all planes pass
through `, then every point is incident to every plane. It is reasonable to expect,
though, that there should be non-trivial incidence bounds for “non-degenerate”
arrangements in which such lower-dimensional obstructions do not occur. Formu-
lating appropriate non-degeneracy conditions then becomes part of the problem.
The “right” bound on the number of plane-point incidences in R3 appears to be
O(m3/4n3/4) (see Elekes-Tóth [49],  Laba-Solymosi [120], Solymosi-Tóth [163]), but
the exact statement of the result depends on what additional assumptions are made.
We omit the fine print.

In a 3-page paper published in 1946 [52], Erdős formulated several elementary-
looking questions on sets of distances between n points. These questions keep the
combinatorial geometers busy to this day. One is the unit distances problem: given
a set E of n points in Rd, how many pairs x, y ∈ E can there be with |x − y| = 1?
This can be reformulated as an incidence problem for unit spheres, as we have
|x − y| = 1 if and only if x is incident to the unit sphere centered at y. In R2, a
variant of Szemerédi-Trotter theorem shows that the number of such incidences is
bounded by O(n4/3) (Spencer-Szemerédi-Trotter [166]). This is the best result to
date, but “it is likely” [52] that the optimal bound should be O(n1+ε) for any ε > 0.

In three dimensions, the number of unit distances is known to be bounded by

O(N
3
2

+ε) for any ε > 0 (Clarkson et al. [37]), and one cannot do better than
O(n4/3 log log n) (attributed to Erdős in [141]). However, well-known examples
show that there can be no such non-trivial bounds in dimensions d ≥ 4. For
instance, a set of 2n points in R4, n of which lie on the circle x2

1 + x2
2 = 1

2 in the
(x1, x2) coordinate plane, and the other n on a similar circle in the (x3, x4) plane,
has n2 unit distances.

Define the distance set of E to be

∆(E) = {|x − y| : x, y ∈ E}.

How small can |∆(E)| be, if |E| = n? This is the distinct distances problem, also
first posed by Erdős in [52]. Lattice-like examples in [52] show that |∆(E)| can
be as small as n/

√
log n for d = 2 and n2/d in higher dimensions, which is widely

believed to be optimal.
It is possible to reformulate the question in terms of incidences; indeed, an

optimal bound n1+ε for the unit distance problem in the plane would also resolve the
2-dimensional distinct distances problem. A straightforward approach along these
lines, however, would require much stronger incidence theorems than those currently
available. The best strategy to date, due to Solymosi and Tóth [162], combines in
an ingenious way the Szemerédi-Trotter theorem, the crossing lemma mentioned
earlier, a related theorem of Beck, and a combinatorial number theoretic argument.
By improving the latter, Katz and Tardos [116] have obtained the current best
lower bound |∆(E)| ≥ Cn0.8641... for d = 2.
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In higher dimensions, the number of distinct distances is known to be at least

n2/d−1/d2

for all d and n.5794 for d = 3 (Solymosi-Vu [164]). We also mention
that earlier results for d = 2 were due to Erdős, Moser, Chung, Chung-Szemerédi-
Trotter, and Székely.

4.2. What harmonic analysts have learned. Combinatorial geometry is nowa-
days a standard tool for many harmonic analysts. The Szemerédi-Trotter theorem,
incidence theorems, distance set bounds have become household words in the har-
monic analysis literature. Communication and collaboration between the two areas
is becoming more frequent.

It is easy to forget that this was not always the case. Not that harmonic analysts
were unaware of the geometric content of their work – quite the opposite. As late
as the early 1990s, however, harmonic analysis and combinatorial geometry existed
in parallel planes, mostly unaware of each other. It did not help that combinatorial
and computational geometers were often on the faculty of computer science, rather
than mathematics, departments. References to combinatorial-geometric literature
are very hard to find in pre-1995 work in harmonic analysis.

The shift was largely due to Tom Wolff’s pioneering work in the 1990s. Wolff
introduced harmonic analysts to incidence geometry, popularizing it in his lectures
and incorporating combinatorial-geometric methods in his own work. His attempts
to approach the Kakeya problem via techniques from incidence geometry, such as
higher-dimensional variants of the Szemerédi-Trotter theorem, ultimately failed to
improve the known dimension bounds. (One such effort is described in more detail
in [197].) However, Wolff was much more successful with other questions. One of
his greatest achievements was his work in [198] on the local smoothing conjecture,
formulated by Sogge in [158].

Conjecture 4.2. If u(x, t) solves the Cauchy problem for the wave equation in
Rd+1:

utt = ∆xu, u(x, 0) = f(x), ut(x, 0) = g(x),

then there is a space-time regularity estimate

(4.2) ‖u‖Lp(Rd×[1,2]) ≤ C(‖f‖p,α + ‖g‖p,α−1), α >
1

2
− 2

p
,

for p ≥ 2d+2
d−1 , where ‖ · ‖p,α is the inhomogeneous Lp Sobolev norm with α deriva-

tives.

Conjecture 4.2, while somewhat related to the Strichartz estimates mentioned
briefly in Section 2, turns out to be much deeper and more difficult. It follows from
results of Sogge and Tao that Conjecture 4.2 formally implies the restriction and
Kakeya conjectures (see [177] and [197] for a discussion).

Wolff proved in [198] that (4.2) holds for d = 2 and p > 74. Although weaker
estimates had been available earlier, this was the first time that (4.2) was proved
for any finite p with the sharp range of α, which was a critical difficulty. Wolff’s
result was later extended to d ≥ 3 by  Laba-Wolff [122], and the range of p has
been improved by Garrigós-Seeger [70]; see also Pramanik-Seeger [145] for further
extensions.

Wolff’s proof was a tour de force, both analytically and combinatorially. The
analytic methods were in the spirit of those described in Section 2 in connection
with the restriction conjecture, in particular the wave packet decomposition and
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induction of scales played a major role. The combinatorial part involved incidences
for circles. The main geometric result of [198] is somewhat complicated to state,
but the following question, addressed explicitly in Wolff’s paper [194] on BRK sets,
is very closely related to it.

Given n circles in R
2, no three tangent at a point, how many pairs

of tangent circles can there be?

A BRK, or Besicovitch-Rado-Kinney, set is a Borel set in Rd, d ≥ 2, which
contains a sphere of every radius. It is known (due independently to Besicovitch-
Rado and Kinney) that there are BRK sets of d-dimensional measure 0. Kolasa
and Wolff [117] and Wolff [194] proved that BRK sets in Rd must have Hausdorff
dimension d. The first paper [117], published in 1999 but first circulated in 1994,
settled the easier case d ≥ 3 and gave a partial result for d = 2. The remaining
obstacle in 2 dimensions was the tangency question stated above.

In [194], Wolff resolved the 2-dimensional case by applying the combinatorial cell
decomposition technique of Clarkson et al. [37], which he only learned after [117]
was completed, to the tangency question. His bound O(n3/2+ε) on the number
of tangencies, while probably not optimal, was nonetheless sufficient to settle the
BRK problem. A more refined version of that argument is essential in [198], where
Wolff also states the following geometric corollary.

Let F ⊂ R2 be a compact set. If there is a compact set E ⊂
R2 with Hausdorff dimension greater than 1 such that F contains
some circle centered at each point of E, then F has positive 2-
dimensional measure.

Changing tacks, we turn to distance sets. The following conjecture, formally an
analogue of the combinatorial distinct distances problem stated in Section 4.1, is
due to Falconer [57].

Conjecture 4.3. Let E be a compact set in Rd, d ≥ 2. If E has Hausdorff
dimension dimH(E) > d/2, then its distance set

∆(E) = {|x − y| : x, y ∈ E}
has positive 1-dimensional Lebesgue measure.

The current best result in this direction is that

(4.3) |∆(E)| > 0 if dimH(E) >
d

2
+

1

3
,

due to Wolff [196] for d = 2 and Erdog̃an [50], [51] for d ≥ 3.
Both Wolff and Erdog̃an employ a Fourier-analytic strategy, originally due to

Mattila [126] (although similar arguments had been used by Kaufmann in a some-
what different context) and used also by Bourgain in [16]. The key ingredient is the
decay of the spherical averages of µ̂, where µ is an appropriate measure supported
on E. Such estimates are closely related to restriction estimates: Wolff’s proof is
reminiscent of his work on the Kakeya and restriction problems, while Erdog̃an
relies directly on Tao’s paraboloid restriction estimate [176]. As in restriction prob-
lems, both dimensionality (via energy integrals of µ) and curvature (of the sphere,
the level set of the distance function) are crucially involved.

Can we apply discrete-geometric methods, for example those of Solymosi-Tóth
[162] and Katz-Tardos [116], to the continous conjecture?
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No, not in this case. True, there are discretization procedures that can match a
continuous problem to its discrete analogue. They are used, for instance, in [194],
[198], and in many papers on the Kakeya problem. Here, however, the equivalence
simply cannot be made rigorous.

On the other hand, harmonic analytic techniques yield certain results not avail-
able by combinatorial methods. Consider, for example, distance sets defined with
respect to a non-Euclidean distance function in Rd, d ≥ 3, with a convex hyper-
surface Γ as the unit sphere. Combinatorial techniques seem to be of little use in
this setting, mainly because intersections of convex bodies in dimensions d ≥ 3 are
very difficult to control. However, if Γ is smooth and has non-vanishing Gaussian
curvature, we still have the continuous estimate (4.3), by Erdog̃an’s argument with
only minor modifications. A continuous-to-discrete conversion mechanism, which
turns out to work in this direction, yields a non-trivial discrete bound (Iosevich-
Hofmann [101], Iosevich- Laba [104]). For more details and further results of this
type, see Iosevich-Hofmann [101], Iosevich- Laba [104], Kolountzakis [118].

Very recently, in Iosevich-Jorati- Laba [102] we used Sobolev regularity estimates
for averaging operators of the form

Tf(x) =

∫

Γx

f(y)dσx(y),

where {Γx} is a family of hypersurfaces equipped with surface measures σx, to prove
discrete incidence theorems. This yields surprisingly good results: while we cannot
quite match, for instance, the known combinatorial bounds for unit spheres, our
results extend naturally to more general cases, such as spheres with slowly varying
radii and other smooth curved hypersurfaces.

Many other connections between harmonic analysis and geometric combinatorics
have been explored in the literature; see e.g. Carbery-Christ-Wright [29], Christ
[35], Iosevich-Katz-Tao [103], Schlag [154], [155] for a few well-known examples.

5. Additive number theory

5.1. Freiman’s theorem. Additive number theory is sometimes thought to strad-
dle the gap between number theory and combinatorics. It studies additive proper-
ties of sets of numbers, drawing on a wide variety of methods from number theory,
combinatorics, and discrete harmonic analysis. Its questions and theorems are of-
ten stated in the language of grade-school arithmetic – addition, multiplication,
counting of integers – but this can belie the complexity of the arguments involved.
Once more, we will focus on a small number of well-known problems representative
of the area; for more comprehensive surveys see e.g. Croot-Lev [39], Granville [78],
Nathanson [135], Tao-Vu [187]. We begin with Freiman’s theorem, a fundamental
result on set addition.

Let A ⊂ Z be a finite set, and let A + A = {a + b : a, b ∈ A}. It is easy to
prove that |A + A| ≥ 2|A| − 1, and that the equality holds if and only if A is an
arithmetic progression. But what if we only know that |A + A| ≤ K|A| for some
(possibly large) constant K? Does this imply that A has arithmetic structure? Of
course A could be an arithmetic progression again, or a large subset thereof, but it
could also have the more general lattice-like form

(5.1) A = {a + j1r1 + · · · + jmrm : 0 ≤ ji ≤ Ji, i = 1, . . . , m},
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with m small enough depending on K. Such sets are called generalized arithmetic
progressions of dimension m. Freiman’s theorem [63], [64] asserts that all sets with
small sumsets are large subsets of generalized arithmetic progressions.

Theorem 5.1. Suppose that A ⊂ Z and that |A+A| ≤ K|A|. Then A is contained
in a generalized arithmetic progression (5.1) of size at most C|A| and dimension at
most m, where C and m depend only on K.

Freiman’s original proof was rather difficult to follow and the community owes
a great debt to Imre Ruzsa, who essentially rediscovered Theorem 5.1, gave it its
present formulation and provided a much more accessible proof [152]. For these
reasons, Theorem 5.1 is sometimes referred to as the Freiman-Ruzsa theorem.

Ruzsa’s proof of Theorem 5.1 combined ingenious combinatorial arguments, dis-
crete Fourier analysis, Minkowski’s second theorem in the geometry of numbers,
and a formerly obscure result in graph theory (Plünnecke inequalities), which Ruzsa
also rediscovered and made accessible. Bilu [10] subsequently reworked and clari-
fied Freiman’s original geometric ideas. The current best quantitative bounds are
due to Mei-Chu Chang [30], who followed the general outline of Ruzsa’s argument,
but with several improvements, one of which (a theorem on the structure of the set
of large Fourier coefficients of a function) has found a variety of other applications.
An excellent exposition of the Ruzsa-Chang proof is in [80].

Freiman’s theorem has been extended to other abelian groups – the most general
result of this type was recently obtained by Green and Ruzsa [84].

Theorem 5.1 is notable for the simplicity and elegance of its statement, but
applications often call for other variants. For example, it is sometimes necessary
to apply a Freiman-type result in a setting where, instead of a bound on the size
of the entire sumset A + A, we only know that A has weaker additive properties.
One such case is addressed by the Balog-Szemerédi-Gowers theorem.

Theorem 5.2. Let A ⊂ Zd. Suppose that the equation a1 + a2 = a3 + a4 has at
least α|A|3 solutions a1, a2, a3, a4 ∈ A. Then there is a subset A′ ⊂ A such that
|A′| ≥ c|A| and |A′ + A′| ≤ C|A′|, where c, C depend only on α.

In particular, it follows from Theorem 5.1 that A has a large intersection with
a generalized arithmetic progression. Simple examples show that one cannot say
much about all of A under the assumptions of Theorem 5.2: consider a union of
two sets of equal cardinality, one of which is an arithmetic progression, and the
other is entirely random.

Theorem 5.2 was originally proved by Balog and Szemerédi in [2]. As it turned
out, Gowers [73], [74] needed a similar statement in his work on Szemerédi’s the-
orem, but with much stronger quantitative bounds than could be extracted from
[2]. He went on to find a new simpler proof of the theorem which also yielded poly-
nomial bounds on c, C in terms of α. It was this result that inspired Bourgain’s
work [17] described here in Section 3.2; his Lemma 3.1 is a modification of Gowers’s
version of Theorem 5.2.

There is a well known open problem regarding the size of the “doubling con-
stants” in Freiman’s theorem. According to Chang’s version of Theorem 5.1 ([30],
Theorem 2), a set A with |A + A| ≤ K|A| is contained in a generalized arithmetic
progression P of dimension m ≤ bK − 1c. Explicit examples show that the dimen-
sion bound cannot be better than a linear function of the doubling constant K.
However, P itself will usually have a doubling constant of the order 2m, which is
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much larger than K. It is widely believed that A must in fact have more structure,
for example that it can be covered by a small number of generalized arithmetic
progressions of dimension about log K. That has not been proved, though, and it
is not even clear how exactly to formulate the conjecture. See Gowers [75], Green
[81], Green-Tao [88] for further discussion.

5.2. The sum-product problem. Let A be a set of integers. We continue to
write A + A = {a + a′ : a, a′ ∈ A}; let also A ·A = {aa′ : a, a′ ∈ A}. The following
conjecture was made by Erdős and Szemerédi in [53].

Conjecture 5.3. For any ε > 0, we have

(5.2) max(|A + A|, |A · A|) ≥ cε|A|2−ε.

It is not difficult to arrange for one of A + A and A · A to be small. Just let
A be an arithmetic progression, and A + A will have size comparable to that of
A. Then, however, A · A is large. The situation is reversed if A is a geometric
progression: A ·A is small, but |A + A| ≈ |A|2. Additive structure is not compatible
with multiplicative structure.

The main challenge is to bridge the gap between the two extreme cases. Struc-
ture theorems can be applied at the endpoints [31], [32], but they can only go so far:
the conclusion of Freiman’s theorem becomes trivial as soon as |A + A| ≈ |A|1+ε.
Conjecture 5.3 asserts that even very weak partial additive and multiplicative struc-
tures are mutually exclusive.

Surprisingly, after the first number-theoretic partial results of Erdős-Szemerédi,
Nathanson and Ford, a major breakthrough came from incidence geometry. In 1997
Elekes [46] deduced the bound

(5.3) max(|A + A|, |A · A|) ≥ c|A|5/4

from the Szemerédi-Trotter theorem. A more elaborate argument due to Solymosi
[160] improves the right side of (5.3) to |A|14/11(log |A|)−3/11, which is the best
result to date.

Elekes’s proof is short enough to be given here in full. Let |A| = n, and consider
the family of n2 lines y = a(x − b), a, b ∈ A, in the xy-plane. Each line is incident
to the n points (b + c, ac), c ∈ A; thus there are at least n3 incidences between the
n2 lines and the point set P = (A + A) × (A · A). By Theorem 4.1, we have

n3 ≤ C(n2)2/3 |P |2/3,

hence |P | ≥ Cn5/2 and (5.3) follows.
Among other partial results, we mention that both endpoints have been settled:

if |A + A| ≤ C|A|, then |A · A| ≥ |A|2/ log |A| (Chang [31], Elekes-Ruzsa [48],
Solymosi [160]), and conversely, |A ·A| ≤ C|A| implies that |A+A| ≥ c|A|2 (Chang
[32]). There are many extensions and generalizations of Conjecture 5.3, including
iterated sums and products, sumsets and product sets of distinct sets, sums and
products along graphs (Balog-Szemerédi-style), and sums and products in rings
other than Z (real numbers, complex numbers, matrices). See e.g. Bourgain-Chang
[24], Chang [31], [32], Elekes [47], Solymosi [161] for a few examples, and Chang
[33] for a brief summary of the known results.
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One such extension is currently stealing the show. Far from being a novelty
result, it has already found a wide variety of applications, from Mordell type expo-
nential sums in analytic number theory (Bourgain-Glibichuk-Konyagin [26], Bour-
gain [20], [21]) to explicit constructions of expanders (Bourgain-Gamburd-Sarnak
[25]); see Bourgain [22] for a more detailed exposition.

Theorem 5.4. [27], [26] Let Fp be the finite field of integers modulo p, where p is
a large prime. Then for all 0 < ε < 1 there is a δ > 0 such that if A ⊂ Fp and
|A| < p1−ε, then

(5.4) max(|A + A|, |A · A|) ≥ c|A|1+δ .

Theorem 5.4 was first proved by Bourgain, Katz and Tao [27] with the additional
assumption that |A| > pε; the latter condition was removed by Bourgain, Glibichuk
and Konyagin in [26]. Further improvements are in Iosevich-Hart-Solymosi [100],
Garaev [69], Katz-Shen [110], [111].

We emphasize here that the incidence-based approach, so effective for real num-
bers, does not quite work the same way in finite fields. Prior to [27], all proofs of the
Szemerédi-Trotter theorem and its extensions relied on topological properties of the
underlying space (for instance, a straight line cuts a plane in two parts) which have
no useful analogue in finite fields. A Szemerédi-Trotter-type theorem in finite fields
is indeed proved in [27], but only as a consequence of the sum-product estimate.
More recently, Iosevich-Hart-Solymosi [100] gave a new proof of Theorem 5.4 based
on incidence theorems for hyperbolas in finite fields; the latter are deduced from
number-theoretic estimates on Kloosterman exponential sums.

The Bourgain-Katz-Tao theorem can instead be traced back to, of all things,
an unsuccessful 1998 attempt to improve Kakeya dimension bounds in R3. Katz
and Tao had tried to argue that a Kakeya set of dimension 5/2 in R3 could be
parametrized by an approximate 1/2-dimensional subring of R [113]. This led
them to an old question of Erdős and Volkmann [55]:

If E ⊂ R is a Borel set and a subring of R, must it have Hausdorff
dimension either 0 or 1?

Falconer [56] had proved that there are no Borel subrings with 1/2 < dimH(E) < 1;
Katz and Tao needed to go just past the 1/2 threshold. In the end, their argument
could not be completed, and the 5/2 Kakeya bound was improved in [109] by other
means.

A few years later, however, Bourgain resolved the Erdős-Volkmann question in
the affirmative [19] – only to find out that G.A. Edgar and C. Miller had just
published their own short and elegant solution in [44]. Bourgain’s proof, clearly
influenced by the Katz-Tao paper [113], was based on more complicated arguments
from additive number theory. The Bourgain-Katz-Tao article [27] combined the
arguments of all three of [19], [44], and [113]. Among the results of [27] the reader
will find the 3-dimensional Kakeya argument, once abandoned by Katz and Tao,
now made rigorous in the finite field setting.

5.3. Szemerédi’s theorem. We will say that a set A ⊂ N has upper density δ if

limN→∞
|A ∩ [1, N ]|

N
= δ.

Motivated by van der Waerden’s theorem in Ramsey theory, Erdős and Turán [54]
conjectured in 1936 that any set of integers A of positive upper density must contain
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arithmetic progressions of any finite length. This was indeed proved by Klaus Roth
[149] for 3-term progressions (with quantitative improvements due to Szemerédi
[174], Heath-Brown [95] and Bourgain [18], [23]), then by Szemerédi [172], [173] for
progressions of any length. Below is an equivalent statement of this result.

Theorem 5.5. For any δ > 0 and any integer k there is a N(δ, k) such that if
N > N(δ, k) and A is a subset of {1, 2, . . . , N} of cardinality |A| ≥ δN , then A
must contain a non-trivial k-term arithmetic progression.

As of now, Szemerédi’s theorem has four remarkably distinct proofs, each of
which was a milestone in combinatorics in its own right. The original combina-
torial proof by Szemerédi [173], ingenious and complicated even by Szemerédi’s
standards, featured the regularity lemma, which has since become an invaluable
tool in several areas of combinatorics. Furstenberg’s ergodic-theoretic proof [66],
based on his multiple recurrence theorem, has led to a variety of extensions and
generalizations, such as the multidimensional Szemerédi theorem due to Fursten-
berg and Katznelson [67] and the polynomial Szemerédi theorem of Bergelson and
Leibman [9]. Gowers’s proof [73], [74] is often referred to as “harmonic analytic”,
for its structural resemblance to Roth’s proof for k = 3 as well as its actual use of
harmonic analysis. It yields an explicit quantitative bound on N(δ, k) for k ≥ 4,

N(δ, k) ≤ 22δ−2k+9

which was recently improved by Green and Tao [91] for k = 4, but remains the
best available for k ≥ 5. Finally, there is a more recent hypergraph proof, due in-
dependently to Gowers [76], [77] and Nagle-Rödl-Schacht-Skokan [134], [146], [147],
[148].

Theorem 5.5 may have been proved several times over, but nonetheless it remains
at the center of considerable research activity that shows no signs of slowing down.
In ergodic theory, there is a number of recent results on the convergence of multiple
ergodic averages in Furstenberg’s multiple recurrence theorem and its extensions,
including Host-Kra [98], Ziegler [201], Bergelson-Host-Kra [8], Frantzikinakis-Kra
[62], Leibman [123], Tao [183]. Another direction of research is to find quantita-
tive proofs of results, such as the multidimensional Szemerédi theorem, previously
available only by ergodic (infinitary) methods, see e.g. Solymosi [159], Gowers [76]
or Shkredov [156]. The hypergraph approach continues to be developed, see e.g.
Tao [179], Elek-Szegedy [45].

All known proofs of Szemerédi’s theorem rely on a certain dichotomy between
randomness and structure. Roughly speaking, if the elements of A were chosen
from {1, . . . , N} independently at random, each with probability δ, then with high
probability there would be about δkN2 k-term arithmetic progressions in A, as
there are about N2 k-term arithmetic progressions in {1, . . . , N}, each of which
would be contained in A with probability δk. The same is true if A imitates a
random set closely enough, in a sense that needs to be made precise. On the
other hand, a non-random set should have a certain amount of additive structure,
reminiscent of that in Freiman’s theorem but much weaker. We use this structure
to our advantage, for example by passing to a long arithmetic subprogression of
{1, . . . , N} on which A has higher density and then iterating the argument. The
challenge is to find a notion of randomness which is strong enough to guarantee
existence of k-term arithmetic progressions, but also weak enough so that its failure
implies useful structural properties.
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We illustrate this by taking a brief look at Roth’s proof for k = 3. We will
identify {1, . . . , N} with the additive group ZN , and let A ⊂ ZN , |A| = δN . Given
functions f1, f2, f3 : ZN → C, define

(5.5) Λ3(f1, f2, f3) = N−2
∑

x,r

f1(x)f2(x + r)f3(x + 2r).

If A(x) is the characteristic function of A, Λ3(A, A, A) equals N−2 times the number
of 3-term arithmetic progressions in A, including the trivial ones with r = 0. We
are ignoring a minor technical issue here, namely the distinction between genuine
arithmetic progressions and arithmetic progressions modulo N in ZN ; this is easy
to fix, for example by assuming that A ⊂ {0, . . . , bN/3c}.

The expression (5.5) turns out to be tailor-made for Fourier analysis. We define
the discrete Fourier transform on ZN by

f̂(ξ) = N−1
N∑

x=1

f(x)e−2πixξ/N .

A short calculation shows that

Λ3(A, A, A) =
∑

ξ

Â(ξ)2Â(−2ξ)

= Â(0)3 +
∑

ξ 6=0

Â(ξ)2Â(−2ξ) =: I1 + I2,
(5.6)

where I1 and I2 will be interpreted as the main term and the error term, respectively.
We trivially have I1 = δ3 and if there were no I2 term, (5.6) would yield δ3N2

arithmetic progressions in A, exactly the number suggested by the random model.
In practice, of course, we cannot count on I2 to actually vanish. There is a useful
substitute, though. We will say that A is 2-uniform if

(5.7) |Â(ξ)| ≤ δ2/2 for all ξ 6= 0.

It follows immediately from (5.7) and Parseval’s identity that |I2| ≤ δ3/2, hence
Λ3(A, A, A) ≥ δ3/2. If N is large enough, this means that A must contain non-
trivial 3-term arithmetic progressions. We will refer to the case when (5.7) holds
as the “random” case.

It remains to consider the “structured” case when (5.7) fails: there is a ξ 6= 0
such that

(5.8)
δ2

2
≤ |Â(ξ)| = |N−1

∑

x

A(x)e−2πiξx/N |.

The last expression, sans the absolute value, can be interpreted as the L2 inner
product of A(x) and e2πiξx/N . We say that A(x) has “linear bias”, in the sense
that it correlates with the periodic function e2πiφ(x), where φ(x) = ξx/N is linear.
In the terminology popularized later on by Green and Tao (see e.g. [87]), we have
unknowingly proved an inverse theorem for the Gowers U 2 norm. A reasonably
short argument based on the periodicity of e2πiφ(x) shows now that A is biased along
certain long arithmetic progressions, in particular there is an arithmetic progression
P of length about δ2

√
N on which A has density at least δ + δ2/100.

The proof of Roth’s theorem is completed by iterating the argument. In the
random case, we are done. In the structured case, we replace {1, . . . , N} by P and
A by A∩P , then start over again by testing for 2-uniformity. If at any time we find
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ourselves in the random case, the proof is complete. Otherwise, the density must
increase by at least δ2/100 at each step, eventually reaching 1, at which point the
conclusion of the theorem becomes trivial.

Gowers’s proof for arbitrary k – the only one that we will discuss here in some
detail – follows the same general scheme. However, when k ≥ 4, the 2-uniformity
condition (5.7) can no longer guarantee an abundance of k-term progressions. The
new key concept is higher-order uniformity, expressed in terms of the Gowers U d

norms. The U2 Gowers norm is

(5.9) ‖f‖U2 =
(
N−3

∑

x,r1,r2

f(x)f(x + r1)f(x + r2)f(x + r1 + r2)
)1/4

;

the general definition is similar, but the averages are taken over d-dimensional
“boxes” {x + ω1r1 + · · · + ωdrd : ω1, . . . , ωd ∈ {0, 1}}.

Let A ⊂ ZN , |A| = δN , and let fA(x) = A(x) − δ. We call A d-uniform if

(5.10) ‖fA‖Ud ≤ c(δ)

with c(δ) sufficiently small. A short calculation shows that this is equivalent to
(5.7) when d = 2 (modulo the choice of c(δ)), but for d ≥ 3 it is a strictly stronger
condition.

If (5.10) holds with d = k − 1, we can count k-term arithmetic progressions in
A more or less as in the random case for k = 3. Define

Λk(f1, . . . , fk) = N−2
∑

x,r

f1(x)f2(x + r) . . . fk(x + (k − 1)r),

the obvious generalization of the Λ3. Now write A(x) = δ + fA(x) and expand
Λk(A, . . . , A) accordingly. This produces the leading term Λk(δ, . . . , δ) = δk, plus
2k − 1 error terms involving at least one copy of fA. Gowers shows that the error
terms are all bounded by ‖fA‖Uk−1 , hence if the latter is small enough, we are
done.

It remains to address the “structured” case when ‖fA‖Uk−1 is large. This is a
much harder task than for k = 3, as any hopes for a linear structure or periodicity
are quickly dispelled by explicit examples. Specifically, if A(x) correlates closely
enough with a function of the form e2πiφ(x), where φ is a polynomial of degree k−2,
then A need not have any linear bias whatsoever, but on the other hand ‖fA‖Uk−1

is large. The underlying principle here is that ‖e2πiφ(x)‖Uk−1 is an exponential
sum over the (k − 1)-st iterated differences of φ(x); the latter vanish if φ is a
polynomial of degree k−2, hence there are no cancellations in the exponential sum
and ‖e2πiφ(x)‖Uk−1 = 1. We invite the reader to try to verify this for k = 4 and
φ(x) = x2/N .

But now at least we know the enemy a little bit better, and we can ask whether
all functions with large Uk−1 norm have “polynomial bias” as described above. Is
there an inverse theorem for the Gowers Ud norms with d > 2? For d = 3, such a
result was indeed obtained by Green and Tao [87], but only much later, and even
then the actual statement is rather more complicated. Not just for technical reasons:
the φ in the conclusion, instead of a quadratic polynomial, could mimic a quadratic
form in several variables. (Gowers [73], [74] was already aware of this issue, as were
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Furstenberg and Weiss in [68].) No Gowers inverse theorem is currently known for
d ≥ 41.

Fortunately, Gowers’s proof of Szemerédi’s theorem does not in fact require a
“global” inverse theorem as described above. It suffices to find much weaker partial
polynomial patterns, or prove a “local” inverse theorem. Gowers accomplishes
this by identifying a weak “iterated additive structure” in A, then performing a
procedure that could be described, for lack of a better word, as discrete integration.
It is in this part of the proof that advanced tools from additive number theory, such
as the theorems of Freiman and Balog-Szemerédi, become crucial. Once a partial
polynomial pattern is found, an exponential sums argument produces a density
increment on a subprogression of ZN . At last, the inductive step is complete.

6. Arithmetic progressions in the primes

6.1. The Green-Tao theorem. We finally turn to the Green-Tao theorem on
arithmetic progressions in the primes [85]:

Theorem 6.1. For any k ≥ 3, the primes contain infinitely many k-term arith-
metic progressions.

It had long been expected, at least on a heuristic level, that Theorem 6.1 should
hold. Crude asymptotics for prime numbers are often suggested by the random
model, where the set P of primes is modelled by a random set X such that each
x ∈ N belongs to X independently with probability (log x)−1. This model predicts,
for example, that the number of primes in {1, . . . , N} should be about N/ log N
– which is consistent with the prime number theorem. But it is also capable of
making more ambitious predictions:

• The probability that x, x+2 are both in X is (log x)−2. The random model
would thus imply the twin prime conjecture: there should be N(log N)−2

primes p ∈ {1, . . . , N} such that p + 2 is also prime.
• If x, r ≤ N , and if k is small compared to N , the probability that x, x +

r, . . . , x + (k − 1)r are all in X is about (log N)−k on average. Hence there
should be about N2(log N)−k k-term arithmetic progressions of primes in
{1, . . . , N}.

The reality is that the primes are far from being randomly distributed. For
instance, the events “x is prime” and “x + 1 is prime” are not independent – they
are mutually exclusive if x 6= 2. Unlike a truly random set, the primes are not
uniformly distributed between residue classes: there is only one even prime, only
one divisible by 3, etc. Any reasonable theorem or conjecture on the asymptotic
distribution of primes must account for such “obstructions to uniformity”.

It is reasonable, however, to expect that the primes will be distributed as ran-
domly as possible within those constraints. Hardy and Littlewood [92] made a
far-reaching conjecture which is, roughly, a quantitative version of this statement.
We will not give a precise formulation of the conjecture here (see e.g. Soundarajan
[165] for a very accessible introduction), but suffice it to say that a special case of
it yields the asymptotic formulae (γk + o(1))N2(log N)−k for the number of k-term
arithmetic progressions in the primes less than N , where γk are explicitly com-
putable constants (for example, γ3 ≈ 1.32032). The Hardy-Littlewood conjecture

1On the other hand, infinitary theorems of this type are known in ergodic theory, see Host-Kra
[98].
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implies the twin primes conjecture as well, again with explicit asymptotics, and
much more.

It nonetheless came as a surprise when Theorem 6.1 was actually proved. Prior
to the Green-Tao work, the problem appeared to be well out of reach, with very
few partial results available. The k = 3 case was resolved by van der Corput back
in 1939 [191], and Heath-Brown [94] proved that there are infinitely many 4-term
arithmetic progressions consisting of three primes and a number which has at most
2 prime divisors. Both results were significant in their own right, but neither gave
any indication as to how the general case might be approached. As it turned
out, the Green-Tao proof did not require much new information about the primes
themselves. According to Ben Green [83],

Our main advance, then, lies not in our understanding of the
primes but rather in what we can say about arithmetic progres-
sions.

The strategy of [85] was to embed the primes in a sufficiently random background
set in which they have positive density, then prove a “relative Szemerédi theorem”
which applies in this setting. The latter – also dubbed “transference principle” to
reflect its reliance on the standard Szemerédi theorem – is the main contribution
of [85], and we describe it first.

Instead of sets A of positive relative density in ZN , we consider functions f and ν
on ZN such that 0 ≤ f ≤ ν and

∑
x f(x) ≥ δ

∑
x ν(x). Here f is the target function

(which will later be supported on the primes), and ν is the background function.
A key point is that f and ν need not be bounded uniformly in N . We assume
ν to be pseudorandom in the sense that it satisfies certain explicit (somewhat
cumbersome to reproduce in full) correlation conditions depending on k. Verifying
these conditions for the characteristic function of the primes would amount more
or less to proving the Hardy-Littlewood conjecture, hence it is critical that our ν
be easier to work with.

We wish to prove a Szemerédi theorem in this setting; more precisely, we need
to estimate from below the quantity

(6.1)
∑

x,r

f(x)f(x + r)f(x + 2r) . . . f(x + (k − 1)r),

which counts the number of k − term arithmetic progressions in a set A if f is
the characteristic function of it. The proof of this follows the rough outline of
Furstenberg’s ergodic proof of Szemerédi’s theorem, but draws also on ideas of other
authors, including Gowers [74], [76] and Host-Kra [98]. An inductive procedure is
used to decompose f into random and quasiperiodic parts fU and f⊥, where f⊥
is non-negative and bounded, and fU is unbounded but has a very small Uk−1

Gowers norm. The contribution of the random part to (6.1) is negligible. On
the other hand, the “usual” Szemerédi theorem gives a bound from below on the
contribution of the quasiperiodic part, and the result follows. This may sound like
a reasonably simple outline, but the actual argument is quite breathtaking in its
execution.

We now have to find appropriate functions f and ν. Let f(n) = log n if n is prime,
and 0 otherwise. This is very close to the von Mangoldt function in number theory.
We then define ν to be a modification of the von Mangoldt function, supported on
the almost primes (roughly, numbers which do not have small divisors). From a
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harmonic-analytic point of view, we are applying a “high-frequency cut-off”: the
Fourier transform of ν is much better behaved than that of f , which explains in
part why functions such as ν can be so useful in sieving techniques.

As it happened, back in 2003 Dan Goldston and Cem Yıldırım had announced
a major result on small gaps between prime numbers:

There are infinitely many prime pairs p, p′ such that p′ − p =
o(log p).

By the prime number theorem, the gaps between subsequent primes have size about
log p on average. While large deviations from the average are expected to occur
(the twin primes conjecture asserts that there are infinitely many gaps of size 2), it
turned out to be very difficult to confirm it rigorously. An error was found in the
Goldston-Yıldırım proof a few months later and the main claims were withdrawn,
but preprints with proofs of partial results remained in circulation.

Green and Tao in [85] credit Andrew Granville for pointing them to the preprint
[72]. The correlation estimates therein, with relatively minor changes, were suffi-
cient to prove that ν was pseudorandom in the sense of [85]. It is well known that
Goldston and Yıldırım, joined by János Pintz, eventually completed their proof in
[71]. An excellent overview of that story is in Soundarajan [165].

We must note that Green and Tao did not even attempt in [85] to address the
underlying “hard” question of whether the primes are in fact randomly distributed
in the sense of Hardy-Littlewood. They took a different route instead, showing
that even if the primes were not randomly distributed, they would still have to
contain arithmetic progressions of any finite length, courtesy of a Szemerédi-type
theorem. The advantage of this approach is that it applies equally well to positive
density subsets of the primes. The disadvantage is that only produces a lower
bound ckN2(log N)−k on the number of progressions up to N , rather than exact
asymptotics with the correct constant.

In the more recent paper [89], however, Green and Tao confront directly the
Hardy-Littlewood conjecture, formulating a broad strategy applicable in “non-
degenerate” cases. (For the present purpose, the twin primes and Goldbach con-
jectures are both degenerate.) The strategy is conditional on certain conjectural
statements, the Gowers Inverse Conjecture and Möbius and Nilsequences Conjec-
ture, both of which have been proven by Green and Tao to the extent needed to
resolve the case of non-degenerate systems of 2 equations [87], [90], but for now
remain open in their full generality. In particular, the combined results of [89],
[87], [90] imply the Hardy-Littlewood asymptotic formula for the number of 4-term
arithmetic progressions in the primes. A more detailed exposition of this work,
including the quadratic Fourier analysis for systems of 2 equations, is in Green
[82].

The Green-Tao theorem has inspired a variety of other results in ergodic theory
and number theory, such as Frantzikinakis-Host-Kra [61] or Tao-Ziegler [188]. The
focus of this note will remain on connections to harmonic analysis, and thus we
return to restriction theory for the last time.

6.2. What goes around, comes around. Restriction estimates for exponential
sums over sets of integers, as opposed to the continuous Fourier transform, were
first derived by Bourgain in [12], [15]. In [15] and its sequels, they were applied to
proving well-posedness and Strichartz estimates for nonlinear evolution equations,
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such as Schrödinger and Korteweg-de Vries, on the torus Td. They were then
revisited in 2003 by Green in [79], a paper that directly inspired the work in Green-
Tao [85]. The main result of [79] is the following common generalization of the
theorems of Roth [149] and van der Corput [191].

Theorem 6.2. Let A be a set of positive relative density in the primes, i.e.

limN→∞
|A ∩ PN |
|PN | > 0,

where PN denotes the set of primes less than N . Then A contains infinitely many
3-term arithmetic progressions.

Green’s argument foreshadows the Green-Tao theorem of [85] in its use of a
transference principle, or a relative Roth theorem, to find arithmetic progressions
in subsets of a sparse but sufficiently random set. As in Section 6.1, we will consider
unbounded functions 0 ≤ f(n) ≤ λ(n), except that now the majorant λ is supported
on the primes (rather than almost primes) and f is supported on A. We wish to
prove lower bounds on (6.1) for k = 3. In this context, the randomness of λ means
simply that λ has small Fourier coefficients, as explained earlier in connection with
Roth’s theorem. The von Mangoldt function Λ, a natural candidate for λ, does not
quite meet that requirement, but this can be fixed by restricting Λ to the primes in
an appropriate arithmetic subprogression (the same W-trick is also used in [85]).

The proof of the transference principle in [79] does not proceed along the same
lines as that in [85]. Instead, Green uses a Fourier-analytic approach, subsequently
developed further in Green-Tao [86] (see also Tao-Vu [187]). His main tool is the
estimate

(6.2) ‖ĝλ‖`p(ZN ) ≤ C(p)‖g‖`2(ZN ,dλ), p > 2.

The Fourier transform here is discrete rather than continuous, and λ is a density
rather than a measure, but otherwise (6.2) has exactly the same form as the re-
striction estimate (2.10) for the sphere in Rd. More than that: Green’s proof of
(6.2), as well as Bourgain’s proof of a similar estimate for the “discrete sphere” in
[15], follows very closely the Tomas-Stein argument in Euclidean harmonic anal-
ysis, from interpolation between the endpoints down to such details as the use
of a Littlewood-Paley dyadic decomposition. The Fourier-analytic estimates on λ
needed in the proof of (6.2), along with similar estimates for the almost primes, are
derived via the circle method, a classic technique in analytic number theory which
had also been used by van der Corput.

Do the primes have the shape of a sphere? Most certainly not. Harmonic ana-
lysts are often quick to associate the restriction phenomenon with curvature, but
restriction estimates are also known in other Euclidean settings, such as sets of
fractional dimension (Mockenhaupt [129], Wolff [196]). Time will tell whether the
analogy can be usefully pursued further.

There are certainly many more links between analysis, number theory and com-
binatorics waiting to be discovered. We are only beginning, for instance, to explore
the possibility of applying methods of additive combinatorics to problems in analy-
sis. It seems safe to say that the areas of research described here will remain active
for a long time to come.
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7. Further reading

Sections 1–3. Background information on the Kakeya problem and the details
of a Kakeya set construction can be found in Besicovitch [6], Davis-Chang [42],
Falconer [58], Stein [169], Wolff [197], [200].

Stein’s book [169] is a comprehensive, if somewhat overwhelming, reference on
the harmonic analytic questions in Section 2, including the restriction problem,
averaging and maximal estimates, and many other closely related problems which
we were not able to discuss here. The monographs by Davis-Chang [42] and Wolff
[200] cover less material, but are more accessible to a reader less familiar with
the subject. These references were all published before the latest rush of work in
the area, hence we refer the reader to Katz-Tao [115] and Tao [177] for updated
information on the Kakeya and restriction problems, respectively. Connections to
PDE problems are highlighted in Sogge [157], Stein [169], Tao [181].

The historical information in Section 1 comes from a variety of sources, includ-
ing Besicovitch’s article [6], Kenneth Falconer’s historical comments in [58], and the
Internet-based MacTutor History of Mathematics Archive, maintained at the Uni-
versity of St. Andrews (http://www-history.mcs.st-andrews.ac.uk/history),
from where I borrowed the quote by A.A. Friedmann in Subsection 1.1.

Section 4. Pach-Agarwal [139] and Matousek [125] are standard and comprehen-
sive references on combinatorial geometry, and the survey article by Pach and Sharir
[141] focuses specifically on incidence problems. Applications of combinatorial ge-
ometry in harmonic analysis are discussed in Schlag [154], Wolff [197].

Sections 5– 6. A comprehensive up-to-date survey of additive combinatorics is
in Tao-Vu [187]; general expository articles include Croot-Lev [39], Gowers [75],
Granville [78], Ruzsa [153]. Additive number theory, including Fourier-analytic
methods, Freiman’s theorem and inverse problems, is surveyed in Nathanson [135].
For more on sum-product problems, see Bourgain [22], Chang [33], Elekes [47].
There are many surveys and expositions of Szemerédi’s theorem and the Green-
Tao theorem, including Green [82], [83], Kra [119], Tao [178], [180], [182], [187].
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32. M.-C. Chang, Erdős-Szemerédi problem on sum set and product set, Ann. Math. 157 (2003),

939-957.
33. M.-C. Chang, Some problems in combinatorial number theory, preprint, 2007, to appear in

Integers: Electronic Journal of Combinatorial Number Theory.
34. M. Christ, Estimates for the k-plane transform, Indiana Univ. Math. J. 33 (1984), 891–910.
35. M. Christ, Convolution, Curvature, and Combinatorics. A Case Study, Internat. Math. Re-

search Notices 19 (1998), 1033–1048.



FROM HARMONIC ANALYSIS TO ARITHMETIC COMBINATORICS 33

36. M. Christ, A. Nagel, E.M. Stein, S. Wainger, Singular and maximal Radon transforms: Anal-
ysis and geometry, Ann. Math. 150 (1999), 489–577.

37. K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir, E. Welzl, Combinatorial complexity
bounds for arrangements of curves and spheres, Discrete Comput. Geom. 5 (1990), 99–160.
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171. L. Székely, Crossing numbers and hard Erdős problems in discrete geometry, Combinatorics,

Probability, and Computing 6 (1997), 353–358.
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