
Recent progress on Favard length estimates for
planar Cantor sets

Izabella  Laba

December 1, 2012

1 Introduction

Let E∞ =
⋃∞
n−1En be a self-similar Cantor set in the plane, constructed as a

limit of Cantor iterations En. We will assume that E∞ has Hausdorff dimen-
sion 1. The Favard length problem, also known as Buffon’s needle problem
(after Comte de Buffon), concerns the average (with respect to the angle)
length of linear projections of En. This turns out to be a fascinating and
very difficult problem. Substantial progress on it was only achieved in the
last few years, revealing connections to harmonic analysis, combinatorics and
number theory. The purpose of this paper is to survey these developments
with emphasis on presenting the main ideas in the simplest possible settings,
often at the expense of generality.

The interest in such estimates is motivated by, on the one hand, consid-
erations in ergodic theory, and on the other hand, questions in the theory of
analytic functions. On the analytic side, Favard length estimates have been
linked to the Painlevé problem in complex analysis (on a geometric character-
ization of removable sets for bounded analytic functions), through the work
of Vitushkin, Mattila, Jones, David, Tolsa and others. (See [25] for more
details.) In ergodic theory, there is a large family of related conjectures and
open problems concerning projections of fractal sets, Bernoulli convolutions,
intersections and sumsets of fractal Cantor sets. For instance, a well known
conjecture of Furstenberg states that all linear projections of the 4-corner set
(defined below) corresponding to irrational slopes have Hausdorff dimension
1. This is still unsolved, but it is possible that progress on it could have
impact on the Favard length problem, or vice versa.
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We begin by giving a few examples of the Cantor sets under consideration.

Example 1: The 4-corner set. Divide the unit square [0, 1]2 into 16
congruent squares and keep the 4 squares on the corners, discarding the rest.
This is K1. Repeat the procedure within each of the 4 selected squares to
produce K2, consisting of 16 squares. Continue the iteration indefinitely. The
resulting set K =

⋂∞
n=1Kn is a fractal self-similar set of dimension 1, also

called the Garnett set, after John Garnett used it in the theory of analytic
functions as an example of a set with positive 1-dimensional length and zero
analytic capacity.

Figure 1: The 4-corner set, !st iteration.

Example 2: The Sierpiński gasket. The construction is similar, but
we start with a triangle, divide each side in three equal parts, and keep the
three triangles in the corners. (In the literature, the Sierpiński gasket is often
defined so that the three triangles have sidelengths equal to half, rather than
a third, of the sidelength of the large triangle. The dimension of that set is
(log 4)/(log 3). We have modified the scaling so as to produce a gasket of
dimension 1.)

Example 3: Rational product Cantor sets. Fix an integer L ≥ 4.
Divide the initial square into L2 identical squares, fix A,B ⊂ {0, 1, . . . , L−1},
let E1 consist of those squares whose lower left vertices are (a/L, b/L) for
a ∈ A and b ∈ B, then continue the iteration indefinitely. If |A||B| = L
(which we will assume from now on), the Cantor set E =

⋂∞
n=1En has

dimension 1. We will also assume that |A|, |B| ≥ 2, to avoid degenerate cases.
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Figure 2: The 4-corner set, 2nd iteration.

Figure 3: The Sierpiński gasket, 1st iteration.
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The 4-corner set is a special case of this, with L = 4 and A = B = {0, 3}.
Another example is shown in Figure 4.

Figure 4: The first iteration of a product Cantor set with L = 6, A =
{0, 2, 5}, B = {0, 3}.

Example 4: General self-similar sets. Identify the plane with C, and
let T1, . . . , TL : C→ C be similarity maps of the form Tj(z) = 1

L
z+ zj, where

z1, . . . , zL are distinct and not colinear. Then there is a unique compact set
E∞ ⊂ C such that E∞ =

⋃L
j=1 Tj(E∞). Under mild conditions (the open set

condition of [17] suffices), E∞ has Hausdorff dimension 1. Instead of Cantor
iterations, one then considers the L−n-neighbourhoods En of E∞.

We now proceed to the rigorous statement of the problem. Let projθ(x, y) =
x cos θ + y sin θ be the projection of (x, y) on a line making an angle θ with
the positive x-axis (all projections are treated as subsets of R).

Definition 1.1. The Favard length of a compact set E ⊂ R2 is defined as

Fav(E) :=
1

π

∫ π

0

|projθ(E)|dθ, (1.1)

the average (with respect to angle) length of its linear projections.

In each of the above examples, E∞ is unrectifiable, hence by a theorem
of Besicovitch we have |projθ(E∞)| = 0 for almost every θ ∈ [0, π]. It follows
that Fav(En)→ 0 as n→∞. The question is, how fast?
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Examples 1 and 2 show that the pointwise rate of decay of |projθ(En)| as
n→∞, with θ fixed, depends very strongly on the choice of θ. For instance,
let En is the n-th iteration of the 4-corner set. If θ = 0, we have |proj0(En)| =
2−n. However, if we let θ = tan−1(2), then projθ(En) is the same line segment
for all n, so that there is no decay at all (cf. Figure 5). In fact, the 4-corner
set has a dense set of directions where the decay is exponential in n, and
also a dense (but measure zero, as required by Besicovitch’s theorem) set
of directions where projθ(E∞) has positive measure. The same phenomenon
occurs for the gasket set in Example 2. (See Kenyon [10] and Lagarias-Wang
[12], [13] for more details.)

Figure 5: The 4-corner set has projections of positive measure.

The expected asymptotic behaviour of the averages Fav(En) is neither
constant nor exponentially decaying. A lower bound for a wide class of sets
including all of the above examples is due to Mattila [16]:

Fav(En) ≥ C

n

Bateman and Volberg [1] improved this to (C log n)/n for the 4-corner set.
Their result and proof extend to the gasket set, but seem hard to generalize
beyond that.

The known upper bounds for the sets in Examples 1-4 are summarized
in the following theorem.
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Theorem 1.2. (i) We have

Fav(En) ≤ Cn−p for some p > 0 (1.2)

in the following cases (with the exponent p depending on the set):

• the 4-corner set (Nazarov-Peres-Volberg [18])

• the Sierpiński gasket (Bond-Volberg [4])

• the general self-similar sets in Example 4 with L = 4 (Bond- Laba-
Volberg [3])

• the rational product sets in Example 3 under the additional “tiling”
condition that |projθ0(E∞)| > 0 for some direction θ0 ( Laba-Zhai [11]).

(ii) (Bond- Laba-Volberg [3]) For rational product sets as in Example 3 with
|A|, |B| ≤ 6 (but with no additional tiling conditions), we have

Fav(En) . n−p/ log logn (1.3)

The cardinality assumption can be dropped under certain number-theoretic
conditions on A,B, and in some circumstances we can improve (1.3) to a
power bound; see Theorem 1.4 below for more details.

(iii) (Bond-Volberg [5]) For general self similar sets, we have the weaker
bound

Fav(En) . e−c
√

logn (1.4)

The first general quantitative upper bound Fav(En) ≤ C exp(−C log∗ n)
was due to Peres and Solomyak [19]; here, log∗ n denotes the number of
iterations of the log function needed to have log . . . log n . 1. (See also [24]
for a much weaker result in a more general setting.) The current wave of
progress started with [18], where harmonic-analytic methods were first used
in this context. The subsequent work in [11], [4], [5], [3] followed the general
strategy of [18] up to a point, but also required additional new methods to
deal with the increasing difficulty of the problem, especially in [3].

It is likely that the optimal upper bound for wide classes of self-similar
sets should be Fav(En) ≤ Cεn

−1+ε for all ε > 0. The example of the 4-
corner set shows that the nε factors cannot be dropped. There are no known
deterministic sets for which such an estimate is actually known, and this
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seems far out of reach with our current methods. The best available range
of exponents in (1.2) at this point is p < 1/6 (with the constant depending
on p) for the 4-corner set [18]. However, Peres and Solomyak prove in [19]
that for “random 4-corner sets” the expected asymptotics is in fact Cn−1.
We present a simplified version of their argument here in Section 5.

The conditions on A,B in Theorem 1.2 (ii) are number-theoretic, and
concern the roots of the polynomials

A(x) =
∑
a∈A

xa, B(b) =
∑
b∈B

xb (1.5)

on the unit circle. If no such roots exist, we have the power bound (1.2)
and the restriction |A|, |B| ≤ 6 is not necessary. Otherwise, we need more
information. Recall that for s ∈ N, the s-th cyclotomic polynomial Φs(x) is

Φs(x) :=
∏

d:1≤d≤s,(d,s)=1

(x− e2πid/s). (1.6)

Each Φs is an irreducible polynomial with integer coefficients whose roots are
exactly the s-th roots of unity. We furthermore have the identity

xm − 1 =
∏
s|m

Φs(x).

In particular, everym-th root of unity is a root of some cyclotomic polynomial
Φs with s|m.

Definition 1.3. We have A(x) =
∏4

i=1A
(i)(x), where each A(i)(x) is a prod-

uct of the irreducible factors of A(x) in Z[x], defined as follows (by conven-
tion, an empty product is identically equal to 1):

• A(1)(x) =
∏

s∈S(1)
A

Φs(x), S
(1)
A = {s ∈ N : Φs(x)|A(x), (s, L) 6= 1},

• A(2)(x) =
∏

s∈S(2)
A

Φs(x), S
(2)
A = {s ∈ N : Φs(x)|A(x), (s, L) = 1},

• A(3)(x) is the product of those irreducible factors of A(x) that have at
least one root of the form e2πiξ0, ξ0 ∈ R \Q (we will refer to such roots
as non-cyclotomic),

• A(4)(x) has no roots on the unit circle.
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The factorization B(x) =
∏4

i=1B
(i)(x) is defined similarly. We then have

the following.

Theorem 1.4. (Bond- Laba-Volberg [3]) Let En be a rational product set as
in Example 3. Then the result of Theorem 1.2 (ii) may be extended as follows:

(i) Assume that A(2) ≡ B(2) ≡ 1. Then (1.3) holds regardless of the cardi-
nalities of A,B.

(ii) Assume that |A|, |B| ≤ 6 and that A(3) ≡ B(3) ≡ 1. Then (1.3) can be
improved to (1.2).

(iii) Assume that A(2) ≡ B(2) ≡ A(3) ≡ B(3) ≡ 1. Then (1.3) can be improved
to (1.2), regardless of the cardinalities of A,B.

(iv) The condition that |A|, |B| ≤ 6 in (ii), (iii) can be replaced by the implicit
condition that each of A(x) and B(x) satisfies the assumptions of Proposition
4.5. (If |A|, |B| ≤ 6, then these assumptions are always satisfied.)

My goal here is to present some of the main ideas behind Theorems 1.2
and 1.4, with emphasis on the number-theoretic considerations in Section 4.
For the most part, I will focus on the rational product set case in Theorem 1.2
(ii) and present the calculations in this case in some detail. The modifications
needed to cover the other cases of Theorem 1.2 will only be mentioned briefly.

The outline is as follows. In Section 2, we set up the Fourier-analytic
machinery and reduce the problem to a trigonometric polynomial estimate.
This was first done in [18], and repeated with only minor modifications in
the subsequent papers. We only sketch the arguments here, and refer the
reader to [2] for a more detailed exposition.

In Section 3, we begin to work towards proving the main estimate. The
reductions in Section 3.1 and Lemma 3.3 are due to [18], with minor modi-
fications in [4], [5], [11]. The remaining issue concerns integrating a certain
exponential sum on a set where another exponential sum, which we will call
|P2(ξ)|2, is known to be bounded from below away from 0. We present two
approaches to this: the SSV (Set of Small Values) method of [18], and the
SLV (Set of Large Values) method of [3].

In Section 4, we discuss the number-theoretic aspects of the problem for
the rational product sets under consideration. The relevant facts concern
the zeroes of A(x) and B(x) on the unit circle, and the behaviour of such
zeroes under iterations of the mapping L : z → zL. This depends very
strongly on the factorization of A and B given in Definition 1.3. The factors
A(4), B(4) are completely harmless and may be ignored safely. For simplicity,
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we will focus on specific examples with only one type of remaining factors
present. In the case of sets as in Theorem 1.2 (ii) and Theorem 1.4, the main
exponential sum estimate turns out to hold for each type of factors, but for
very different reasons.

The zeroes of the “good” cyclotomic factors A(1), B(1) are extremely well
behaved under iterations of L, in the sense that their orbits hit 1 after a
finite number of iterations. It follows that the backward orbits under the
multi-valued inverse mapping L−1 are well dispersed throughout the unit
circle with no recurring points, a property that the SSV method relies on.
This approach originated in [18] in the special case of the 4-corner set, then
was gradually expanded to its current generality in [11] and [3] (a similar
argument appears also in [4]).

Similar behaviour is observed for the roots of A(3) and B(3), but this is
a much deeper fact related to Baker’s theorem on rational approximation of
logarithms of algebraic numbers; moreover, the quantitative estimates in this
case are somewhat weaker, leading to the loss of log log n in the exponent.
This was done in [3].

The factors A(2), B(2) require a very different approach, also developed in
[3]. The roots of these factors are recurrent under iterations of L, which leads
to our exponential sum |P2(ξ)|2 having many roots of very high multiplicity.
This can be handled by the SLV method, under additional number-theoretic
conditions relating the structure of S

(2)
A to the size of the set A. It turns

out that the information we need is closely related to classical results in
number theory (due to many authors) on vanishing sums of roots of unity.
In Section 4.4 we provide some of the background on this and explain the
relation to our problem. We do not know whether this approach can suffice
to prove Theorem 1.2 (ii) for general rational product sets without the size
restrictions, but we state a conjecture that, if true, would complete this part
of the program.

Finally, in Section 5 we define the random 4-corner sets of [19] and present
a proof of a Favard length estimate in this case.

2 The Fourier-analytic approach

It will be convenient to work with slopes instead of angles in the definition
of Favard length (1.1). We will consider only θ ∈ [0, π/4] (the full range of θ
is covered by 8 such angular segments, and our estimates will apply to all of
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them by symmetry), and define

πt(x, y) = x+ ty, t = tan θ.

Then it suffices to estimate ∫ 1

0

|πt(En)|dt (2.1)

which is equivalent to estimating the averages of projθ(En) up to constants.
Next, we define a “counting function” fn,t. Let µn be the 2-dimensional

Lebesgue measure restricted to En, so that

dµn = 1Endx

Then Lnµn converge weakly to the 1-dimensional Hausdorff measure µ∞ on
E∞, normalized so that µ∞(E∞) = 1, but we will not use this as it is the
finite iterations that we are concerned with. For a given slope 0 ≤ t ≤ 1,
consider the projected measures

πtµn(X) = µn(π−1
t (X)), X ⊂ R

and define fn,t to be the density of πtµn. Essentially, fn,t counts the number
of squares in En that get projected to x:

fn,t =
∑

a∈An, b∈Bn

δa+tb ∗ χ(Ln·), (2.2)

where

An =
n∑
j=1

L−jA, Bn =
n∑
j=1

L−jB,

and χ(·) is the density of the projection (with the given t) of the Lebesgue
measure on the unit square. The exact form of the function χ is not impor-
tant, in fact we could replace it by 1[0,1] and get estimates equivalent up to
constants. For simplicity, we will write fn,t = fn whenever displaying the
dependence on t is not necessary.

The L1 norm of fn does not depend on n: ‖fn‖1 = 1, uniformly in t. It is
the higher Lp norms that carry useful information. We will consider p = 2,
since this is particularly well suited to the Fourier analytic methods we wish
to use.
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Figure 6: The projected measure πtµ1 for a product Cantor set

Heuristically, ‖fn‖2 large should corresponds to significant overlap be-
tween the projected squares. It is easy to make this argument rigorous in
one direction: since fn is supported on πt(En), by Hölder’s inequality

1 = ‖fn‖1 ≤ ‖fn‖2 · |πt(En)|1/2.

Hence if |πt(En)| is small, then ‖fn‖2 must be large.
In general, Hölder’s inequality only works in one direction. It is quite

possible for a function with ‖f‖1 = 1 to have both large support and large
L2 norm. However, in the particular case of self-similar sets considered here,
there is a partial converse due to [18].

Proposition 2.1. For each t ∈ [0, 1] at least one of the following holds:

• ‖fn‖2
2 ≤ K for all n ≤ N ,

• |πt(ENK3)| ≤ C/K.

Here K is a large constant of order roughly N ε0 (more on this shortly).
Roughly speaking, lower bounds on ‖fn‖2 imply upper bounds on the size of
the support of fN with N � n. The main idea is that if “stacking” (a large
number of squares projected to the same point) occurs on some scale L−n,
then by self-similarity that phenomenon has to replicate itself throughout
the set in its higher iterations, until it consumes most of the set on some
much smaller scale L−NK

3
. The interested reader can find a detailed and
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accessible exposition in [2]. The “micro-theorem converse” in Chapter 1 of
[2] is especially recommended, as it provides a glimpse into the main idea of
Proposition 2.1, one of the essential ingredients of this approach, with only
a minimum of technicalities.

We are therefore interested in lower bounds on ‖fn‖2. A quick glance at
Figure 5 again should convince the reader that there is no chance of proving
non-trivial lower bounds for all t: if En is the n-th iteration of the 4-corner
set and t = 1/2, then ‖fn‖2 ≈ 1 for all n. Similarly, ‖fn‖2 can easily remain
bounded in other cases where πt(E∞) has positive measure. Therefore we
will instead consider the set of “bad” directions

E = {t ∈ [0, 1] : ‖fn‖2
2 ≤ K for all 1 ≤ n ≤ N}

for some large K, and attempt to prove that |E| is small. The choice of K
here depends on A and B. If A(3)(x) = B(3)(x) ≡ 1, we will run the argument
with K := N ε0 for some ε0 > 0; otherwise, we will have K := N ε0/ log logN .

We now take Fourier transforms: since ‖fn‖2 = ‖f̂n‖2, it suffices to esti-
mate the latter from below. This is where the polynomials A(x), B(x) come
in. Define

φA(ξ) =
1

|A|
A(e2πiξ) =

1

|A|
∑
a∈A

e2πiaξ

and similarly for B. Let also

φt(ξ) := φA(ξ)φB(tξ) =
1

L

∑
(a,b)∈A×B

e2πi(a+tb)ξ.

Then

f̂n(ξ) = Ln
∑

a∈An, b∈Bn

e2πi(a+tb)ξ χ̂(L−nξ)

=
n−1∏
j=0

φt(L
−jξ) χ̂(L−nξ)

The last term acts essentially as a cut-off function supported on [−Ln, Ln].
We omit the calculations and pigeonholing steps required at this point.

We also pass from the set of bad directions E to a certain subset of it of
proportional size; for simplicity, we will continue to denote this set by E
here. Finally, we rescale the resulting Fourier transforms so that the relevant
integrals live on the interval [0, 1]. The conclusions are summarized in the
next proposition.
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Proposition 2.2. To prove Theorem 1.2, we need only prove the following:
Let ε0 > 0 be sufficiently small, N

4
≤ n ≤ N

2
, and assume that

|E| ≥ K−1/2 (2.3)

Then there is a t ∈ E such that∫ 1

L−m

n∏
j=1

|φt(Ljξ)|2dξ ≥ cKL−nN−αε0 (2.4)

for some constants c, α > 0, depending on A and B but not on ε0.

Here m is much smaller than n: if A(3) ≡ B(3) ≡ 1, we let m = c0 logN
(rounded to an integer), otherwise m = c0

logN
log logN

.
We have not discussed the case of general self-similar sets as in Theo-

rem 1.2 (iii), where the similarity centers do not necessarily form a rational
product set. For such sets, the same general outline is followed so far and
Proposition 2.2 still applies. We still have a counting function fn,t and a
trigonometric polynomial φt(ξ), although φt need not factorize as above and
the powers of e2πiξ need not be integer. We set K ≈ exp(ε0

√
logN) and

m ≈ ε0
√

logN , which at the end of the day yields the bound exp(−c
√

log n)
on the Favard length of En.

3 Trigonometric polynomial estimates

3.1 The separation of frequencies

Before we proceed further, it is important to understand a major issue arising
in (2.4). At first sight, there might seem to be little difference between
the integral in (2.4) and a similar integral taken from 0 to 1. These two
integrals, however, may actually behave very differently, depending on the
trigonometric polynomial being integrated.

As a warm-up, we will try to estimate
∫ 1

0
|P (ξ)2dξ, where

P (ξ) =
n∏
j=1

φt(L
jξ).
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The following argument is based on an idea of Salem. We write P (ξ) as a
long trigonometric polynomial P (ξ) = L−n

∑
α∈A e

2πiαξ, where A ⊂ R and
|A| = Ln. (Note that α need not be integer, otherwise we could simply

evaluate the integral directly.) We have P (ξ) = P (−ξ), so that
∫ 1

0
|P |2 =

1
2

∫ 1

−1
|P |2. Let h(x) = 1[0,1/2] ∗ 1[−1/2,0], then 0 ≤ h ≤ C, supph ⊂ [−1, 1]

and ĥ ≥ 0. Therefore∫ 1

0

|P (ξ)|2dξ ≥ C−1

∫ 1

−1

|P (ξ)|2h(ξ)dξ

= C−1L−2n
∑
α,α′

∫
h(ξ)e2πi(α−α′)ξdξ

= C−1L−2n
∑
α,α′

ĥ(α− α′)

≥ C−1L−2n
∑
α=α′

ĥ(0)

≥ C−1L−2n|A| = C−1L−n.

(3.1)

This would be a perfectly good bound for us to use, if we could get it for the
slightly smaller interval in (2.4) instead. There, however, lies the crux of the
matter. Many trigonometric polynomials peak out at 0, then become very
small outside a neighbourhood of it. (This would for example happen with
high probability for P (ξ) = L−n

∑
α∈A e

2πiαξ if the exponents α were chosen
at random from some large interval, instead of being given by a self-similar
set.) The inequality (3.1) is therefore of little use to us, given that the main
contribution to the integral is expected to come from the peak at 0, and we
are trying to bound from below a part of the integral that could well be much
smaller by comparison.

The reader might ask at this point why we need to integrate on [L−m, 1]
instead of [0, 1] in the first place. This comes from the pigeonholing argu-
ments that we skipped in the previous section. Roughly, if P (ξ) were indeed
too close to a rescaled Dirac delta function at 0, then fn (as its rescaled in-
verse Fourier transform) would be close to a constant function, as in Figure
5. This is exactly the type of behaviour that we are trying to disprove, or at
least confine to a small set of projection angles. Instead, we are looking for
irregularities of distribution of fn, associated with somewhat large values of
P (ξ) away from 0.

If we separate P (ξ) into low and high frequencies, it turns out that we

14



have much better control of the high frequency part of P . We will write
P = P1P2, where

P1(ξ) =
n∏

j=m+1

φt(L
jξ), P2(ξ) =

m∏
j=1

φt(L
jξ),

It is immediate to verify that the argument in (3.1) also yields∫ 1

0

|P1(ξ)|2dξ ≥ C−1Lm−n. (3.2)

Crucially, now we also have some control of what happens on [L−m, 1].

Lemma 3.1. For t ∈ E, we have

I0 :=

∫ L−m

0

|P1|2 ≤ C0KL
−n. (3.3)

Assuming that K < cLm for some small enough constant, we now have∫ 1

L−m

|P1|2 ≥ (2C)−1Lm−n

That would still do us little good if most of this integral lived on the part of
[L−m, 1] where P2 is very small. We must therefore prove that this is not the
case.

Currently, there are two ways of doing this: the SSV method used in [18],
[11], [4], [5], [3], and the SLV method of [3]. We present them in Sections
3.2 and 3.3, respectively. In the proof of Theorem 1.2 (ii) in [3], the two
methods are combined together so that the SSV method is applied to the
factors A(i), B(i) with i = 1, 3 (we will call them SSV factors), and the SLV
method handles the factors A(2), B(2) (SLV factors). This is done by proving
an SLV bound first and then subtracting the SSV intervals from the SLV set.
In order to keep the exposition as simple as possible, I will present each of
the two methods separately, assuming that only one type of factors is present
at a time.

3.2 SSV estimates

The results in [18], [4], [5], [11], and parts of [3], rely on estimates on the size
of the Set of Small Values (SSV) of P2, which we now define. For a function
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ψ : N→ (0,∞), with ψ(m)↘ 0 as m→∞, we write

SSVt = {ξ ∈ [0, 1] : |P2(ξ)| ≤ ψ(m)} (3.4)

Suppose that we can prove that for some t ∈ E ,∫
[L−m,1]∩SSVt

|P1(ξ)|2dξ ≤ C−1

2
Lm−n. (3.5)

Then by (3.2), the integral on [0, L−m]∪([L−m, 1]\SSVt) is at least C−1

2
Lm−n.

Assume also that this dominates (3.3) as explained in the last section. Since
on the complement of SSVt we have |P2| ≥ ψ(m), we get that∫

[L−m,1]\SSVt
|P (ξ)|2dξ ≥ cLm−nψ(m)2, (3.6)

which of course also provides a bound from below on
∫ 1

L−m |P (ξ)|2dξ.
In order for us to be able to apply Proposition 2.2, this bound must be at

least as good as (2.4). This depends on the choices of ψ and K. Our method
of proving estimates of the form (3.5) will depend on the SSV property defined
below, and ψ must be chosen so as for φt to have this property. This puts
limits on how large the parameter K is allowed to be, and at the end of the
day, determines the type of Favard length bounds that we are able to get.

Definition 3.2. We say that φt has the SSV property with SSV function ψ
if there exist c2, c3 > 0 with c3/c2 sufficiently large (to be determined later)
such that SSVt is contained in Lc2m intervals of size L−c3m.

The function ψ depends on A and B. If A(3) ≡ B(3) ≡ 1, we will have
ψ(m) = L−c1m; otherwise, we set ψ(m) = L−c1m logm. This matches our
choices of K := N ε0 and K := N ε0/ log logN , respectively.

For periodic trigonometric polynomials such as φA, the SSV property can
be thought of as a condition on the separation of the roots of P1. Generically,
if P1 has at most Lc2m roots, all of multiplicity bounded uniformly in m and
roughly equally spaced, the SSV property holds with c3 arbitrarily large
provided that c1 was chosen to match it. (The values of P1 become smaller
as we zoom in closer to the roots, but the number of intervals needed for this
stays constant.) On the other hand, high multiplicity roots of P1 can lead to
SSV violations.
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The argument we present here was first used in [18] for the 4-corner
set. Its subsequent applications in [11], [4], [3] relied on much more general
number-theoretic input, in the sense that the SSV property was extended to
wider classes of sets, but the calculation in Proposition 3.3 continued to be
used with relatively few substantive changes.

Our proof of Proposition 3.3 relies strongly on the fact that En is a prod-
uct set, which will allow us to separate variables in the double integrals
below. For non-product self-similar sets (Examples 2 and 4) with L = 3 and
4, there is a “pseudofactorization” substitute for this, where the trigonomet-
ric polynomials in question do not actually factor into functions of a single
variable, but can nonetheless be estimated from below by combinations of
such functions. This was done in [4] for L = 3 and in [3] for L = 4.

For non-product sets with L ≥ 5, the SSV property is still used, but
the argument below must be replaced by an entirely different one, based
on a variant of the Poisson localization lemma (Lemma 3.3). Moreover, we
can only get a weaker SSV property with ψ(m) = L−c1m

2
and must choose

K = exp(ε0
√

logN) to match that. This was done in [5], and yields the
result in Theorem 1.2(iii).

We now prove the result we need for product sets. Let

SSVA := {ξ ∈ [0, 1] : |P2,A(ξ)| ≤ ψ(m)},

SSVB(t) := {ξ ∈ [0, 1] : |P2,B(tξ)| ≤ ψ(m)}
where P2,A =

∏m
j=1 φA(Ljξ) and similarly for B. Then SSVt ⊆ SSVA ∪

SSVB(t). The SSV properties for φA and φB are defined in the obvious way.

Proposition 3.3. Suppose that ε0 is small enough, and that (2.3) holds.
Assume also that φA, φB have the SSV property. Then

I :=
1

|E|

∫ 1

0

∫
[L−m,1]∩SSVt

|P1,t(ξ)|2dξdt ≤ CLm−n

Since |E| ≤ 1, this in particular implies (3.5).

Proof. It suffices to estimate

IA :=
1

|E|

∫ 1

0

∫
[L−m,1]∩SSVA

|P1,A(ξ)P1,B(tξ)|2dξdt

the proof for the integral on SSVB(t) being similar.

17



We will need to split P1 further into frequency ranges, and we set up the
notation for this:

Am2
m1

(x) =

m2∏
k=m1+1

A(xL
k

),

and similarly for B. (Note that this is not normalized, so that P1,A(ξ) =
|A|m−nAnm(e2πiξ).) The reason for this is that high-frequency factors An` , with
` > m sufficiently large depending on the constants in the SSV estimates,
are well behaved on the SSV intervals of φA.

The following lemma is very simple, but we single it out because it will
ultimately provide the gain we seek.

Lemma 3.4. We have∫ ξ0+L−m1

ξ0

|Am2
m1

(e2πiξ)|2 dξ = |A|m2−m1L−m1

Proof. Expanding |Am2
m1
|2, we get

∫ ξ0+L−m1

ξ0

|Am2
m1

(e2πiξ)|2dξ =

∫ ξ0+L−m1

ξ0

|A|m2−m1∑
j1,j2=1

e2πiLm1 (λj1−λj2 )ξ dξ

where λj ∈ N are distinct. All terms with j1 6= j2 integrate to 0 by periodicity,
and each diagonal term contributes L−m1 .

We now return to the proof of Proposition 3.3. We may assume that
c2, c3 ≥ 2. Let also ` = c3m, and let Ji, i = 1, . . . ,M , be the SSV intervals
for φA that intersect [L−m, 1]. Then |Ji| = L−` and M ≤ Lc2m.

We begin by changing variables (ξ, t)→ (ξ, u), where u = ξt, dt = du/ξ.
Then

IA ≤
1

|E|
L−2(n−m)

M∑
j=1

∫
Ji

|Anm(e2πiξ)|2 dξ
ξ

∫ 1

0

|Bn
m(e2πiu)|2du

By Lemma 3.4,

IA ≤
|B|n−m

|E|
L−2(n−m)

M∑
j=1

∫
Ji

|Anm(e2πiξ)|2dξ
ξ
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≤ 2|B|n−m

|E|
L−2(n−m)Lm

M∑
j=1

∫
Ji

|Anm(e2πiξ)|2 dξ

where we also used that |ξ| ≥ L−m/2 on Ji. We now separate frequencies in
order to apply Lemma 3.4 to integration on Ji:∫

Ji

|Anm(e2πiξ)|2 dξ =

∫
Ji

|A`m(e2πiξ)An` (e2πiξ)|2dξ

≤ |A|2(`−m)

∫
Ji

|An` (e2πiξ)|2dξ

≤ |A|2(`−m)+(n−`)L−`

Hence

IA ≤
2|B|n−m

|E|
L−2(n−m)Lm−`M |A|n+`−2m =

2

|E|
L(c2+1)m

|B|(c3−1)m
L−n.

If c3 is chosen large enough so that |B|c3−1 ≥ Lc2+1, and if (2.3) holds, the
last expression is at most

2|E|−1L−n ≤ 4K1/2L−n < cLm−n

as required.

3.3 Salem’s argument on difference sets

The SSV argument in the last section is quite general and suffices to prove
a power bound for many self-similar sets including the 4-corner set and the
Sierpiński gasket in Examples 1 and 2. Unfortunately, it is not strong enough
quantitatively to yield a power bound for all self-similar sets, or even for all
rational product sets of the type discussed here. In this generality, we only
have an SSV estimate with ψ(m) = L−cm

2
, leading to the Favard length

bound in Theorem 1.2 (iii) [5]. It was observed in [3] that this is in fact the
best SSV estimate that we can have in the general case, basically because P1

may have very high multiplicity zeroes and therefore take very small values
in relatively large neighbourhoods of such zeroes. (The number-theoretic
reasons for such behaviour will be explained in more detail in Section 4.3.)

19



The SLV approach, introduced in [3], circumvents this difficulty as follows.
Although P2 may be unacceptably small on intervals too long to be negligible
for our purposes, it is still reasonably large on most of [0, 1]. This raises the
prospect of reworking the calculation in (3.1) so that the integration only
takes place on the set where P2 is not small and no SSV intervals need to be
subtracted afterwards.

This is indeed what we do in [3], with one major caveat. The argument in
(3.1) relies on the availability of a function h(ξ) supported on [−1, 1] whose
Fourier transform is non-negative. In general, if we replace [−1, 1] by a subset
G of it, the existence of such a function can no longer be taken for granted.
However, if G contains a difference set

Γ− Γ := {x− y : x, y ∈ Γ}

for an appropriate Γ (in our application, a finite union of intervals), then
such a function can in fact be constructed, and we will do so below.

The challenge is to get a good enough bound from below on the resulting
integral. Specifically, we must have∫

G

|P1|2 ≥ CKL−n (3.7)

with C > C0, where C0 is the constant in Lemma 3.3. This will allow
us to remove the interval [0, L−m] from G and still get the lower bound in
(2.4). Given that (3.3) is essentially optimal, the requirement (3.7) cannot
be relaxed.

This leads to competing demands on G, therefore on Γ: on one hand,
the difference set Γ − Γ has to avoid the high multiplicity zeroes of P1, and
on the other hand, it also must be large enough for (3.7) to hold. A major
challenge in this approach is to make sure that the two conditions can be
satisfied simultaneously.

Our use of difference sets in this context was inspired by similar calcula-
tions on Bohr sets associated with exponential sums in additive combinatorics
(see e.g. [6]). Unfortunately, the usual additive-combinatorial lower bounds
on the size of such sets are not sufficient for our purposes, as they fail to
ensure (3.7). Instead, our set Γ will be tailored to the problem, based on
specific number-theoretic information regarding the cyclotomic divisors of
A(x) and B(x). We defer a discussion of this issue until the next section,
focusing for now on obtaining the lower bound in (3.7) if Γ is given.
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Definition 3.5. We say that φt is SLV-structured if there is a Borel set
Γ ⊂ [0, 1] (the SLV set) and constants C1, C2 such that:

m∏
k=1

|φt(Lkξ)| ≥ L−C1m on Γ− Γ, (3.8)

|Γ| ≥ C2KL
−m. (3.9)

Proposition 3.6. Suppose that φt0(ξ) is SLV-structured. Then (2.4) holds
for t = t0.

Proof. Similarly to (3.1), we write P1(ξ) =
∑

α∈A e
2πiαξ (note that |A| =

Ln−m). Observe that |Pi(ξ)| = |Pi(−ξ)|, i = 1, 2, so that the integrands
below are symmetric about the origin.

Let h = |Γ|−11Γ ∗ 1−Γ, then 0 ≤ h ≤ 1 and ĥ = |Γ|−1|1̂Γ|2 ≥ 0. Hence∫
Γ−Γ

|P1(ξ)|2 ≥
∫

Γ−Γ

|P1(ξ)|2h(ξ)dξ

≥ CL−2(n−m)
∑
α,α′

∫
Γ−Γ

h(ξ)e2πi(α−α′)ξdξ

≥ CL−2(n−m)
(∑

α

∫
Γ−Γ

h(ξ)dξ +
∑
α 6=α′

ĥ(α− α′)
)

≥ CL−2(n−m)Ln−m|Γ| = CLm−n|Γ|
≥ CC2KL

−n,

where at the last step we used (3.9). Comparing this with (3.3), we get∫
(Γ−Γ)\[−L−m,L−m]

|P1(ξ)|2dξ ≥ C0KL
−n,

hence using also (3.8),∫ 1

L−m

|P1(ξ)|2 |P2(ξ)|2 dξ & C0KL
−nL−2C1m & KL−nN−αε0

for some α > 0. The last inequality holds by the choice of m.
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4 The number-theoretic part

We now show how the SSV and SLV properties required to prove Theorem 1.2
(ii) for rational product sets follow from number-theoretic properties of A(x)
and B(x). Throughout this section we will be referring to the factorization
in Definition 1.3. For simplicity, we will focus on product sets where only
one type of SSV or SLV factors is present at a time: SSV cyclotomic factors
in Section 4.1, SSV non-cyclotomic factors in Section 4.2, and SLV factors
in Section 4.3. This provides a good introduction to the main ideas while
minimizing the technicalities. Generalizing the construction in Section 4.3
depends on a more detailed analysis of the possible SLV cyclotomic divisors
of A(x). We discuss this in Section 4.4.

4.1 Telescoping products

We begin with the case when A(x) and B(x) only have SSV factors of the
first type.

Proposition 4.1. Suppose that the only roots of A(x), B(x) on the unit circle
are roots of cyclotomic polynomials Φs(x) with (s, L) 6= 1. Then φt(ξ) has
the SSV property with constants uniform in t.

Proposition 4.1 was first proved (in a somewhat camouflaged form) in
[18] for the special case of the 4-corner set. The subsequent papers [11], [3]
made it more explicit and extended it to all factors A(1)(x), B(1)(x) as in
Definition 1.3. For simplicity of exposition, we only prove the proposition for
the 4-corner set, then discuss the general case very briefly.

Proof. We have A = B = {0, 3} and L = 4. Then

A(x) = 1 + x3 = (1 + x)(1− x+ x2) = Φ2(x)Φ6(x)

and neither 2 nor 6 are relatively prime to 4, so that this is indeed a special
case of Proposition 4.1. We will take advantage of the identity

A(x)B(x2) = (1 + x3)(1 + x6) = 1 + x3 + x6 + x9 =
x12 − 1

x3 − 1
. (4.1)

Iterating (4.1), we can express the long products appearing in P2 in a closed
form:

m∏
j=1

A(x4j)B(x2·4j) =
m∏
j=1

x3·4j+1 − 1

x3·4j − 1
=
x3·4m+1 − 1

x12 − 1
(4.2)
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In particular, the zeroes of
∏m

j=1 A(e2πi4jξ) all have multiplicity 1 and are

contained in the arithmetic progression (3 · 4m)−1Z. This controls the sets of
small values of P2,A and P2,B simultaneously:

|P2,A(ξ)| = 2−m
m∏
j=1

|A(x4j)| = 2−m
∏m

j=1 |A(x4j)B(x2·4j)|∏m
j=1 |B(x2·4j)|

≥ 1

2 · 4m
∣∣∣e2πi3·4m+1ξ − 1

∣∣∣
so that φA has the SSV property, with

{ξ : |P2,A(ξ)| ≤ 4−mδ} ⊂
⋃
a∈Z

(
a− cδ

3 · 4m+1
,
a+ cδ

3 · 4m+1

)
Of course, a similar argument applies to φB.

The identity (4.1) has a natural geometric interpretation: the projection
of the 4-corner set on a line with slope 2 (the exponent of x in B(x2)) is a
line segment. This was used in [11], where an analogous identity in more
general cases was deduced from the “tiling” condition that |projθ0(E∞)| > 0
for some direction θ0. The argument was extended to its present generality
in [3]. In this setting, there need not be a single identity such as (4.1) that
covers all zeroes of P2,A and P2,B simultaneously, but we can still get the SSV
estimate from similar telescoping products for individual cyclotomic factors
of A and B.

4.2 Non-cyclotomic roots

Consider now the case when A(x), B(x) have roots on the unit circle that
are not roots of unity. To see that this indeed may happen, let A = B =
{0, 3, 4, 5, 8} and L = 25. Then A(x) = 1 + x3 + x4 + x5 + x8 has 4 roots on
the unit circle, all of which are non-cyclotomic. (Namely, the roots are e2πiωj

with ω1 ≈ 0.316, ω2 ≈ 0.457, ω3 ≈ 0.543, ω4 ≈ 0.684).
The argument below is due to [3], and relies on a version of Baker’s

theorem in transcendental number theory. Roughly speaking, the theorem
states that if e2πiξ0 is a root of A(x) with ξ0 ∈ R \ Q, then ξ0 cannot be
approximated too well by rational numbers. The precise statement we need
is a corollary of Theorem 9.1 of [26].
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Theorem 4.2. If ξ0 ∈ R is irrational and z0 = e2πiξ0 is algebraic, then for
any integers a, q with q > 0 we have∣∣∣ξ0 −

a

q

∣∣∣ ≥ C0

qα
, (4.3)

where C0 > 0, α > 1 are positive constants that may depend on ξ0, but are
independent of a, q.

Based on this, we can prove the following.

Proposition 4.3. Suppose that all roots of A(x) on the unit circle are non-
cyclotomic. Then A(x) has the log-SSV property.

To prove Proposition 4.3, it suffices to consider separately each factor
ϕ(ξ) = e2πiξ − e2πiξ0 , where ξ0 ∈ [0, 1] \ Q and A(e2πiξ0) = 0. Note that for
j = 0, 1, . . . ,m− 1, the zeroes of ϕ(Ljξ) are L−j(ξ0 + k), k ∈ Z. We wish to
prove that these zeroes do not accumulate too closely.

The main observation is the following. Let j′ > j, then the distance
between any two roots of ϕ(Ljξ) and ϕ(Lj

′
ξ) respectively is∣∣∣∣ξ0 + k

Lj
− ξ0 + k′

Lj′

∣∣∣∣ =
Lj
′−j − 1

Lj′

∣∣∣∣ξ0 +
a

Lj′−j − 1

∣∣∣∣ (4.4)

for some a ∈ Z. By (4.3),

(4.4) ≥ Lj
′−j − 1

Lj′
C0

(Lj′−j − 1)α
≥ C0L

−jL−(j′−j)α.

A counting argument converts this into the log-SSV property; see [3] for
details.

It is this part of the argument that causes the loss of log log n in the
exponent in (1.3). If A(x) and B(x) have no roots on the unit circle that
are not roots of unity, then this section may be omitted altogether, and our
methods yield the stronger power bound on the Favard length of the set.

Naturally, the question arises whether the current argument could be
improved to yield the stronger SSV property and hence the Favard power
bound. It is not difficult to check that this cannot be accomplished by using
so-called effective versions of Theorem 4.2. Any diophantine result of the
form (4.3), regardless of the values of C0 and α, still yields only the log-SSV
property. On the other hand, Baker’s theorem is very general, and it could
be possible to develop a better argument based on information specific to the
problem. For instance, our proof does not really invoke approximating ξ0 by
arbitrary rationals, but only by those in (4.4).
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4.3 The construction of Γ

We now turn to SLV factors, starting with an instructive special case. Let
A = B = {0, 3, 4, 8, 9} and L = 25. Then A(x) = B(x) = 1+x3+x4+x8+x9,
which is divisible by Φ12(x) = 1− x2 + x4. We claim that the long products

m∏
j=1

A(x25j),
m∏
j=1

B(x25j)

have zeroes of very high multiplicity on the unit circle. Indeed, let z0 be a
root of Φ12, say z0 = eπi/6. Since 12 is relatively prime to 25, the numbers
e25jπi/6 for j = 1, 2, . . . are again roots of Φ12, hence also roots of A(x). It
follows that z0 is a root of A(x25j) for all j = 1, . . . ,m, hence a root of the
long product with multiplicity m. Similarly, roots of Φ12(x25k) are roots of
A(x25j) for j = k, . . . ,m, hence they are also high multiplicity roots of the
long product as long as k is reasonably small compared to m. This yields
a large number of high multiplicity zeroes that cannot be handled by SSV
methods. (The same argument applies of course to B.)

In cases such as this, we need to construct Γ as specified in Section 3.3.
More precisely, we will construct sets Γ ⊂ [0, 1] and ∆ ⊂ R such that

Γ− Γ ⊂ ∆ (4.5)

m−1∏
j=0

|φA(25jξ)φB(25jtξ)|2 ≥ 25−C1m for ξ ∈ ∆ (4.6)

|Γ| ≥ C2 25−(1−ε)m for some ε > 0. (4.7)

The interested reader may check that A(x) and B(x) have no roots on
the unit circle other than the roots of Φ12(x), hence the construction will
resolve the problem entirely in this particular case, yielding a power bound
on the Favard length of En.

We first construct a set ∆0 disjoint from the set of small values of φA(ξ) =
1
5
A(e2πiξ). Let Λ = { 1

12
, 5

12
, 7

12
, 11

12
} + Z, so that e2πiλ for λ ∈ Λ are exactly

the zeroes of Φ12. We want ∆0 to avoid a neighbourhood of Λ. The key
observation is that all points of 1

6
Z are at distance at least 1/12 from Λ,

hence we may take ∆0 to be a neighbourhood of 1
6
Z. We are using here that

6 divides 12, but φ0 does not vanish at any 6-th root of unity; this is the
property that we will try to generalize in the next subsection.
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We now turn to the details. Let

∆0 =
1

6
Z +

(
− η

12
,
η

12

)
for some η ∈ (0, 1). Then there is a constant c = c(η) > 0 such that

φ0(ξ) ≥ c for ξ ∈ ∆0.

Crucially, since ∆0 was defined as a neighbourhood of the additive group 1
6
Z,

it can be expressed as a difference set. For example, we have

∆0 = Γ0 − Γ0, Γ0 =
1

6
Z +

(
0,
η

12

)
.

This will be our basis for the construction of Γ. By scaling, we have

φA(25jξ) ≥ c for ξ ∈ ∆j :=
25−j

6
Z +

(
− 25−jη

12
,
25−jη

12

)
,

and similarly,

φB(25jtξ) ≥ c for ξ ∈ t−1∆j :=
25−j

6t
Z +

(
− 25−jη

12t
,
25−jη

12t

)
.

Letting ∆ =
⋂m−1
j=0 (∆j ∩ t−1∆j), we get (4.6) with C1 = logL

4 log(1/c)
.

It is tempting now to choose

Γ =
m−1⋂
j=0

(Γj ∩ t−1Γj) ∩ [0, 1]

with Γj := 25−j

6
Z+

(
0, 25−jη

12

)
. Then Γ−Γ ⊂ ∆, and since each Γj has density

η/2 in R (in the obvious intuitive sense), we might expect that

|Γ| ≥
(η

2

)2m

(4.8)

which is greater than 25−(1−ε)m as long as ε < 1 − log 4−2 log η
log 25

(note that the

last fraction is less than 1 if η is close to 1). In reality, this turns out to be
a little bit too optimistic; however, if we instead define

Γ =
m−1⋂
j=0

(Γj + τj) ∩ (t−1Γj + τ ′j) ∩ [0, 1]

and average over the translations τj, τ
′
j, we find that there is a choice of τj, τ

′
j

such that (4.8) holds. Of course, the new Γ still satisfies Γ− Γ ⊂ ∆.
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4.4 The cyclotomic divisors of A(x)

In order to generalize the construction in Section 4.3 to a wider class of sets,
we need to study vanishing sums of roots of unity. Let z1, . . . , zk be N -th
roots of unity (not necessarily primitive). When can we have

z1 + · · ·+ zk = 0? (4.9)

This is relevant to our problem for the following reason. The construction
of the set Γ depends on the divisibility of A,B by cyclotomic polynomials.
Since Φs is irreducible, it divides A(x) if and only if

A(e2πi/N) =
∑
a∈A

e2πia/N = 0.

This is a vanishing sum of roots of unity as in (4.9). It is therefore in our
interest to obtain effective characterizations of such sums, with N = lcm(SA)
and

SA = {s : Φs|A, (s, |A|) = 1}.

Fortunately, the subject has been studied quite extensively in number theory,
see e.g. [7], [14], [15], [20], [21], [22], [23], [8], [9].

Clearly, one instance of (4.9) is when k divides N and z1, . . . , zk are k-th
roots of unity:

k−1∑
j=0

e2πij/k = 0.

Geometrically, this is represented by a regular k-gon on the unit circle. It
is easy to construct further examples by rotating such regular polygons or
adding them together. For example, adding a regular k-gon and a rotated
regular k′-gon

k−1∑
j=0

e2πij/k + e2πi/r

k′−1∑
j′=0

e2πij′/k′ = 0

produces another vanishing sum of N -th roots of unity, provided that N is
divisible by lcm(k, k′, r).

A fundamental theorem of Rédei [21], [22], de Bruijn [7] and Schoenberg
[23] asserts that in fact all vanishing sums of roots of unity can be represented
in this manner, provided that we are allowed to subtract polygons as well.
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Theorem 4.4. Every vanishing sum of roots of unity (4.9) can be represented
as a linear combination of regular polygons with integer (positive or negative)
coefficients.

It is important to note that linear combinations of polygons with positive
coefficients are not sufficient. For example, let

e2πi/5 + e4πi/5 + e6πi/5 + e8πi/5 + e5πi/3 + eπi/3

=
4∑
j=0

e2πij/5 −
2∑

j′=0

e2πij′/3 + (e2πi/3 + e5πi/3) + (eπi/3 + e4πi/3)

This is a vanishing sum of roots of unity, represented here as (pentagon) −
(triangle) + (2 line segments). It cannot, however, be written as a linear
combination of regular polygons with positive coefficients.

What we need is an effective version of Theorem 4.4. Essentially, we
want to be able to control the number and size of the polygons used in the
decomposition relative to the size of A. Theorem 4.4, as it stands, does not
preclude the possibility that a vanishing sum with few non-zero terms can
only be represented by combining many positive and negative large polygons
with massive cancellations between them. This is what we wish to avoid.

Some quantitative results of this type are already available in the litera-
ture:

• (de Bruijn [7]) If N = pαqβ, with p, q prime, then any vanishing sum of
N -th roots of unity is a linear combination of p-gons and q-gons with
nonnegative integer coefficients. In particular, |A| ≥ min(p, q).

• (Lam-Leung [14]) If N =
∏
p
αj

j , then |A| =
∑
ajpj, where aj are

nonnegative integers. In particular, |A| ≥ min{pj}.

For comparison, here is a condition from [3] under which the construction
of Γ from Section 4.3 generalizes in a very direct manner.

Proposition 4.5. Suppose that we can write N = PQ with P,Q > 1 so that:

• s does not divide Q for any s ∈ SA,

• |A| > P .

Suppose also that a similar statement holds for B. Then φt is SLV-structured
for every t ∈ [0, 1].
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The above suffices to prove the results in [3] for |A|, |B| ≤ 6. If |A| =
2, 3, 4, or 6, we can use structural results such as Theorem 4.4 to prove that
A(x) cannot in fact be divisible by Φs with s relatively prime to |A|. If on
the other hand |A| = 5, such divisors are indeed possible, as the example
in Section 4.3 shows. Moreover, there may be many such divisors. We are,
however, able to prove that all values of s such that Φs|A and (s, |A|) = 1
have the form s = 2α3βm(s), where α, β are the same for all s and m(s) is
relatively prime to 6. Thus, Proposition 4.5 applies with P = 2 or 3.

Clearly, the size restrictions on A and B are not needed if A and B are
given explicitly and if the assumptions of Proposition 4.5 can be verified
directly. There are, however, examples of sets for which these assumptions
are not satisfied. To extend Theorem 1.2 (ii) to all rational product Cantor
sets (with no size restrictions on A,B), we would need a more general result.

In follow-up work to [3], Matthew Bond and I formulated the following
conjecture and verified it in a number of special cases, including some where
the assumptions of Proposition 4.5 fail to hold. We do not know of any
counterexamples.

Conjecture 4.6. For any A(x) as above, there is a Q|N such that

• s does not divide Q for any s ∈ SA,

• |A| > T , where

T = max{ s

(s,Q)
: s ∈ SA}

The conditions in Conjecture 4.6 are sufficient to allow a construction of
Γ along lines similar to those in Section 4.3 and Proposition 4.5. Therefore,
proving the conjecture would also remove the size restriction from Theorem
1.2 (ii). Unfortunately, we do not know how to do this at this time.

5 A Favard length estimate for random sets

Following [19], we construct a “random 4-corner set” G∞ =
⋃∞
n=1 via a ran-

domized Cantor iteration process. Partition the unit square into 4 congruent
squares of sidelength 1/2. In each of these squares, choose one of the 4 dyadic
subsquares of length 1/4, independently and uniformly at random. This pro-
duces the set G1 consisting of 4 squares of sidelength 1/4, one in each of the
4 squares of length 1/2. We continue by induction: assume that we have
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already constructed the set Gn consisting of 4n dyadic squares of sidelength
4−n. Subdivide each of the squares of Gn into 4 squares of length 4−n/2,
and in each of those, choose a dyadic square of sidelength 4−n−1, uniformly
and at random. All the random choices are made independently between
different parent squares, and also independently of all the previous steps of
the construction.

Figure 7: The first iteration of a random 4-corner set. The 4 selected live
squares have addresses 02, 13, 21, 33.

Theorem 5.1. [19] We have

E(Fav(Gn)) ≤ Cn−1. (5.1)

Proof. This is a simplified and streamlined version of the argument in [19].
We will use the convention that whenever a dyadic square in the plane is

partitioned into 4 congruent dyadic squares, these subsquares will be labelled
0, 1, 2, 3 counterclockwise starting with the lower left corner. Thus each
square Q in Gn has an address g = g1x1 . . . gnxn, where gi, xi ∈ {0, 1, 2, 3},
defined in the obvious way. Here gi is the label of the deterministic square of
sidelength 2 · 4i, and xi is the label of the random square of sidelength 4−i.

We will say that a square Q ∈ Gn with address g is essential if each digit
g ∈ {0, 1, 2, 3} appears at least δn times in the sequence g1 . . . gn, where δ > 0
is sufficiently small (to be fixed below) but independent of n. Otherwise, Q
is non-essential.
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Lemma 5.2. The number of non-essential squares in Gn is bounded by
C4(1−ε)n for some ε = ε(δ) > 0.

Proof. It suffices to estimate the number of squares such that a fixed g ∈
{0, 1, 2, 3} appears at most δn times in the sequence gi. We bound this
number by ∑

j≤δn

(
n

j

)
4j 3n−j =

∑
j≤δn

(
n

j

)
4n
(

3

4

)n−j
Assuming that n is large and δ < 0.1, we can bound this by

δn

(
n

bδnc

)
4n
(

3

4

)n−δn
. (5.2)

By Stirling’s formula,

ln

(
n

bδnc

)
= ln(n!)− ln((n− δn)!)− ln((δn)!)

= n lnn− (n− δn) ln(n− δn)− δn ln(δn) + o(1)

= c(δ)n+ o(1),

where

c(δ) = (1− δ) ln
1

1− δ
− δ ln

1

δ
→ 0 as δ → 0.

Hence for sufficiently large n and small δ > 0,

(5.2) ≤ δnec(δ)n+o(1)4n
(

3

4

)n−δn
≤ 4n

(
3

4

)n−δn/2
≤ 4n(1−ε).

Lemma 5.3. Let Gn be as above. Then for almost every slope t (except
for the zero-measure set of directions given by lines that hit more than one
vertex), whenever a line ` with slope t intersects an essential square Qn, the
expected number of squares of Gn hit by ` is at least δn/2.

Proof. For g ∈ {0, 1, 2, 3}, we will say that a square Qn of Gn has type g if g
appears in its address at least δn times. It suffices to prove that for every t
as in the lemma, there is a g such that the conclusion of the lemma follows
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whenever Qn has type g. This implies the lemma, since each essential square
has type g for all g ∈ {0, 1, 2, 3}.

Let 0 < t < 1; other cases follow by symmetry. If Qn is a square of Gn,
we will use Qj to denote the ancestor of Qn in Gj.

Suppose that ` intersects a type 0 square Qn with address g. Then there
are at least δn scales j such that gj+1 = 0. For each such scale, Qj is a
live square of Gj, and Qj+1 lies within the lower left dyadic subsquare of Qj

of sidelength 4−j/2. By basic geometry, ` has to intersect at least 4n−j/2
dyadic squares of sidelength 4−n in Qj \ Qj+1, and each of these squares
has probability 4−(n−j) of being a live square of Gn. Thus with probability
at least 1/2, the line ` will intersect at least one live n-th iteration square
contained in Qj \ Qj+1. Since the sets Qj \ Qj+1 are mutually disjoint, the
lemma follows.

This implies (5.1) as follows. By Lemma 5.2, the non-essential squares
contribute at most O(4−εn) to (5.1). On the other hand, whenever a line in
a non-exceptional direction hits an essential square, the expected number of
squares it hits is at least δn/2 by Lemma 5.3, so the projection of the set of
essential squares in almost every direction has expected length bounded by
C/δn.

Acknowledgement. The author is supported in part by NSERC Discovery
Grant 22R80520.

References

[1] M. Bateman, A. Volberg, An estimate from below for the Buffon needle
probability of the four-corner Cantor set, Math. Res. Lett. 17 (2010),
959-967.

[2] M. Bond, Combinatorial and Fourier Analytic L2 Methods For Buffon’s
Needle Problem, http://bondmatt.wordpress.com/2011/03/02/thesis-
second-complete-draft/.

[3] M. Bond, I.  Laba, and A. Volberg, Buffon needle estimates for rational
product Cantor sets, arXiv:1109.1031.

32



[4] M. Bond, A. Volberg: Buffon needle lands in ε-neighborhood of
a 1-dimensional Sierpinski Gasket with probability at most | log ε|−c,
Comptes Rendus Mathematique, Volume 348, Issues 11-12, June 2010,
653–656.

[5] M. Bond, A. Volberg: Buffon’s needle landing near Besicovitch irregular
self-similar sets, http://arxiv.org/abs/0912.5111

[6] J. Bourgain: On triples in arithmetic progressions, Geom. Funct. Anal.
9 (1999), 968–984.

[7] N.G. de Bruijn: On the factorization of cyclic groups, Indag. Math. 15
(1953), 370–377.

[8] J.H. Conway, A.J. Jones: Trigonometric diophantine equations (On van-
ishing sums of roots of unity), Acta Arithmetica 30 (1976), 229–240.

[9] D. Coppersmith, J.P. Steinberger: On the entry sum of cyclotomic ar-
rays, Integers: the Electronic Journal of Combinatorial and Additive
Number Theory, 6 (2006), # A26.

[10] R. Kenyon, Projecting the one-dimensional Sierpiński gasket,
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