
KELLER PROPERTIES FOR INTEGER TILINGS

BENJAMIN BRUCE AND IZABELLA  LABA

Abstract. Keller’s conjecture on cube tilings asserted that, in any tiling of Rd by unit
cubes, there must exist two cubes that share a (d− 1)-dimensional face. This is now known
to be true in dimensions d ≤ 7 and false for d ≥ 8. In this article, we investigate analogues
of Keller’s conjecture for integer tilings.

1. Introduction

1.1. Motivation. Let A ⊂ Z be a finite and nonempty set. We say that A tiles the integers
by translations if there exists a translation set T ⊂ Z such that every integer n ∈ Z can
be written uniquely as n = a + t with a ∈ A and t ∈ T . Informally, Z can be covered by
pairwise disjoint translates of A. We will refer to such A as an integer tile.

It is well known [18] that any tiling of Z by a finite set A must be periodic, so that there
exists an M ∈ N and a finite set B ⊂ Z such that T = B⊕MZ. Thus A⊕B⊕MZ = Z; in
other words, A⊕ B mod M is a factorization of the cyclic group ZM . We will write this as
A ⊕ B = ZM . Since translating an element of A or B by a multiple of M does not change
that property, we will consider A,B as subsets of ZM .

The tiling condition A ⊕ B = ZM has an equivalent formulation in terms of the divisor
sets of A and B. Fix M ∈ N; given two integers m,n ∈ Z, we will use (m,n) to denote their
greatest common divisor. For a finite set A ⊂ Z, we define the divisor set of A relative to
M :

(1.1) Div(A) = {(a− a′,M) : a, a′ ∈ A}.
Informally, we refer to the elements of Div(A) as the divisors of A.

Theorem 1.1. (Sands) Let A,B ⊂ ZM be sets. Then A⊕B = ZM is a tiling if and only if

(1.2) |A| |B| = M and Div(A) ∩ Div(B) = {M}.

Thus, if A⊕B = ZM , (1.2) says that each m|M with m ̸= M may belong to at most one
of Div(A) and Div(B). It does not, however, specify which divisors must actually occur in
Div(A) ∪ Div(B), nor does it say how they might be distributed between these two sets.

In this paper, we investigate the following question: must every tiling A⊕B = ZM satisfy

(1.3) M/p ∈ Div(A) ∪ Div(B) for some prime p|M?

While we are not able to resolve the problem in its full generality, we do have both positive
and negative results in this direction.

Our interest in the above question is motivated by several considerations. One is to advance
the understanding of the general structure of integer tilings. In this regard, the main open
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problem is the Coven-Meyerowitz conjecture [2], which we now describe briefly (see Section
8 for more details). For finite sets A,B ⊂ N ∪ {0}, we define their mask polynomials

A(X) =
∑
a∈A

Xa, B(X) =
∑
b∈B

Xb.

Then A⊕B = ZM is equivalent to

(1.4) A(X)B(X) = 1 + X + · · · + XM−1 mod (XM − 1).

This can be rephrased further in terms of the cyclotomic divisors of A(X) and B(X). Recall
that the s-th cyclotomic polynomial Φs(X) is the unique monic, irreducible polynomial
whose roots are the primitive s-th roots of unity. Equivalently, Φs can be computed from
the identity Xn − 1 =

∏
s|n Φs(X). Then we may rewrite (1.4) as

(1.5) |A||B| = M and Φs(X) |A(X)B(X) for all s|M, s ̸= 1.

Since Φs are irreducible, each Φs(X) with s|M and s ̸= 1 must divide at least one of A(X) and
B(X). Coven and Meyerowitz [2] proposed conditions on how these cyclotomic divisors may
be distributed between A(X) and B(X); the statement that all integer tiles must satisfy
these conditions has become known as the Coven-Meyerowitz conjecture. The conjecture
allows an equivalent statement in terms of the divisor sets defined in (1.1) [8, Proposition
3.4]. It has been proved in certain significant special cases [2, 9, 10], but remains open in
general and appears to be very difficult to resolve.

The recent papers [8, 9, 10] established a link between the Coven-Meyerowitz conjecture
and structural properties such as (1.3). Specifically, the approach in [9, 10] depends on
being able to find certain “fibered” structures in one or both of the tiles. This, in particular,
requires a stronger version of (1.3) to hold. Our main negative result, Theorem 1.6, provides
examples of integer tilings where such structures do not appear in either tile. This limits
the applicability of some of the methods of [9, 10] to tilings where M has a small number of
distinct prime factors. Conversely, if properties such as (1.3) can be established, they could
provide partial structural information in cases where the full conjecture is not available. We
discuss this in more detail in Section 8.

More generally, one can ask “how complicated can integer tilings really get?”. Given the
existing significant body of work on high-dimensional tilings with counterintuitive properties,
a natural direction of research is to try to use such examples to construct “pathological”
integer tilings. This connection can provide useful geometrical insights into properties of
integer tilings that might otherwise be difficult to visualize. For instance, the examples in
[12], [30] (disproving a conjecture of Sands [25] on factorization of finite abelian groups)
have a natural interpretation in terms of 3-dimensional cube tilings with “shifted columns”.
In [8, 9, 10], this geometrical interpretation played a significant role in the classification of
tilings of Zp2q2r2 , where p, q, r are distinct primes. In [7, 29], it was used to construct integer
tilings with long periods.

Keller’s conjecture on cube tilings (see Section 1.2 for the relevant background) stated that
in any tiling of Rd by translates of the unit cube, there must be two cubes that share a full
(d− 1)-dimensional face. The counterexamples found in [11, 16] provide an important class
of counterintuitive tilings in high dimensions. It is natural to ask whether such phenomena
have meaningful counterparts in the setting of integer tilings. Our question (1.3) is a natural
analogue of Keller’s face-sharing property. However, it turns out that the counterexamples in
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[11, 16] are not easily adapted; we are only able to use them to disprove a stronger property
than (1.3).

The tilings we construct are known to satisfy the Coven-Meyerowitz tiling conditions (see
Section 8). On one hand, this means that such constructions cannot provide a counterexam-
ple to the Coven-Meyerowitz conjecture without further significant new ideas. On the other
hand, it also shows that integer tilings may have rather complicated structure even when
the Coven-Meyerowitz conditions are known to hold.

1.2. Keller’s conjecture for cube tilings. Let Q = [0, 1)d be the unit cube in Rd. For
the purpose of this paper, a cube tiling will always mean a tiling of Rd by congruent and
pairwise disjoint translates of Q. Consider the following Keller properties that a cube tiling
T ⊕ Q = Rd might have. For i ∈ {1, . . . , d}, we use ei to denote the unit vector in the i-th
direction.

(KP1) There exist t, t′ ∈ T such that t− t′ = ei for some i ∈ {1, . . . , d}.

(KP2) There exist t ∈ T and i ∈ {1, . . . , d} such that {t + nei : n ∈ Z} ⊂ T .

The first property states that there are two cubes in the given tiling that share a full
(d − 1)-dimensional face. The second property makes the stronger assertion that the tiling
must in fact contain an infinite “column” of cubes sharing full (d− 1)-dimensional faces.

Keller [5] conjectured in 1930 that all cube tilings must satisfy (KP2), hence also (KP1).
The (formally weaker) statement that all cube tilings must satisfy (KP1) has become known
in the literature as Keller’s conjecture. This is now known to be true in low dimensions but
false in general. Perron [19, 20] proved that (KP1) holds for all cube tilings of Rd with d ≤ 6.
The stronger statement that (KP2) holds for all cube tilings in dimensions d ≤ 6 was proved
by  Lysakowska and Przes lawski [14, 15]. Brakensiek, Heule, Mackey, and Narváez [1] proved
that (KP1) holds for all unit cube tilings of R7. In the other direction, Lagarias and Shor
[11] constructed cube tilings in dimensions d ≥ 10 that do not have the property (KP1) and,
therefore, (KP2). Mackey [16] extended this to dimensions d ≥ 8.

1.3. Integer Keller properties. Assume that M =
∏d

i=1 p
ni
i , where p1, . . . , pd are distinct

primes and n1, . . . , nd ∈ N. Let A ⊕ B = ZM be a tiling. Define the divisor sets Div(A),
Div(B) as in (1.1), and let

(1.6) Fi := {0,M/pi, 2M/pi, . . . , (pi − 1)M/pi} ⊂ ZM for i = 1, 2, . . . , d.

In [8, 9, 10], a translate (coset) of Fi is called an M-fiber in the pi direction. Consider the
following “integer Keller properties” that the tiling might have.

(IKP1) There exists an i ∈ {1, . . . , d} such that M/pi ∈ Div(A) ∪ Div(B).

(IKP2) There exist u ∈ A and i ∈ {1, . . . , d} such that u + Fi ⊂ A.

We will also consider the “cyclotomic Keller property” below. Unlike (IKP1) and (IKP2),
the statement (CKP) concerns sets A ⊂ ZM that need not be tiles.

(CKP) For every nonempty set A ⊂ ZM such that ΦM(X)|A(X), there exists an i ∈
{1, . . . , d} such that M/pi ∈ Div(A).
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Clearly, (IKP2) is a stronger statement than (IKP1). Furthermore, if A ⊕ B = ZM is a
tiling, then by (1.5) ΦM(X) divides at least one of A(X) and B(X); hence if (CKP) holds for
some M , then (IKP1) holds for all tilings of ZM with that M . On the other hand, the failure
of (CKP) would not necessarily imply the failure of (IKP1), since there exist nonempty sets
A ⊂ ZM that satisfy ΦM(X)|A(X) but do not tile ZM . We also note that ΦM(X)|A(X)
does not imply that u + Fi ⊂ A for any u or i (hence there is no (CKP2) property). See
e.g. [21] for an extensive family of examples.

The geometric interpretation of the above statements is as follows. By the Chinese Re-
mainder Theorem, we have

(1.7) ZM =
d⊕

i=1

Zp
ni
i
.

This represents ZM as a d-dimensional lattice, with each cardinal direction corresponding to a
prime divisor pi of M , and pni

i -periodic in each such direction (see Section 2 for more details).
Then (IKP1) states that at least one of the sets A,B in the given tiling, say A, contains
two elements a, a′ such that a−a′ is one of the “cardinal differences” M/pi, 2M/pi, . . . , (pi−
1)M/pi in some direction. The stronger property (IKP2) states that at least one of A,B
contains an entire fiber in some direction. Thus (IKP1) and (IKP) can be viewed as the
integer counterparts of the properties (KP1) and (KP2) for cube tilings.

1.4. Results. The structure of tilings whose period M has at most 3 distinct prime factors is
understood well enough to provide the partial results in Theorem 1.2 below. These results are
either stated explicitly in the literature, or else they follow directly from known arguments;
we provide the details in Section 4.

Theorem 1.2. [3, 13, 9, 10] Let M = pn1
1 pn2

2 pn3
3 with n1, n2, n3 ∈ N ∪ {0}, where p1, p2, p3

are distinct primes. Then:

(i) (CKP) holds for M ; consequently, (IKP1) holds for any tiling A⊕B = ZM .
(ii) Assume further that either n3 = 0 or max(n1, n2, n3) ≤ 2. Then (IKP2) holds for

any tiling A⊕B = ZM .

Our new result in this regard is the following theorem.

Theorem 1.3. Let M = pn1
1 . . . pnd

d , where p1 < · · · < pd are distinct primes and n1, . . . , nd ∈
N. Assume further that

(1.8) pj > 2j−2 for all j ∈ {6, . . . , d}.
Then (CKP) holds for M . Consequently, (IKP1) holds for any tiling A⊕B = ZM .

Remark 1.1. The assumption pj > 2j−2 is always true for j ≤ 5, so that if (1.8) holds, it
actually holds for all 1 ≤ j ≤ d. In particular, (1.8) holds when all primes are sufficiently
large relative to d, so that pj > 2d−2 for all j ∈ {1, . . . , d}.

We also note a special case when one of the primes is very large relative to the others.

Theorem 1.4. Let M = pn1
1 . . . pnd

d , where p1, . . . , pd are distinct primes and n1, . . . , nd ∈ N.
Let A⊕B = ZM be a tiling. Assume further that

(1.9) pd > max
(

(|A|,M/pnd
d ), (|B|,M/pnd

d )
)
.
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Then (IKP1) holds for this tiling.

In many cases, the assumption (1.9) of Theorem 1.4 can be weakened; see Theorem 6.1
and Lemma 6.4.

We do not know of any counterexamples to either (IKP1) or (CKP). However, there exist
integer tilings for which (IKP2) fails. Our counterexamples are provided by the class of
tilings we define now.

Definition 1.5. Let M = p21 . . . p
2
d, where p1, . . . , pd are distinct primes. Let Mi = M/p2i for

i = 1, . . . , d. An integer cube tiling is a tiling of the form A⊕B = ZM , where

B =
d⊕

j=1

{0,Mj, 2Mj, . . . , (pj − 1)Mj}

=

{
d∑

j=1

cjMj : cj ∈ {0, 1, . . . , pj − 1}, j = 1, . . . , d

}
.

(1.10)

Equation (1.10) implies in particular that |A| = |B| = p1 . . . pd. We may view integer cube
tilings as tilings of the integer lattice by translates of a discrete rectangular box; see Section
2.2 for more details.

Theorem 1.6. Assume that d ≥ 8. For any choice of distinct primes p1, . . . , pd, there exists
an integer cube tiling A⊕B = ZM that does not satisfy (IKP2).

Our proof of Theorem 1.6 is an adaptation of the counterexamples to Keller’s conjecture
in dimensions 8 and higher [11], [16], together with a rearrangement argument due to Szabó
[31]. On the other hand, the known positive results towards Keller’s conjecture imply the
following theorem for this specific type of tiling.

Theorem 1.7. All cube integer tilings with d ≤ 6 satisfy (IKP2) (therefore also (IKP1)).
Moreover, (IKP1) holds for all cube integer tilings with d = 7.

For cube tilings, the property (KP2) is formally stronger than (KP1), but they turn out
to be true or false in the same dimensions except possibly for d = 7 where, to the best of
our knowledge, the status of (KP2) is unknown. On the other hand, the property (IKP2) is
strictly stronger than (IKP1), in the sense that there exist integer cube tilings that satisfy
(IKP1) but not (IKP2). To see this, let d ≥ 8, and let p1, . . . , pd be distinct primes. By
Theorem 1.6, for any choice of p1, . . . , pd there exists an integer cube tiling Ã ⊕ B̃ = ZM

for which (IKP2) does not hold. On the other hand, if p1, . . . , pd satisfy the additional
assumptions of either Theorem 1.3 or Theorem 1.4, then (IKP1) must hold for the same
tiling.

The rest of this paper is organized as follows. In Section 2, we detail the conversion
between integer tilings and lattice tilings with appropriate periodicity conditions. In Section
3, we introduce notation and basic cyclotomic divisibility tools to be used in the proofs of
Theorems 1.2, 1.3, and 1.4. We prove these theorems in Sections 4, 5, and 6. We prove
Theorem 1.6 in Section 7. Finally, in Section 8, we discuss the relationship between integer
Keller properties and the Coven-Meyerowitz conjecture.
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2. Correspondence between integer tilings and multidimensional lattice
tilings

2.1. The general case. We establish a natural correspondence between integer tilings and
tilings of multidimensional integer lattices satisfying appropriate periodicity conditions. This
also provides a correspondence between integer cube tilings and a class of cube tilings of Rd.

Let M =
∏d

i=1 p
ni
i , where p1, . . . , pd are distinct primes and n1, . . . , nd ∈ N. It will be

convenient to have a specific coordinate system on ZM corresponding to (1.7). Let Mi =
M/pni

i =
∏

j ̸=i p
nj

j . Let also [n] = {0, 1, . . . , n− 1} for n ∈ N. Define the projection

(2.1) Zd ∋ x = (x1, . . . , xd) → π(x) :=
d∑

i=1

xiMi,

and let

LM := pn1
1 Z× · · · × pnd

d Z ⊂ Zd,

ΛM := [pn1
1 ] × · · · × [pnd

d ] ⊂ Zd,
(2.2)

so that ΛM ⊕ LM = Zd.

Lemma 2.1. Let x ∈ Zd. Then

(2.3) x ∈ LM ⇔ π(x) ≡ 0 mod M.

Furthermore, π(ΛM) is a complete residue system mod M , the projection π is one-to-one on
ΛM , and π(LM) = MZ.

Proof. We first prove (2.3). Let x ∈ LM . Then M divides each term in the sum
∑

i xiMi,
hence π(x) ∈ MZ. Conversely, suppose that M |π(x), and let j ∈ {1, . . . , d}. Then p

nj

j |π(x) =∑
i xiMi. Since p

nj

j |Mi for all i ̸= j, and (pj,Mj) = 1, we must have p
nj

j |xj. Since this is
true for all j, we have x ∈ LM .

Next, if x, x′ ∈ ΛM are distinct, then x− x′ ̸∈ LM by definition. By (2.3), we have π(x) ̸≡
π(x′) mod M , implying the statements about ΛM . Clearly, (2.3) implies that π(LM) ⊂ MZ.
The converse inclusion follows from the fact that π((mpn1

1 , 0, . . . , 0)) = mM for all m ∈ Z. □

Corollary 2.2. Let Ã, B̃ ⊂ ΛM , and let A = π(Ã), B = π(B̃). Then A ⊕ B = ZM if and
only if Ã⊕ B̃ ⊕ LM = Zd.

Proof. Assume that Ã ⊕ B̃ ⊕ LM = Zd. Since π is one-to-one on ΛM , we have |A||B| =
|Ã||B̃| = M . To prove that A⊕B = ZM is a tiling, it remains to verify that

(2.4) if a + b = a′ + b′ mod M, a, a′ ∈ A, b, b′ ∈ B, then (a, b) = (a′, b′).

Let a = π(ã), a′ = π(ã′), b = π(b̃), b′ = π(b̃′) for some ã, ã′ ∈ Ã and b̃, b̃′ ∈ B̃. By (2.3), if

a + b ≡ a′ + b′ mod M , then (ã + b̃) − (ã′ + b̃′) ∈ LM . But since Ã⊕ B̃ ⊕LM = Zd, this can

only happen when ã = ã′ and b̃ = b̃′, so that a = a′ and b = b′. This proves (2.4).

For the converse, we reverse the above argument. The details are left to the reader. □

Remark 2.1. Let an integer tiling A⊕B = ZM be given. By Lemma 2.1, we may represent
A,B as subsets of π(ΛM). Then there exist Ã, B̃ ⊂ ΛM such that A = π(Ã), B = π(B̃), and
Corollary 2.2 applies to these sets.
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This establishes a one-to-one correspondence between M -periodic tilings of Z and LM -
periodic tilings of Zd. Any tiling of Z by a finite set must be M -periodic for some M ,
therefore we may lift it to a multidimensional tiling as described above. However, we caution
the reader that there are many translational tilings of integer lattices by finite sets that
cannot be matched to 1-dimensional integer tilings in this manner, either because they are
non-periodic [4] or because their period lattice does not have the form required in (2.2).

2.2. Integer cube tilings. We now assume that M = N2, where N = p1 . . . pd and
p1, . . . , pd are distinct primes. Let Mi = M/p2i for i = 1, . . . , d, and define π : Zd → Z
as in (2.1). Let A⊕B be an integer cube tiling as in Definition 1.5. Then the set B in (1.10)
satisfies

B = π(ΛN).

By Corollary 2.2 and Remark 2.1, there is a set Ã ⊂ ΛM such that Ã⊕ ΛN ⊕LM = Zd. Let
T := Ã⊕ LM ⊂ Zd, and let

(2.5) R := B + [0, 1)d = [0, p1) × · · · × [0, pd) ⊂ Rd.

Then T⊕R = Rd is a tiling of Rd by translates of the rectangular box R. Note the periodicity
condition

(2.6) T is invariant under translations by all t ∈ LM = p21Z× · · · × p2dZ.
Conversely, given a tiling T ⊕R = Rd, where R is the box in (2.5) and T ⊂ Zd satisfies (2.6),
we can convert it to an M -periodic integer cube tiling by reversing the above procedure.

We can rescale R to the unit cube Qd = [0, 1)d in Rd; this also rescales any tiling of Rd by
translates of R to a tiling by translates of a unit cube (hence our terminology). However,
for our purposes it will be easier to use the box R as defined in (2.5), without rescaling, and
rescale the unit cube instead when needed. This convention makes it easier to keep track of
the additional restrictions on periodicity and translation vectors that our integer cube tilings
must satisfy.

In this setting, (IKP2) is the direct analogue of (KP2). Indeed, for a given i ∈ {1, . . . , d},
we have u+Fi ⊂ A for some u ∈ ZM if and only if the tiling T ⊕R = Rd contains a column
in the direction of ei – more precisely, the translation set T contains a subset of the form
{v + mpiei : m ∈ Z} for some v ∈ Zd. This is (KP2) after rescaling R to Qd.

A little bit more care is needed in establishing the appropriate analogue of (KP1) in our
context. In the tiling T ⊕R = Rd, two translates t+R and t′ +R share a (d−1)-dimensional
face if and only if u = π(t) and u′ = π(t′) satisfy

(2.7) u− u′ ≡ ±M/pi mod M

for some i ∈ {1, . . . , d}. However, (IKP1) is a more natural analogue of (KP1) for integer
tilings than (2.7), for the following reason. The coordinate system corresponding to the
decomposition (1.7) is not unique: for example, if π is the projection defined in (2.1) and
r ∈ Z is relatively prime to M , then the mapping x → rπ(x) also establishes a linear bijection
between ΛM (considered as a group mod LM) and ZM . This leads to multiple representations
of the same integer tiling A ⊕ B = ZM as LM -periodic tilings of Zd. The property (IKP1)
does not depend on the choice of such representation, while (2.7) does depend on it.

As pointed out earlier, Theorem 1.7 is now a straightforward consequence of the existing
results on Keller’s conjecture for cube tilings.
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Proof of Theorem 1.7. Let A ⊕ B = ZM be an integer cube tiling, and let T ⊕ R = Rd be
the tiling of Rd constructed in Section 2.2. The theorem follows by applying the results of
[14, 15, 1] to a rescaling of T . □

In the other direction, a straightforward discretization of counterexamples to Keller’s
conjecture in dimensions 8 and higher [11], [16] does not produce counterexamples to (IKP1)
or (IKP2). This is because, in order to be able to convert a tiling of Rd by the rectangular box
R back to an integer cube tiling, the translation set T must satisfy the periodicity condition
(2.6). The unit cube tilings in [11], [16] are all 2-periodic in each cardinal direction, and
become 2pi-periodic in the i-th cardinal direction after rescaling the unit cube to R. Choose
i so that pi ̸= 2. If the tiling were also p2i -periodic in the i-th direction (as required in (2.6)),
this would imply pi-periodicity in that direction, hence a column parallel to ei, contradicting
the failure of (KP2).

One could ask whether the tilings in [11], [16], after rescaling, could be “corrected” to be
p2i -periodic instead of 2pi-periodic in the ei direction for each i. This is in fact how we prove
Theorem 1.6.

We note the following property of cube integer tilings.

Lemma 2.3. Let S ⊂ ΛM with |S| = N , and define B as in (1.10). Then S⊕ΛN⊕LM = Zd

(hence π(S) ⊕ B = ZM is a cube integer tiling) if and only if for every a, a′ ∈ S such that
a ̸= a′, there exists i ∈ {1, . . . , d} such that pi ∥ ai − a′i.

Proof. One proof of this is based on Sands’s theorem. Let A = π(S). By Theorem 1.1,
A⊕B = ZM is a tiling if and only if (1.2) holds. With B defined in (1.10), we have

Div(B) =
{
pα1
1 . . . pαd

d : αi ∈ {0, 2} for all i ∈ {1, . . . , d}
}
,

so that (1.2) is equivalent to

Div(A) ⊂
{
pα1
1 . . . pαd

d |M : αi = 1 for some i ∈ {1, . . . , d}
}

But this is equivalent to the condition in Lemma 2.3.

Alternatively, the lemma also follows from (a rescaled version of) Keller’s theorem on cube
tilings [5]: if T⊕Qd is a tiling of Rd, then for all t, t′ ∈ T with t ̸= t′ there exists i ∈ {1, . . . , d}
such that |ti − t′i| ∈ N. □

3. Cyclotomic divisibility tools

The notation below has been borrowed from [8] and adapted to our setting. We assume
that M = pn1

1 . . . pnd
d , where p1, . . . , pd are distinct primes and n1, . . . , nd ∈ N.

We use A(X), B(X), etc. to denote polynomials modulo XM −1 with integer coefficients.
Each such polynomial A(X) =

∑
a∈ZM

wA(a)Xa is associated with a weighted multiset in
ZM , which we will also denote by A, with weights wA(x) assigned to each x ∈ ZM . (If the
coefficient of Xx in A(X) is 0, we set wA(x) = 0.) In particular, if A has {0, 1} coefficients,
then wA is the characteristic function of a set A ⊂ ZM . We use M(ZM) to denote the family
of all weighted multisets in ZM , and reserve the notation A ⊂ ZM for sets. We also use M+

to denote the family of all weighted multisets in ZM , i.e.,

M+ = {A ∈ M(ZM) : wA(a) ≥ 0 for all a ∈ ZM}.
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For D|M , a D-grid in ZM is a set of the form

Λ(x,D) := x + DZM = {x′ ∈ ZM : D|(x− x′)}

for some x ∈ ZM . In particular, if Fi is the fiber

(3.1) Fi = {0,M/pi, 2M/pi, . . . , (pi − 1)M/pi}

for some i, we have Fi = Λ(0,M/pi). For a prime p and an integer m, we write that pα ∥ m
if pα|m but pα+1 ∤ m.

Definition 3.1. Let M be as above. A cuboid is a multiset ∆ ∈ M(ZM) associated to a
mask polynomial of the form

(3.2) ∆(X) = Xc

d∏
j=1

(
1 −XrjM/pj

)
with (rj, pj) = 1 for all j. Furthermore, if A ∈ M(ZM), we define

(3.3) A[∆] =
∑
x∈ZM

wA(x)w∆(x).

The geometric interpretation of N -cuboids ∆ is as follows. With notation as in Definition
3.1, let

(3.4) D(M) = M/p1 . . . pd.

Then the “vertices” x ∈ ZM with w∆(x) ̸= 0 form a full-dimensional rectangular box in
the grid Λ(c,D(M)), with one vertex at c and alternating ±1 weights. See Figure 1 for the
geometric representation of a cuboid with d = 3.

The following cyclotomic divisibility test is well known in the literature. The equivalence
between (i) and (iii) is the Bruijn-Rédei-Schoenberg theorem on the structure of vanishing
sums of roots of unity (see [3], [13], [17], [22], [23], [26]). For the equivalence (i) ⇔ (ii), see
e.g. [28, Section 3], [6, Section 3], [8, Section 5].

Proposition 3.2. Let A ∈ M(ZM). Then the following are equivalent:

(i) ΦM(X)|A(X).

(ii) For all cuboids ∆, we have

(3.5) A[∆] = 0,

(iii) A is a linear combination of fibers, so that

A(X) =
∑
i

Pi(X)Fi(X) mod XM − 1,

where Pi(X) have integer (but not necessarily nonnegative) coefficients.

Proposition 3.2 can be strengthened as follows if M has only two distinct prime factors.
This goes back to the work of de Bruijn [3]; see also [13, Theorem 3.3] for a self-contained
proof, and [9, Lemma 4.7] for a statement in the language we use here.
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Figure 1. Left: A cuboid with ±1 weights labeled. Middle and right: Two
cuboids, ∆ and ∆′, with points in A labeled in red. The middle cuboid is
‘balanced’, as it satisfies A[∆] = 0. The right cuboid is ‘unbalanced’, with
A[∆′] > 0.

Lemma 3.3. Let A ∈ M+(ZM). Assume that ΦM |A, and that M has at most two distinct
prime factors p1, p2. Then A is a linear combination of fibers with nonnegative weights. In
other words,

A(X) = P1(X)F1(X) + P2(X)F2(X) mod XM − 1,

where P1, P2 are polynomials with nonnegative integer coefficients. If furthermore M = pn1
1

is a prime power, then the above holds with P2 = 0.

4. Proof of Theorem 1.2

Let M = pn1
1 pn2

2 pn3
3 with n1, n2, n3 ∈ N∪{0}, where p1, p2, p3 are distinct primes. We need

to prove the following:

(i) (CKP) holds for M , and (IKP1) holds for any tiling A⊕B = ZM .
(ii) If either n3 = 0 or max(n1, n2, n3) ≤ 2, then (IKP2) holds for any tiling A⊕B = ZM .

Assume first that n3 = 0. By Lemma 3.3, if A ⊂ ZM satisfies ΦM |A, then A is a union
of non-overlapping fibers in the p1 and p2 directions. This implies (CKP) in this case.
Furthermore, let A⊕B = ZM be a tiling. By (1.5), ΦM(X) must divide at least one of A(X)
and B(X), hence (IKP2) follows as well.

Assume now that

min(n1, n2, n3) ≥ 1,

and that A ⊂ ZM obeys ΦM |A. We prove (i) in this case. By translational invariance,
we may assume that 0 ∈ A. Let Λ := Λ(0, D(M)), then A ∩ Λ ̸= ∅. If M/pi ∈ Div(A)
for all i ∈ {1, 2, 3}, we are done. Suppose now that there exists i ∈ {1, 2, 3} such that
M/pi ̸∈ Div(A). By [9, Proposition 6.1], A∩Λ must contain either a fiber in some direction
or a diagonal boxes configuration defined in [9, Definition 5.1]. It is easy to see that either
the fiber or at least one of the diagonal boxes must contain a pair of points a, a′ ∈ A ∩ Λ
with (a− a′,M) = M/pi. This proves (i).

Finally, assume that

min(n1, n2, n3) ≥ 1 and max(n1, n2, n3) ≤ 2.

Let A⊕B = ZM be a tiling. Assume without loss of generality that 0 ∈ A and ΦM(X)|A(X),
and define Λ as above. We will prove that A ∩ Λ contains a fiber.
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By [9, Proposition 5.2], A ∩ Λ must either be a union of disjoint fibers, or else it must
contain a diagonal boxes configuration. If A ∩ Λ is a union of disjoint fibers, we are done.
It remains to consider the case when A∩ Λ contains diagonal boxes. Then A∩ Λ has one of
the structures described in [9, Section 7] (if M is odd) or [10, Section 9] (if M is odd). In
each of these cases, an intermediate step in the proofs of the Coven-Meyerowitz conditions
in [9, 10] is proving that A must then contain fibers that do not lie in A ∩ Λ.

5. Proof of Theorem 1.3

Let M = pn1
1 . . . pnd

d , where p1, . . . , pn are distinct primes and n1, . . . , nd ∈ N. Assume
further that

(5.1) pi > 2i−2 for all i ∈ {1, . . . , d}.

We need to prove that (CKP) holds for M .

Assume for contradiction that (CKP) fails for some M and A as above. Let d be the
lowest number of prime factors of M for which this can happen; by Lemma 3.3, we must
have d ≥ 3. Let A ⊂ ZM be the hypothetical counterexample, so that A is nonempty and
we have pi > 2i−2 for all i ∈ {1, . . . , d}, but M/pi ̸∈ Div(A) for all i.

By translational invariance, we may assume that 0 ∈ A. Let Md := M/pnd
d and

A0 := {p−nd
d a : a ∈ A ∩ Λ(0,M/p1 . . . pd−1)}.

We cannot have ΦMd
(X)|A0(X), since otherwise A0 ⊂ ZMd

would be a counterexample with
(d− 1) prime factors and we assumed that d is minimal. By Proposition 3.2, there exists a
cuboid

(5.2) ∆0(X) = Xc

d−1∏
j=1

(1 −XrjM/pj),

with pnd
d |c and (rj, pj) = 1 for all j, such that A0[∆0] ̸= 0. Without loss of generality, we

may assume that A0[∆0] > 0.

Let

∆s(X) = Xc+sM/pd

d−1∏
j=1

(1 −XrjM/pj), s = 1, 2, . . . , pd − 1,

so that (∆0 − ∆s)(X) is a full-dimensional cuboid in ZM for each s = 1, 2, . . . , d − 1. For
visualization purposes, we suggest representing ZM as a d-dimensional lattice as in Section
2, with the pd direction vertical and Λ(0,M/p1 . . . pd−1) represented as a lattice in a (d− 1)-
dimensional horizontal plane. Then ∆s are partial cuboids stacked above the partial cuboid
∆0.

By Proposition 3.2, we have A[∆0] − A[∆s] = 0. But A[∆0] = A0[∆0] > 0, so that
A[∆s] > 0. It follows that, for each s, at least one of those vertices of ∆s that are counted
with + sign must belong to A.

Let v1, v2, . . . , vℓ be the vertices of ∆0 that are counted with + sign; we have ℓ = 2d−2,
half of the total number of vertices of ∆0. For each s ∈ {0, 1, . . . , pd− 1}, any vertex u of ∆s

that is counted with + sign must satisfy (M/pd)|u− vj for some j (geometrically, u must lie
on the vertical line through one of the points v1, . . . , vℓ). We must have at least pd points of
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A at such vertices, and, since we assume that M/pd ̸∈ Div(A), at most one such point can
lie on the same line. Therefore pd ≤ 2d−2, contradicting our assumption.

Remark 5.1. Let A⊕B = ZM be an integer cube tiling. By (1.5), ΦM must divide at least
one of A(X) and B(X). If we had ΦM(X)|B(X), then B would satisfy the condition (3.5)
of Proposition 3.2 with N = M . However, this is false, since any M-cuboid with one vertex
in B cannot have any other vertices in B. Therefore ΦM |A, and Theorem 1.3 implies that
in this case we must in fact have M/pi ∈ Div(A) for some i.

6. Proof of Theorem 1.4

Theorem 1.4 is a consequence of the following more general result. Let M = pn1
1 . . . pnd

d .
For x ∈ ZM and i ∈ {1, . . . , d}, we define

Πi(x) := {y ∈ ZM : pni
i |(x− y)}.

In the Chinese Remainder Theorem geometric representation, Πi(x) is the (d−1)-dimensional
hyperplane passing through x and perpendicular to the i-th cardinal direction. Let also

mA = min
a∈A

|A ∩ Πd(a)|,

and similarly for B. We will continue to write Mi = M/pni
i .

Theorem 6.1. Let A⊕B = ZM be a tiling. If

(6.1) pd > max(mA,mB),

then (IKP1) holds for this tiling, with M/pd ∈ Div(A) ∪ Div(B).

We will rely on the following special case of [10, Lemma 4.5]. We include the short proof
for completeness.

Lemma 6.2. (Splitting for fibers, [10, Lemma 4.5]) Assume that A ⊕ B = ZM is a tiling,
and let i ∈ {1, . . . , d}. Let zk = kM/pi for k = 0, 1, . . . , pi − 1. Let ak ∈ A, bk ∈ B satisfy
ak + bk = zk. Then one of the following must hold:

(i) We have a1, . . . , api−1 ∈ Πi(a0) and pni−1
i ∥ bk − bk′ for k ̸= k′.

(ii) We have b1, . . . , bpi−1 ∈ Πi(b0) and pni−1
i ∥ ak − ak′ for k ̸= k′.

Proof. By translational invariance, we may assume that a0 = b0 = 0. Fix k ∈ {1, . . . , pi−1}.
Then ak + bk = M/pi, so that (ak,Mi) = (bk,Mi). By divisor exclusion (1.2) we must have
(ak, p

ni
i ) ̸= (bk, p

ni
i ), hence we are in one of the following two cases for each k:

(a) pni
i |ak and pni−1

i ∥ bk,
(b) pni

i |bk and pni−1
i ∥ ak.

We now prove uniformity in k. Assume for contradiction that (a) holds for some k and (b)
holds for some k′. By the same argument as above, we have M/pi|(zk − zk′) = (ak − ak′) +
(bk − bk′), so that

(ak − ak′ ,Mi) = (bk − bk′ ,Mi).

But now we also have (ak − ak′ , p
ni
i ) = (bk − bk′ , p

ni
i ) = pni−1

i . Hence (ak − ak′ ,M) =
(bk − bk′ ,M), contradicting (1.2).

Assume now that (a) holds for all k. Then a1, . . . , api−1 ∈ Πi(0), and the second part of
(i) follows from ak + bk = kM/pi. Similarly, if (b) holds for all k, then (ii) follows. □
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Proof of Theorem 6.1. Choose a0 ∈ A and b0 ∈ B so that mA = |A∩Πd(a0)| and mB = |B∩
Πd(b0)|. By translational invariance, we may assume that a0 = b0 = 0. For k = 1, . . . , pd−1,
let ak ∈ A, bk ∈ B satisfy ak + bk = kM/pd. Interchanging the sets A and B if necessary, we
may further assume that the statement (i) of Lemma 6.2 holds, so that a1, . . . , apd−1 ∈ Πd(0).

By (6.1), at least two of the elements a0, a1, . . . , apd−1 must coincide, so that ak = ak′ for
some k ̸= k′. But then bk − bk′ = kM/pd − k′M/pd = (k− k′)M/pd, so that M/pd ∈ Div(B)
as claimed. □

Theorem 1.4 now follows from Theorem 6.1 and Lemma 6.3 below.

Lemma 6.3. (Plane bound; cf. [9, Lemma 4.3]) Let A⊕ B = ZM be a tiling. Assume that
|A| = mpkd, where m = (|A|,Md) satisfies (m, pd) = 1. Then for any x ∈ ZM ,

(6.2) |A ∩ Πd(x)| ≤ m.

A similar statement holds for B.

Proof. By [2, Theorem B1], there exist 0 < s1 < s2 < · · · < sk ≤ nd such that

Φp
s1
d

(X) . . .Φp
sk
d

(X) | A(X).

This implies that for each j ∈ {1, . . . , k} and x ∈ ZM , we have

|A ∩ Λ(x, p
sj−1
d )| = pd |A ∩ Λ(x, p

sj
d )|.

Iterating this, we get

pkd · |A ∩ Πd(x)| ≤ |A| = pkdm,

and (6.2) follows. □

In general, mA and mB could be significantly smaller than the upper bound in (6.2): there
could, for example, exist planes that contain only one element of A or B.

If A ⊕ B = ZM is an integer cube tiling, the conclusion (ii) of Lemma 6.2 is true for the
simple geometric reason that a rectangular box has a fixed width in each direction. Moreover,
for each b ∈ B we have |B ∩ Πd(b)| = p1 . . . pd−1, optimizing the bound in (6.2). Theorem
6.1 then states that (IKP1) holds for integer cube tilings with

(6.3) pd > p1 . . . pd−1.

Further improvements may be possible with additional assumptions. For example, we have
the following.

Lemma 6.4. Let A⊕B = ZM be an integer cube tiling, where M = p21 . . . p
2
d and p1 < p2 <

· · · < pd are distinct primes. If

(6.4) pj > p2p3 . . . pj−1 for each j ∈ {3, . . . , d},

then (IKP1) holds for this tiling, with M/pj ∈ Div(A) for some j ∈ {1, . . . , d}.

Unlike in (6.3), we require (6.4) to hold for all j ∈ {3, . . . , d}; the payoff is that we lose
the first prime factor from the right side of the inequality.
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Proof. Assume towards contradiction that the lemma fails, and let d be the smallest integer
for which this happens. By Theorem 1.7, we must have d ≥ 7. Translating A if necessary,
we may assume that 0 ∈ A. For each x ∈ ZM , we use a(x) and b(x) to denote the elements
a(x) ∈ A and b(x) ∈ B that satisfy a(x) + b(x) = x.

Let Λ0 = Λ(0,M/p1 . . . pd−1). Suppose first that p2d|a(x) for all x ∈ Λ0. Let A′ = A∩Πd(0)
and B′ = B ∩ Πd(0). Then a(x) ∈ A′ for all x ∈ Λ0; furthermore, if x, x′ ∈ Λ0 are distinct,
the sets a(x) +B′ and a(x′) +B′ are disjoint. Hence |A′| = p1 . . . pd, and A′ ⊕B′ = ZM/p2d

is

an integer cube tiling that does not satisfy (IKP1), contradicting the minimality of d.

Assume now that there is x′ ∈ Λ0 such that p2d ∤ a(x). Then there exist j ∈ {1, . . . , d− 1}
and y, y′ ∈ Λ0 such that (y − y′,M) = M/pj but p2d ∤ a(y) − a(y′). Translating A again if
necessary, we may assume that y′ = a(y′) = 0.

Let Λ = Λ(0,M/pjpd) (a lattice in the 2-dimensional discrete plane passing through 0, y,
and M/pd). By [10, Lemma 4.7] with αi = αj = 1, at least one of the following holds:

(6.5) a(z) ∈ Πd(0) for all z ∈ Λ,

(6.6) a(z) ∈ Πj(0) for all z ∈ Λ.

But we have assumed that (6.5) fails for z = y. Hence (6.6) holds. Now the rest of the
argument is as in Theorem 6.1, but with the additional constraint that p2j | ai for all i.

Instead of invoking [10, Lemma 4.7], we could have converted the integer cube tiling to
a tiling of Rd by a rectangular box (as we do in Section 7), and then used the structure
of tilings of a 2-dimensional plane by translates of a rectangle. This is equivalent to [10,
Lemma 4.7] in this specific case, and yields the same conclusion. □

7. Proof of Theorem 1.6

7.1. Setup. We will use the notation and conventions of Section 2.2. It suffices to prove
that there exists a column-free tiling T ⊕R = Rd such that T ⊆ Zd and T is invariant under
translations by elements of LM . To construct this tiling, we will use an argument of Szabó
[31] to periodize the counterexample to (KP2) from [16]. This procedure will not introduce
any columns but could possibly introduce some shared faces. The relevant result from [16] is
the following: There exists a tiling of R8 by unit cubes with centres in 1

2
Z8 such that no two

cubes share an entire 7-dimensional face. Stacking this tiling, with appropriate half-integer
offsets between adjacent layers, leads to an analogous tiling of Rd for every d ≥ 8. Thus, by
rescaling, we have for each d ≥ 8 a tiling S⊕R = Rd with S ⊆ p1

2
Z×· · ·× pd

2
Z that contains

no shared faces.

We will need some notation and a lemma. Given a set S ⊆ Rd, define

Si,a := {(s1, . . . , sd) ∈ S : si = pia} for i ∈ {1, . . . , d}, a ∈ 1

2
Z.

If the projection of S to the ith coordinate is contained in pi
2
Z, then the sets Si,a (with i

fixed) form a partition of S. We also define a shifted version of Si,a, namely

S∗
i,a :=

{
Si,a if pia ∈ Z,
Si,a + 1

2
ei if pia /∈ Z.
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Lemma 7.1. For i ∈ {1, . . . , d}, let πi denote the projection (x1, . . . , xd) 7→ (x1, . . . , x̂i, . . . , xd).
Suppose S⊕R = Rd and that s, s′ ∈ S are such that πi(R+ s) and πi(R+ s′) have nonempty
intersection. Then si − s′i ∈ piZ.

Proof. Fix a point x ∈ πi(R + s) ∩ πi(R + s′), and consider the line ℓ = π−1
i (x) ⊂ Rd. The

tiling S ⊕ R = Rd restricts to a tiling of ℓ by segments of length pi. The endpoints of these
segments are just the points where ℓ enters one box in the tiling and exits another. Since ℓ
intersects R + s and R + s′ and is parallel to ei, it follows that si − s′i is an integer multiple
of pi. □

We now begin the construction of the tiling T ⊕ R = Rd described above. This will be
done inductively. We claim that for each j ∈ {0, . . . , d}, there exists a tiling Sj ⊕ R = Rd

satisfying the following properties:

(i) If j ≥ 1, then Sj ⊆ Zj × pj+1

2
Z× · · · × pd

2
Z.

(ii) If 1 ≤ i ≤ j, then Sj is p2i ei-periodic.
(iii) If 1 ≤ i ≤ j, then Sj contains no columns in the ei direction; i.e. there is no s ∈ Sj

such that {s + npiei : n ∈ Z} ⊆ Sj.
(iv) If j < i ≤ d, then Sj contains no shared faces in the ei direction; i.e. piei /∈ Sj − Sj.

Once this is proved, the desired tiling T ⊕R = Rd is obtained by taking T = Sd.

As mentioned above, there exists a tiling S ⊕ R = Rd with S ⊆ p1
2
Z × · · · × pd

2
Z that

contains no shared faces; we set S0 := S. Properties (i)–(iv) hold for S0 (although (i)–(iii)
are vacuous in this case). Suppose j ≥ 1 and that the claim holds with j − 1 in place of j.
Let

Sj :=
⋃
n∈Z

⋃
a∈ 1

2
Z∩[0,pj)

(Sj−1)
∗
j,a + np2jej.

We will show that Sj ⊕R = Rd and that this tiling satisfies properties (i)–(iv).

7.2. Proof that Sj ⊕ R = Rd. We begin by showing that the translates R + s with s ∈ Sj

cover Rd. Fix x ∈ Rd. Since Sj−1 ⊕ R = Rd, there exists s ∈ Sj−1 such that x ∈ R + s. We
consider two cases. Suppose first that sj ∈ pjZ. Let n ∈ Z be such that

np2j ≤ sj ≤ (n + 1)p2j − pj.(7.1)

Set x′ := x − np2jej and let s′ ∈ Sj−1 be such that x′ ∈ R + s′. Clearly x ∈ R + s′ + np2jej;

we claim that s′ + np2jej ∈ Sj. This would show that x ∈ R + Sj. Using (7.1) and the fact
that x′ ∈ R + s′ and x ∈ R + s, we find that

s′j > x′
j − pj = xj − np2j − pj ≥ sj − np2j − pj ≥ −pj

and

s′j ≤ x′
j = xj − np2j < sj + pj − np2j ≤ p2j .

Since x and x′ differ only in the jth coordinate, Lemma 7.1 implies that sj − s′j ∈ pjZ. We
have assumed that sj ∈ pjZ, and so we must have s′j ∈ pjZ. Therefore, the strict upper and
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lower bounds for s′j (displayed above) imply that s′j ∈ pjZ ∩ [0, p2j). Consequently,

s′ ∈
⋃

a∈Z∩[0,pj)

(Sj−1)j,a =
⋃

a∈Z∩[0,pj)

(Sj−1)
∗
j,a,

from which it easily follows that s′ + np2jej ∈ Sj. This concludes the proof in the case where
sj ∈ pjZ.

Next suppose that sj /∈ pjZ. The projection of Sj−1 to the jth coordinate is contained in
pj
2
Z; if j = 1 then this follows from the definition of S0, while if j > 1 then this is due to

property (i). Therefore, we have sj ∈ pj
2
Z \ pjZ. Let t ∈ Sj−1 be such that x− δej ∈ R + t,

where δ := 0 if pj = 2 and δ := 1
2

if pj > 2. By Lemma 7.1, we have that tj − sj ∈ pjZ, and
thus tj ∈ pj

2
Z \ pjZ. Let n ∈ Z be such that

np2j +
pj
2

≤ tj ≤ (n + 1)p2j −
pj
2
,

and let t′ ∈ Sj−1 be such that x− (δ + np2j)ej ∈ R + t′. Clearly x ∈ R + t′ + (δ + np2j)ej; we

claim that t′ + (δ + np2j)ej ∈ Sj. Arguing as in the first case, we find that

−pj
2

< t′j < p2j +
pj
2
.

However, t′j ∈ pj
2
Z \ pjZ (by another application of Lemma 7.1), so we must have t′j ∈

(
pj
2
Z \ pjZ) ∩ [0, p2j). This means that

t′ ∈
⋃

a∈( 1
2
Z\Z)∩[0,pj)

(Sj−1)j,a so that t′ + δej ∈
⋃

a∈( 1
2
Z\Z)∩[0,pj)

(Sj−1)
∗
j,a.

It easily follows that t′ + (δ + np2j)ej ∈ Sj, completing the proof in the case where sj /∈ pjZ.

To prove that Sj ⊕ R = Rd, it remains to show that the translates of R by elements of
Sj are pairwise disjoint. Fix s, s′ ∈ Sj, and let a, a′ ∈ 1

2
Z ∩ [0, pj) and n, n′ ∈ Z be such

that s ∈ (Sj−1)
∗
j,a + np2jej and s′ ∈ (Sj−1)

∗
j,a′ + n′p2jej. We consider two cases. Suppose first

that pj(a − a′) /∈ Z. Then sj − s′j /∈ pjZ, so by Lemma 7.1, the projections πj(R + s) and
πj(R + s′) are disjoint. This implies that R + s and R + s′ are disjoint. Next suppose that
pj(a − a′) ∈ Z. Then |sj − s′j| = pj|a − a′ + pj(n − n′)|. Assuming that R + s and R + s′

intersect, this difference is strictly less than pj, forcing a′ = a and n′ = n. Consequently, we
have s − s′ ∈ (Sj−1)

∗
j,a − (Sj−1)

∗
j,a ⊆ Sj−1 − Sj−1, and since Sj−1 ⊕ R = Rd is a tiling, this

implies that s = s′. This completes the proof that Sj ⊕R = Rd.

7.3. Proof that Sj satisfies properties (i)–(iv). Next, we verify that Sj satisfies proper-
ties (i)–(iv), beginning with property (i). Let U be the projection of Sj to the jth coordinate.
By construction, Sj is a union of subsets of Sj−1 that have been translated in the ej direction
only. Therefore, if j = 1, then Sj ⊆ U × p2

2
Z × · · · × pd

2
Z by the definition of S0, while if

j > 1, then property (i) applied to Sj−1 implies that Sj ⊆ Zj−1 × U × pj+1

2
Z × · · · × pd

2
Z.

Now, observe that the projection of (Sj−1)
∗
j,a to the jth coordinate is always contained in Z;

this is because pja /∈ Z implies pja + 1
2
∈ Z for a ∈ 1

2
Z. It follows that U ⊆ Z.

We now turn to property (ii). It is clear that Sj is p2jej-periodic. Suppose that 1 ≤ i ≤ j−1.

Property (ii) applies to Sj−1; thus Sj−1 is p2i ei-periodic. From this it follows that each (Sj−1)
∗
j,a

is p2i ei-periodic, and consequently the same is true of Sj.
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Next we verify property (iii). Suppose that Sj contains a column in the ei direction. If
i < j, then the p2jej-periodicity of Sj implies that

⋃
a∈ 1

2
Z∩[0,pj)(Sj−1)

∗
j,a contains a column

in the ei direction. The projections of the sets (Sj−1)
∗
j,a to the jth coordinate are distinct;

therefore, the column must be contained in a single (Sj−1)
∗
j,a. But (Sj−1)

∗
j,a is a subset of Sj−1,

possibly shifted in the ej direction, and Sj−1 does not contain a column in the ei direction, by
property (iii). If i = j, then the column intersects

⋃
a∈ 1

2
Z∩[0,pj)(Sj−1)

∗
j,a in pj ≥ 2 consecutive

points; these points are either all contained in Sj−1 or all contained in Sj−1 + 1
2
ej. Either

way, it follows that pjej ∈ Sj−1 − Sj−1. This contradicts the fact that Sj−1 has no shared
faces in the ej direction, by property (iv).

Finally, we check property (iv). Suppose that Sj contains a shared face in the ei direction,
for some i > j. Then by p2jej-periodicity, the set

⋃
a∈ 1

2
Z∩[0,pj)(Sj−1)

∗
j,a also contains a shared

face in the ei direction. Since the sets (Sj−1)
∗
j,a project to distinct values in the jth coordinate,

this shared face must occur within a single (Sj−1)
∗
j,a. But this implies that Sj−1 contains a

shared face in the ei direction, contradicting property (iv). This completes the proof of the
claim; therefore the proof of the theorem is complete.

8. Integer Keller properties and the Coven-Meyerowitz conjecture

We conclude this paper by providing more details on the Coven-Meyerowitz conjecture
and its relationship to our results here. Given a finite set A ⊂ N ∪ {0}, let SA be the set of
prime powers pα such that Φpα(X) divides A(X). Coven and Meyerowitz [2] proposed the
following tiling conditions:

(T1) A(1) =
∏

s∈SA
Φs(1),

(T2) if s1, . . . , sk ∈ SA are powers of distinct primes, then Φs1...sk(X) divides A(X).

The main results of [2] are:

• if A satisfies (T1), (T2), then A tiles Z by translations;
• if A tiles Z by translations, then (T1) holds;
• if A tiles Z by translations, and if |A| has at most two distinct prime factors, then

(T2) holds.

The statement that (T2) must hold for all finite tiles of Z has become known as the Coven-
Meyerowitz conjecture. At the time of this writing, (T2) is known to hold for both tiles in
any tiling of period M = M ′p1 . . . pk, where:

• p1, . . . , pk are distinct primes not dividing M ′,
• either M ′ has at most two distinct prime factors, or else M ′ = p2q2r2, where p, q, r

are distinct primes.

The case when M ′ has at most two distinct prime factors can be resolved by the methods
developed in [2]. The statement above follows [8, Corollary 6.2]; see also [?, Theorem 1.5],
[27, Proposition 4.1], and the comments on [32]. The proof combines the main results of
[2] with the “subgroup’ reduction”, developed in [2] and stated in [8, Theorem] in the form
needed here. More recently,  Laba and Londner [9, 10] proved that (T2) holds for both tiles
in any tiling of period M = p2q2r2, where p, q, r are distinct primes. Together with the
subgroup reduction, this also implies the above statement with M ′ = p2q2r2.
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We note an interpretation of (T2) in terms of tiling complements. Coven and Meyerowitz
[2] proved that if A satisfies (T1) and (T2), then it admits a tiling of the form A⊕B♭ = ZM ,
where M = lcm(SA) and B♭ is an explicitly constructed and highly structured “standard”
tiling complement depending only on the prime power cyclotomic divisors of A(X). Con-
versely, if a tile A admits a tiling with a standard tiling complement, it satisfies (T2) [8,
Proposition 3.4].

As a special case, the set B defined in (1.10) is the standard tiling set with

Φp1(X) . . .ΦpN (X)|B(X).

It follows that both sets A and B in any integer cube tiling, no matter how badly behaved,
must satisfy the Coven-Meyerowitz conditions. At the same time, examples such as those in
Theorem 1.6 show that the structure of integer tilings may be quite complicated even when
(T2) is known in advance. They also shed light on the viability of certain approaches to
proving (T2), and specifically, of the approach initiated in [9, 10].

A high-level overview of the proof of (T2) in [9, 10] is as follows. Let M = p2q2r2,
where p, q, r are distinct primes. Assume that A⊕B = ZM is a tiling, with |A| = |B| = pqr.
Without loss of generality, we may assume that ΦM(X)|A(X). Let Λ := pqrZM , and consider
the sets Aa := A ∩ (Λ + a) with a ∈ A. The proof now splits in two cases. If each set Aa

is a union of disjoint fibers in some direction (depending on a, but the same for the entire
set Aa), this fibering property is used to split up the tiling into tilings of smaller groups.
Assume now that there is an a ∈ A such that Aa is not a union of disjoint fibers in a fixed
direction. In this “unfibered” case, the authors are able to find fibers in A that do not lie
in Λ + a, then shift these fibers so that the original tiling A⊕B = ZM is replaced by a new
tiling A′ ⊕B = ZM with a simpler structure. The procedure continues until the entire set A
is replaced by the subgroup coset a + Λ; at that point, (T2) for both A and B follows from
[8, Proposition 3.4].

Some of the methods and intermediate results of [8, 9, 10] extend to integer tilings with
more prime factors and/or more scales. However, Theorem 1.6 shows that any approach to
proving (T2) that is based on fiber shifting cannot lead to a full resolution of the conjecture
for tilings with 8 or more prime factors. This also answers Question 2 in [8, Section 9] in the
negative.

We also mention the possibility of proving partial results concerning either the structure
or certain specific elements of the divisor sets. For example, Conjecture 9.1 in [8] states the
following:

Let A⊕ B = ZM be a tiling. Let p be a prime such that pn ∥ M and Φpn|A.
Then M/p ̸∈ Div(B).

This would follow from (T2), but might also be proved independently as a weaker result.
By Theorem 1.1, if A ⊕ B = ZM then Div(A) ∩ Div(B) = {M}. In the specific case of
integer cube tilings, we always have Φp2|A for each p|M . If there exist integer cube tilings
that do not satisfy (IKP1), this would not disprove the above conjecture, but it would prove
the weaker statement that M/p ̸∈ Div(A) is possible.
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30. S. Szabó, A type of factorization of finite abelian groups, Discrete Math. 54 (1985), 121–124.
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