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1 Introduction

The 4-corner Cantor set is constructed as follows. Start with the unit square
[0, 1]2, divide it into 16 congruent squares, and keep the 4 squares on the
corners, discarding the rest. This will be K1, the first iteration of our set.
Repeat the procedure within each of the 4 selected squares to produce the
second iteration K2, consisting of 16 squares. Continue the iteration indefi-
nitely. The resulting set K =

⋂∞
n=1 Kn is an example of a fractal self-similar

set of dimension 1. It is sometimes also called the “Garnett set”, after John
Garnett used it as an example of a set with positive 1-dimensional length
and zero analytic capacity in the theory of analytic functions.

We would like to understand the 1-dimensional projections of K. Let
projθ(x, y) = x cos θ + y sin θ be the projection of (x, y) on a line making an
angle θ with the positive x-axis (we use the convention that all projections are
treated as subsets of R). By a theorem of Besicovitch, we have |projθ(K)| = 0
for almost every θ ∈ [0, π]. This is true e.g. for θ = 0 and π/2. There are,
however, infinitely many “exceptional” θ for which projθ(K) has positive
measure; we invite the reader to verify this for θ = tan−1(2) and tan−1(8).

In general, the projections of the finite iterations Kn can be quite com-
plicated, due to the overlaps between the projections of the different squares
of Kn. However, we can still say something about the average projection of
Kn. Let

Fav(Kn) :=
1

π

∫ π

0

|projθ(Kn)|dθ. (1.1)

This is known as the Favard length (or “Buffon’s needle probability”) of Kn.
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By Besicovitch’s theorem, Fav(Kn) → 0 as n →∞; the question is, how
fast? The exact rate of decay is still unknown, but we have the following.

Theorem 1.1. [2], [7] We have

C1 log n

n
≤ Fav(Kn) ≤ C2,p

np
(1.2)

for all p < 1/6 and for some positive constants C1 and C2,p, where the second
constant may depend on p.

What about more general self-similar fractal sets? For example, we could
subdivide the initial square into L2 identical squares (instead of 16), choose
sets A, B ⊂ {0, 1, . . . , L−1}, and let E1 consist of those squares whose lower
left vertices are (a/L, b/L) for a ∈ A and b ∈ B. The iteration can then be
continued in a self-similar manner. If |A||B| = L (which we will assume from
now on), then the Cantor set E =

⋂∞
n=1 En has dimension 1.

Theorem 1.2. [6], [1] If En is as above, and if both A and B have at most
6 elements, then

C1

n
≤ Fav(En) ≤ C2

np/ log log n
(1.3)

for some positive C1, C2 and p.

Of the bounds in (1.2) and (1.3), the upper bounds are by far the more
difficult to prove. Power or near-power estimates were only attained in the
last few years, starting with the work of Nazarov, Peres and Volberg [7] and
continuing in [5], [3], [4], [1].

Much of the harmonic-analytic method of [7] can be extended to general
self-similar sets, yielding an upper bound of the form exp(−c

√
log N) [4].

The additional argument in [7] that upgraded this to a power bound for Kn

used a trigonometric identity that seemed specific to that set. The starting
point for my work with Zhai [5] was that this was in fact a manifestation of
the tiling properties of Kn, namely the existence of directions θ (as mentioned
above) for which projθ(K) has positive measure. In my paper with Bond and
Volberg [1], this was further rephrased and generalized in terms of divisibility
by cyclotomic polynomials, and it is this point of view that we adopt here.

In the setting of Theorem 1.2, the information we need concerns the
distribution of the zeroes (with multiplicity) of the trigonometric polynomial

PA,n(ξ) =
1

|A|n
n∏

j=1

A(e2πiLjξ) (1.4)
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where A(x) =
∑

a∈A xa, and the similarly defined PB,n(ξ). (Taking the limit
n →∞ in (1.4) yields the Fourier transform of the natural probability mea-
sure on the Cantor set proj0(E).)

The first example below corresponds to the tiling cases of [7], [5], [3].
The second and third capture the types of behaviour first treated in [1].
Recall that for s ∈ N, the s-th cyclotomic polynomial Φs(x) is the irreducible
polynomial whose roots are exactly the s-th primitive roots of unity (i.e.
e2πik/s with (k, s) = 1).

1. The tiling case. Let A = B = {0, 1} and L = 4. Then we have the
identity

n∏
j=1

A(e2πi4jξ)B(e4πi4jξ) =
1− e2πi4n+1ξ

1− e2πi4ξ
. (1.5)

(This, after a rescaling, corresponds to the set Kn and the “magic identity”
of [7].) Hence all roots of PA,n have multiplicity 1 and are distributed in an
arithmetic progression, a property that we can use to our advantage. The
work in [5], [1] extends this method to all cases where the only roots of A(x)
and B(x) on the unit circle are roots of cyclotomic polynomials Φs with
(s, L) 6= 1.

2. Non-cyclotomic roots. Let A = B = {0, 3, 4, 5, 8} and L = 25. Then
A(x) = 1+x3+x4+x5+x8 has 4 roots on the unit circle, all of which are non-
cyclotomic. There are no identities such as (1.5) in this case; nonetheless, a
version of Baker’s theorem in transcendental number theory tells us that the
roots of PA,n cannot be distributed too irregularly.

3. Repeated zeroes. Let A = B = {0, 3, 4, 8, 9} and L = 25. Then
PA,n(ξ) has very high multiplicity roots. To see this, note that A(x) =
1 + x3 + x4 + x8 + x9 is divisible by Φ12(x) = 1 − x2 + x4. Let z be a root
of Φ12, say z = eπi/6. Since 12 is relatively prime to 25, the numbers e25jπi/6

for j = 1, 2, . . . are again roots of Φ12, hence also roots of A(x).
In this case, we use a different method based on classical results on van-

ishing sums of roots of unity. Let z1, . . . , zk be s-th roots of unity (not
necessarily primitive). When can we have z1 + · · · + zk = 0? Clearly, this
happens if k divides s and z1, . . . , zk form a regular k-gon on the unit circle.
A theorem of Rédei-de Bruijn-Schoenberg tells us that all vanishing sums of
roots of unity are in fact linear combinations, with integer but not necessarily
positive coefficients, of such polygons. We were able to use this, along with
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further work of Lam and Leung, Mann, and others, to prove Theorem 1.2.
Although we can drop the restriction |A|, |B| ≤ 6 under additional conditions
on A(x) and B(x) in terms of their cyclotomic divisors, we do not know how
to do it in general. That would require new insights on a previously not
investigated aspect of a classical and probably very difficult problem.
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