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Abstract. We will describe a certain line of research connecting classical

harmonic analysis to PDE regularity estimates, an old question in Euclidean
geometry, a variety of deep combinatorial problems, recent advances in analytic

number theory, and more.

Traditionally, restriction theory is a part of classical Fourier analysis that
investigates the relationship between geometric and Fourier-analytic properties

of singular measures. It became clear over the years that the theory would have

to involve sophisticated geometric and combinatorial input. Two particularly
important turning points were Fefferman’s work in the 1970s invoking the

”Kakeya problem” in this context, and Bourgain’s application of Gowers’s

additive number theory techniques to the Kakeya problem almost 30 years
later.

All this led harmonic analysts to explore areas previously foreign to them,

such as combinatorial geometry, graph theory, and additive number theory.
Although the Kakeya and restriction problems remain stubbornly open, the

exchange of knowledge and ideas has led to breathtaking progress in other
directions, including the Green-Tao theorem on arithmetic progressions in the

primes. The level of interest in the subject has skyrocketed since then, and

many exciting developments are sure to follow.

Prologue

In April 2004, the mathematical world was jolted wide awake as Ben Green and
Terence Tao announced their proof of the long-standing conjecture that primes con-
tain arbitrarily long arithmetic progressions. Theirs was a stunning piece of work,
not only in its originality and ingenuity, but also in the breadth of mathematical
territory that it covered. The proof blended seamlessly a multitude of ideas from
number theory, combinatorics, harmonic analysis and ergodic theory. The subse-
quent Green-Tao papers made it clear that their breakthrough result was only the
first step in a far-reaching program of research, inspired by the Hardy-Littlewood
conjecture in analytic number theory.

To say that many were taken by surprise would be an understatement. Green
had just completed his Ph.D. degree less than a year earlier, and Tao was already
known as an brilliant mathematician but he had never worked in analytic number
theory until then. While they had been aware of each other’s work much earlier,
they did not meet and start to collaborate until early 2004. Their primes paper
was then completed within just a few months.
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This work, however, was not simply conjured out of thin air. It was built upon
decades of research by many excellent mathematicians, working in rather diverse
fields and not always concerned with any sort of arithmetic progressions. It then
drew on the ideas and experience of the earlier contributors to this area, including
Szeméredi, Furstenberg, Bourgain, Gowers, and others. Green and Tao studied
their work in depth, molded and rearranged it, long before they embarked on a
collaboration. They did truly stand on the shoulders of giants.

The ergodic-theoretic background of the Green-Tao work was surveyed in Bryna
Kra’s 2005 Current Events Bulletin talk and in the article [44]. Here we will focus
mostly on harmonic analysis, but with some combinatorics and additive number
theory also mixed in. It is far from my intentions to suggest that the work described
here is merely a background for the Green-Tao theorem. On the contrary, the ques-
tions mentioned here and the areas of research that they represent are fascinating
in their own right, and they still would be if Green and Tao had never met.

To keep this presentation reasonably short and coherent, I will limit it to a few
problems in each area, selected with a view to showcasing the often unexpected
paths between them. Even so, the list of references has repeatedly threatened to
run out of control. I hope to expand this to a longer article in the future; meanwhile,
I can only invite the reader to enjoy the story and, should he wish to learn more,
refer him to the more thorough and specialized surveys cited in the text.

.

1. The Kakeya Problem

1.1. Life during wartime. By all accounts, Abram Samoilovitch Besicovitch
(1891-1970) had an interesting life. He was born in 1891 in Berdyansk, in the south
of Russia. Having demonstrated exceptional mathematical abilities at an early age,
he went on to study under the direction of the famous probabilist A.A. Markov at
the University of St. Petersburg, from which he graduated in 1912.

The University of Perm was established in October 1916, first as a branch of the
University of St. Petersburg and then as an independent institution. Perm, located
in the Ural Mountains, was closed off to foreign visitors from the 1920s until 1989,
and the university, which remains the main intellectual center of the region, has
seen difficult times. But in the hopeful early years (1916–1922), it managed to
attract many brilliant and ambitious young academics. Besicovitch was appointed
professor of mathematics at the University of Perm in 1917. Among his colleagues
were the mathematician I.M. Vinogradov, of the three-primes theorem in analytic
number theory, and the physicist A.A. Friedmann, best known for his mathematical
models of the “big bang” and the expanding universe.

After several months of political unrest, the Bolshevik Revolution erupted in
October 1917. Soon thereafter a civil war engulfed Russia. The White Army, led
by former Tsarist officers, opposed the communist Red Army. Perm was controlled
by the Red Army until December 1918, when the White Army took over. In
August 1919 the Red Army returned. According to Friedmann, all the staff except
Besicovitch left the university:

The only person who kept his head and saved the remaining prop-
erty was Besicovitch, who is apparently A.A. Markov’s disciple not
only in mathematics but also with regard to resolute, precise defi-
nite actions.
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In 1920 Besicovitch returned to St. Petersburg, which had been renamed Petro-
grad six years earlier, and accepted a position at Petrograd University. (Petrograd
would change names twice more: it became Leningrad after Lenin’s death in 1924,
and in 1991 it reverted to its original name St. Petersburg.) The war years had
not been kind to Petrograd. The city lost its capital status to Moscow in 1918, the
population dwindled to a third of its former size, and the economy was in tatters.
This is how Encyclopedia Britannica describes the education reform in the newborn
Soviet Union:

To destroy what they considered the elitist character of Russia’s ed-
ucational system, the communists carried out revolutionary changes
in its structure and curriculum. All schools,from the lowest to the
highest, were nationalized and placed in charge of the Commissariat
of Enlightenment. Teachers lost the authority to enforce discipline
in the classroom. Open admission to institutions of higher learn-
ing was introduced to assure that anyone who desired, regardless of
qualifications, could enroll. Tenure for university professors was
abolished, and the universities lost their traditional right of self-
government.

Besicovitch was awarded a Rockefeller Fellowship in 1924, but was denied permis-
sion to leave Russia. He escaped illegally, along with his colleague J.D. Tamarkin,
and took up his fellowship in Copenhagen, working with Harald Bohr. After a brief
stay in Liverpool (1926-27), he finally settled down in Cambridge, where he spent
the rest of his life. From 1950 until his retirement in 1958, he was the Rouse Ball
Professor of Mathematics; this is the same chair that was held by John Littlewood
prior to Besicovitch’s tenure, and is currently being held by W.T. Gowers, whose
work will play a major part later in this story.

Besicovitch will be remembered for his contributions in the theory of almost
periodic functions (a subject to which Bohr introduced him in Copenhagen) and
other areas of function theory, and especially for his pioneering work in geometric
measure theory, where he established many of the fundamental results. He was
a powerful problem solver who combined a mastery of weaving long and intricate
arguments with a capacity to approach a question from completely unexpected
angles. His solution of the Kakeya problem, to which we are about to turn, is a
prime example of his ingenuity.

1.2. Riemann integrals and rotating needles. Sometime during his Perm pe-
riod, between the comings and goings of the Red and White Armies, Besicovitch
worked on a problem in Riemann integration:

Given a Riemann-integrable function f on R2, must there exist a
rectangular coordinate system (x, y) such that f(x, y) is Riemann-
integrable as a function of x for each y, and that the two-dimensional
integral of f is equal to the iterated integral

∫ ∫
f(x, y)dxdy?

He observed that to answer the question in the negative it would suffice to
construct a set of zero Lebesgue measure in R2 containing a line segment in every
direction. Specifically, suppose that E is such a set, and fix a coordinate system in
R2. Let f be the function such that f(x, y) = 1 if (x, y) ∈ E and if at least one
of x, y is rational, and f(x, y) = 0 otherwise. We may also assume, shifting E if
necessary, that the x- and y-coordinates of the line segments parallel to the y- and
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x-axes, respectively, are irrational. Then for every direction in R2, there is at least
one line segment in that direction along which f is not Riemann-integrable as a
function of one variable. However, f is Riemann-integrable in two dimensions, as
the set of its points of discontinuity has planar measure 0.

Besicovitch then proceeded to construct the requisite set E. This, along with
the solution of the Riemann integration problem, was published in a Perm scientific
journal in 1919 [2]. I wonder if any copies of that article have survived!

The construction is roughly as follows. We start with a triangle ABC, which
contains line segments in all directions from AB to AC. We divide it into many
long and this triangles with one vertex at A and the other two on the base line seg-
ment BC, then rearrange them by sliding them along the base. This can be done
so that the rearranged set has area less than any small constant fixed in advance.
Iterating the construction and then taking the limit, we obtain a set of measure
0. The details of the construction can be found in many books and articles, for
example [18], [54], [67]. There have been many subsequent improvements and sim-
plifications of Besicovitch’s construction, by Perron, Schoenberg, and many other
authors including Besicovitch himself.

Independently but around the same time (1917), the Japanese mathematician
Soichi Kakeya proposed a similar question which became known as the Kakeya
needle problem:

What is the smallest area of a planar region within which a unit
line segment (a “needle”) can be rotated continuously through 180
degrees, returning to its original position but with reversed orien-
tation?

Kakeya [39] and Fujiwara-Kakeya [23] conjectured that the smallest convex pla-
nar set with this property was the equilateral triangle of height 1, and mentioned
that one could do better if the convexity assumption was dropped. For example,
the region bounded by a three-cusped hypocycloid inscribed in a circle of diameter
1 has the required property and has area π/8 ≈ .39, whereas the area of the triangle
is
√

3/3 ≈ 0.58. Kakeya’s conjecture for the convex case was soon confirmed by
Julius Pál (1921), but the more interesting non-convex problem remained open.

Due to the civil war, there was hardly any scientific communication between
Russia and the Western world at the time. Both Besicovitch and Kakeya were
unaware of each other’s work. Besicovitch learned of Kakeya’s problem after he
left Russia, possibly from a 1925 book by G.D. Birkhoff which he mentions in [4],
and realized that a modification of his earlier construction provided the unexpected
answer:

For any ε > 0, there is a planar region of area less then ε within
which a needle can be rotated through 180 degrees.

His solution was published in 1928 [3]. There are now many other such construc-
tions, some with additional conditions on the planar region in question.

1.3. The Kakeya conjecture.

Definition 1.1. A Kakeya set, or a Besicovitch set, is a subset of Rd which contains
a unit line segment in each direction.

Besicovitch’s construction shows that Kakeya sets in dimension 2 can have mea-
sure 0. With this information, it is easy to see that the same is true in higher



FROM HARMONIC ANALYSIS TO ARITHMETIC COMBINATORICS 5

dimensions: let E be a planar Kakeya set of measure 0, then the set E × [0, 1]d−2

in Rd is a Kakeya set and has d-dimensional measure 0.
The following conjecture, however, remains open for all d ≥ 3:

Conjecture 1.2. A Kakeya set in Rd must have Hausdorff dimension d.

In dimension 2, this was first proved by Davies [16] in 1971; an important alter-
native argument was given later by Córdoba [14].

The current interest in the Kakeya conjecture is largely motivated by problems
in harmonic analysis. Analysts quickly realized that Besicovitch’s construction
of Kakeya sets of measure zero, along with a closely related construction due to
Nikodym (1927), could be used to produce counterintuitive examples involving
maximal functions and differentiation of integrals (see e.g. [11]). However, it was
not until the 1970s and 80s that substantial qualitative differences between the
planar and higher-dimensional cases were brought to light, and it gradually became
understood that Conjecture 1.2 (along with its stronger maximal function variant)
is the key question to consider. This will be discussed in more detail in the next
section, after which we will return to the Kakeya conjecture and the progress that
has been made so far.

2. Questions in harmonic analysis

2.1. The restriction problem. The Fourier transform of a function f : Rd → C
is defined by

f̂(ξ) =
∫

f(x)e−2πix·ξdx.

This maps the Schwartz space of functions S to itself, and is clearly a bounded
operator from L1(Rd) to L∞(Rd). A basic result in harmonic analysis is that the
Fourier transform extends to an isometry on L2(Rd); furthermore, by the Hausdorff-
Young inequality the Fourier transform is also bounded from Lp(Rd) to Lp′(Rd) if
1 < p < 2 and 1

p + 1
p′ = 1.

The following question has become known as the restriction problem:
Let µ be a non-zero measure on Rd. For what values of p′, q′ does
the Fourier transform, defined on S, extend to a bounded operator
from Lq′(Rd) to Lp′(dµ)? In other words, when do we have an
estimate

(2.1) ‖f̂‖Lp′ (dµ) ≤ C‖f‖Lq′ (Rd), f ∈ S?

We will usually assume that the measure µ is finite. Here and below, C and
other constants may depend on the dimension d, the measure µ, and the exponents
p, q, but not on f except where explicitly indicated otherwise.

In the classical version of the problem, µ is the Lebesgue measure on a d − 1-
dimensional hypersurface Γ in Rd, e.g. a sphere or cone. Then the above question
can be rephrased in terms of restricting the Fourier transform of an Lq′ function f

to the hypersurface. This is trivial if q′ = 1, since then f̂ is continuous and bounded
everywhere, in particular on Γ. On the other hand, it is easy to see that no such
result is possible if q′ = 2. This is because the Fourier transform maps L2 onto L2,
so that we are not able to say anything about the behaviour of f̂ on a set of measure
0. It is less clear what happens for q′ ∈ (1, 2). As it turns out, the answer here
depends on the geometry of Γ: for example, there can be no estimates such as (2.1)
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with q′ > 1 if Γ is a hyperplane, but we do have nontrivial restriction estimates for
a variety of curved hypersurfaces, some of which will be discussed shortly.

The reason for the somewhat curious notation so far is that we reserved the
exponents p, q for the dual formulation of the problem. We will write f̂dµ(ξ) =∫

f(x)e−2πix·ξdµ(x).

Let µ be a non-zero measure on Rd. For what values of p.q do we
have an estimate

(2.2) ‖f̂dµ‖Lq(Rd) ≤ C‖f‖Lp(dµ), f ∈ S?

A reasonably simple argument shows that (2.2) and (2.1) are equivalent if p, p′

and q, q′ are pairs of dual exponents: 1
p + 1

p′ = 1
q + 1

q′ = 1. While the restriction
problem took its name from the first formulation (2.1), the second one turns out
to be much more useful in applications.

In the case when µ is the surface measure on a hypersurface Γ with nonvanishing
Gaussian curvature, classical stationary phase estimates (e.g. [36]) yield asymptotic
expressions for f̂dµ(ξ) if f is a smooth compactly supported function on Γ. In
particular, we then have

(2.3) |f̂dµ(ξ)| = O((1 + |ξ|)−
d−1
2 ),

and it follows that f̂dµ ∈ Lq(Rd) for q > 2d
d−1 . A wide variety of similar estimates

has been obtained under weaker assumptions on the curvature of Γ, for example
“finite type” surfaces and surfaces with less than d − 1 nonvanishing principal
curvatures are allowed. A comprehensive survey of such work up to 1993 is given
in [54] (see also [37]).

The point of the restriction estimates is that we no longer expect our functions
to be smooth, and that our estimates are intended to be uniform in Lq norms,
regardless of the smoothness of the data. This is particularly useful in applications
to PDE questions. Much as stationary phase estimates are ubiquitous in traditional
linear PDE theory, restriction estimates can be used to prove regularity estimates
if we only know that the initial data is in some Lp space and expect Lq or mixed-
norm regularity, rather than smoothness, of the solution. For example, restriction
estimates are very closely related to Strichartz estimates [55]. We will not attempt
to survey this rich and complex area here, instead referring the reader to references
such as e.g. [52], [54], [62], [58], [71]. The same references elaborate on many other
problems in harmonic analysis, involving oscillatory integrals, maximal functions,
averaging operators and Fourier integral operators, which bear close relations to
restriction estimates as well as to one another.

2.2. Restriction for the sphere and arrangements of needles. We will now
take a closer look at the restriction phenomenon for the sphere Sd−1 in Rd. Let
σ be the normalized surface measure on Sd−1. The following conjecture is due to
Elias M. Stein:

Conjecture 2.1. For all f ∈ L∞(Sd−1), we have

(2.4) ‖f̂dσ(ξ)‖q ≤ C‖f‖∞, q >
2d

d− 1
.

This is known for d = 2 (due to Fefferman and Stein [19]), but remains open for
all d > 2. The range of q is suggested by stationary phase formulas such as (2.3).
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Plugging in f ≡ 1 shows that this range cannot be improved. Indeed, d̂σ can be
computed explicitly:

d̂σ(ξ) = 2|ξ|−
d−1
2 cos(2π(|ξ| − d− 1

8
)) + O(|ξ|−

d+1
2 ),

which belongs to Lq(Rd) only for q exactly as indicated above.
If instead of assuming that f ∈ L∞ we make the weaker assumption that f ∈

L2(Sd−1), then the best possible result is known [64], [65], [53]:

Theorem 2.2. (Tomas-Stein) Let f ∈ L2(Sd−1), then

(2.5) ‖f̂dσ(ξ)‖q ≤ C‖f‖L2(Sd−1), q ≥ 2d + 2
d− 1

.

This was first proved by Stein in 1967 (unpublished) for a smaller range of q. In
1975 P.A. Tomas extended the result to q < 2d+2

d−1 , and later that year the endpoint
was settled by Stein. A simple construction known as the Knapp counterexample
shows that the range of q in Theorem 2.2 is optimal.

The Tomas-Stein argument is very general and uses only limited information
about the geometry of Sd−1, namely its dimensionality and the decay of σ̂ at infinity.
Large parts of the proof can be adapted to different or more general settings; in
fact, later on we will see a very similar argument applied to a number-theoretic
problem.

One can interpolate between Tomas-Stein and the trivial L1-L∞ estimate to get
a range of intermediate estimates. Going beyond that, however, was much more
difficult, and for many years, until Bourgain’s breakthrough in 1991 [7], it was not
even known whether this was possible at all. It turns out that a substantially new
approach was required. While Theorem 2.2 is mostly based on analytic consider-
ations, restriction estimates such as (2.2) with p > 2 require deeper geometrical
information, and this is where we discover Kakeya sets lurking under the surface.

Our starting point is that the restriction conjecture (2.4) implies the Kakeya
conjecture (Conjecture 1.2). This was perhaps first stated and proved formally by
Bourgain in [7], but very similar arguments were used in the harmonic analysis
literature throughout the 1970s and 80s, all inspired by the work of Fefferman
[20] where Besicovitch sets were used to produce a counterexample to the (closely
related) ball multiplier conjecture. Below is a rough summary of this argument,
adapted to the restriction setting.

Let f(x) = e2πiηxχa(x), where η ∈ Rd, a ∈ Sd−1, and χa is the characteristic
function of the spherical cap centered at a of radius δ for some very small δ >

0. Scaling considerations, standard in harmonic analysis, show that f̂ is roughly
constant on tubes of length δ−2 and radius δ−1. Forgetting about mathematical
rigour for a moment, we will in fact think of f̂ as the characteristic function of one
such tube. Moreover, by adjusting the phase factor η we can place that tube at
any desired point in the dual space Rd

ξ .
Now cover the sphere by such δ-caps, and let F (x) be the sum of the associated

functions defined above. Then ‖F‖∞ ≤ C, uniformly in δ. On the other hand, F̂ is
the sum of a large number of characteristic functions of tubes as described above.
If we now arrange these tubes as in the Besicovitch set construction, then the size
of the support of F̂ will be very small compared to its L1 norm, and an application
of Hölder’s inequality shows that this forces the Lp norms of F̂ to be large. This
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can be worked out quantitatively, taking into account the many technicalities that
we conveniently brushed off here, and the result follows.

The truly groundbreaking contribution of [7] was the discovery that this reason-
ing was, to some extent, reversible. More precisely, Bourgain developed an analytic
machinery to deduce restriction estimates from Kakeya-type geometric information.
It is a difficult and analytically sophisticated argument. First of all, it does not
quite suffice to have a dimension bound for Kakeya sets in Rd – a stronger result
expressed in terms of maximal functions is needed. This is followed by simulta-
neous analysis on two different scales (local restriction estimates), combining the
maximal function result just mentioned with Tomas-Stein type orthogonality argu-
ments. The numerology produced here is complicated and unclear, and there is no
simple way to explain where the resulting values of the exponents p come from.

Bourgain’s work was continued by other authors: Wolff (1995), Moyua-Vargas-
Vega (1996), Tao-Vargas-Vega (1998), Tao-Vargas (2000), Tao (2003). While Wolff
improved on Bourgain’s result by producing a better Kakeya bound, other authors
tended to focus on the Kakeya-to-restriction conversion mechanism. It should be
added, though, that Wolff has also made indirect but crucial contributions of the
second kind, as the analytic tools developed by him in other related contexts were
then used by other authors (notably Tao) to make progress here. The updated
toolbox includes bilinear restriction estimates, induction on scales, wave packet
decompositions, local restriction estimates, and more. A comprehensive review of
the modern approach to the subject is given in [59].

The current best result belongs to Tao [58], and can be explained as follows.
Interpolating between the Stein-Tomas theorem (2.5) and the conjectured estimate
(2.4), we get a family of conjectured intermediate estimates of the form (2.2). The
challenge is to improve the range of p for which such estimates are known. Tao’s
result is that (2.2) holds with p > 2(n+2)

n , if q is the corresponding exponent from
the interpolation. This is obtained as a consequence (via scaling) of a bilinear
restriction estimate for paraboloids, proved also in [58] and largely inspired by
Wolff’s sharp bilinear restriction estimate for the light cone [69].

3. The Kakeya problem revisited

We now return to the Kakeya conjecture in dimensions d ≥ 3. Although the
conjecture remains open, partial results are available in the form of lower bounds
on the Hausdorff dimension of Besicovitch sets in Rd, and it is this question that
will concern us in this section.

In addition to the Hausdorff dimension, we will also consider the related but
somewhat different notion of Minkowski dimension, defined as follows. For a com-
pact set E ⊂ Rd, we let Eδ be the δ-neighbourhood of E, and consider the asymp-
totic behaviour of the d-dimensional volume of Eδ as δ → 0. We say that E has
Minkowski dimension α if the limit

(3.1) lim
δ→0

logδ |Eδ|

exists and is equal to n− α; in other words, if we have |Eδ| ≈ δd−α. If the limit in
(3.1) does not exist, we instead use the lower and upper limit in (3.1) to define the
upper and lower Minkowski dimension, denoted by dimM (E) and dimM (E). We
also use dimH(E) to denote the Hausdorff dimension of E.
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For all compact sets E ⊂ Rd we have dimH(E) ≤ dimM (E) ≤ dimM (E), so that
any lower bound on the Hausdorff dimension of Kakeya sets implies the same bound
on the Minkowski dimension. However, the converse does not hold, and there are
several results concerning the Minkowski dimension of Kakeya sets that so far have
not been replicated for the Hausdorff dimension.

The Minkowski dimension has many disadvantages compared to the Hausdorff
dimension, for example it is not associated with any countably additive measure
and there are countable sets that have positive Minkowski dimension. However,
its use will allow us to simplify considerably the exposition while retaining the
essence of the proofs. In the sequel we will therefore focus on Minkowski dimension
arguments even where Hausdorff versions are also available.

Prior to 1991, it was known that the Hausdorff dimension of a Kakeya set in Rd

must be at least (d + 1)/2. I was not able to determine where this first appeared
explicitly, but it certainly follows from the x-ray and k-plane transform estimates of
Drury [17] and Christ [13]. Bourgain’s work [7] started a race to improve the known
Kakeya bounds. In the next two subsections we give an account of the developments
so far and sketch a few key arguments. A summary of the best known bounds at
this time is given at the end of the section.

3.1. Geometric arguments. We begin with an argument due to Bourgain [7],
known in the harmonic analysis community as the “bush argument”, which provides
a geometric proof of the previously mentioned bound (d + 1)/2. Suppose that E is
a Kakeya set in Rd, then for each e ∈ Sd−1 E contains a unit line segment T e in the
direction of e. Let E be a maximal δ-separated subset of Sd−1, so that |E| ≈ δ−(d−1),
and let T e

δ be the δ-neighbourhood of T e. Abusing notation only very slightly, we
write Eδ =

⋃
e∈E T e

δ . Suppose that dimM (E) = α, so that |Eδ| ≈ δn−α. Since∑
e∈E |T e

δ | ≈ 1, there must be at least one point, say x0, which belongs to at least
δ−(n−α) tubes T e

δ . The key observation is that these tubes are essentially disjoint
(more precisely, have finite overlap) away from a small neighbourhood of x0. (Two
straight lines can only intersect at one point.) Thus |Eδ| is bounded from below by
a constant times the sum of volumes of the tubes through x0:

|Eδ| ≥ Cδ−(d−α) · δd−1 = δα−1.

But this is only possible if α− 1 ≤ d− α, i.e. α ≤ d+1
2 .

In [7], this is supplemented by an additional geometrical argument improving
the dimension bound to d+1

2 + εd, with εd given by a recursive formula (for d = 3
this yields the bound 7/3).

A more efficient geometrical argument, leading to the estimate dimH(E) ≥ d+2
2 ,

was given a few years later by Tom Wolff [67]. Wolff observes that in order for Eδ

to have small volume, it is necessary for a large fraction of the set, not just one
point, to have high multiplicity. In fact, many of the tubes T e

δ must consist largely
of high multiplicity points. Take one such tube, along with the union of all tubes
that intersect it (this object is often called “hairbrush”). By combining Bourgain’s
“bush” construction above with an earlier planar estimate due to Córdoba [14],
one can prove that the bristles of the hairbrush must be essentially disjoint. We
then bound the volume of Eδ from below by the volume of the hairbrush, and the
Minkowski dimension estimate again follows upon taking δ → 0.

This comes with a few caveats. The argument does not quite work as stated and
requires some modifications if the tubes of Eδ tend to intersect at very low angles.
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More importantly, there are additional issues that arise in the calculation of the
Hausdorff dimension (as opposed to Minkowski). We will not elaborate on this here,
but we do want to mention the two ends reduction of [67], which was introduced
to resolve that problem and may well have inspired some of the induction on scales
techniques in restriction theory.

Wolff’s argument, although more elaborate than Bourgain’s, is still relatively
simple in the sense that only very basic geometric information is being used, and
it was tempting to try to improve on it by using more sophisticated combinatorial
methods. This is how harmonic analysts were introduced to combinatorial geome-
try, an area of combinatorics which studies, among other things, arrangements of
lines, planes and other geometric objects in Euclidean space. Of particular interest
here are combinatorial bounds on the number of incidences between points and
objects such as lines, curves or surfaces. (A curve is incident to a point if the point
lies on the curve.) A classic result of this type is the Szemerédi-Trotter theorem
giving a bound O(n + m + n2/3m2/3) on the number of incidences between n lines
and m points in R2; we invite the reader to consult the review article [47] for an
overview of this fascinating subject and many more examples of estimates of this
type.

The use of incidence geometry in harmonic analysis – essentially, decomposing
functions into “wave packets”, then treating the latter as thin geometric objects
and applying combinatorial methods to deduce information about their possible
arrangements – was pioneered by Wolff in the 1990s. While the Kakeya problem
resisted this approach, Wolff was much more successful with other questions, for
example the local smoothing problem for the wave equation whose solution [70]
required obtaining deep geometric information about arrangements of circles. Just
as importantly, ongoing communication was gradually established between discrete
geometers and harmonic analysts. Many more intriguing connections between the
two areas have since been uncovered and continue to be pursued.

3.2. Additive and hybrid arguments. A radically different “arithmetic” ap-
proach to the problem was introduced by Bourgain in 1998 [10]. Let us forget
about the hairbrush construction for a moment, and try to improve on the bush
argument instead in another direction. Suppose that we are given a hypothetical
Kakeya set E ⊂ Rd of dimension close to (d + 1)/2. We perform a discretization
procedure as in the last subsection, except that we will now ignore the distinction
between a tube and a line. (This is cheating, but it is good for the exposition.) We
will also restrict our attention to those lines which make an angle less than π/100
with the xd-axis. Consider the intersections A,B, C of the discretized set E with
the three parallel hyperplanes xd = 0, xd = 1, xd = 1/2 (rescale and translate the
set if necessary). We consider A,B,C as subsets of Rd−1. Let S = {(a, b) : there is
a line from a to b}. Then

{(a + b)/2 : (a, b) ∈ S} ⊂ C.

The key result is the following lemma.

Lemma 3.1. Let A,B be two subsets of Zd of cardinality ≤ n, and let S ⊂ A×B.
If |{a + b : (a, b) ∈ S}| ≤ Cn, then

|{a− b : (a, b) ∈ S}| ≤ C ′n2− 1
13 .
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We will say more about Lemma 3.1 later on, but first we will see how it applies
to our setting. Due to multiplicity considerations similar to those in the last sub-
section, we have |A|, |B|, |C| ≤ n with n close to δ−(d−1)/2. The lemma then states
that |{a − b : (a, b) ∈ S}| ≤ cn2−1/13. But the last set includes the set of “all”
directions, hence it must have cardinality about δ−(d−1), which is greater than the
lemma allows if n is too close to δ−(d−1)/2.

Bourgain worked out a quantitative version of this in [10], obtaining a lower
bound (13d + 12)/25 for the dimension of the Kakeya sets in Rd, which is better
than Wolff’s result in high dimensions. The Minkowski dimension argument is more
or less as described above, but the Hausdorff and maximal function version present
many additional difficulties in arranging a setup in which the lemma can be applied,
and one cannot help but admire Bourgain’s ingenuity in overcoming this.

The bounds in [10] have since been improved in various ways. The arithmetic
approach was developed further by Katz and Tao [41], [42], first by improving the
bound in Bourgain’s lemma and then by using more than three “slices”. There are
also hybrid arguments [40], [42], combining Wolff’s geometric combinatorics with
Bourgain’s arithmetic method. We embarked on the work [40]. in two separate
groups, with the expectations that Wolff’s hairbrush estimate could be improved
by more sophisticated geometrical arguments... but we found that this was just not
going to happen, at least not in three dimensions. Our collection of geometrical ob-
servations (many of which were due to Tom Wolff or inspired by him) was growing,
but it still did not add up to an improved bound. That was only achieved when
we turned to Bourgain’s approach, first using geometrical techniques to effectively
factor out one dimension. (On the other hand, a similar result in higher dimensions
[45] involves only geometry and no additive techniques.)

Finally, we present the somewhat complicated list of the current best lower
bounds on the dimension of Besicovitch sets in Rd. We start with the Minkowski
results:

• d = 3: 5/2 + 10−10 (Katz- Laba-Tao 1999)
• d = 4: 3 + 10-10 ( Laba-Tao 2000)
• 4 < d < 24: (2− 21/2)(d− 4) + 3 (Katz-Tao 2001)
• d ≥ 24: (d + t− 1)/t, where t = 1.67513... is the root of t3− 4t + 2 = 0 that

lies between 1 and 2 (Katz-Tao 2001).

The Hausdorff list is shorter:

• d = 3, 4: (d + 2)/2 (Wolff 1994)
• d > 4: (2− 21/2)(d− 4) + 3 (Katz-Tao 2001)

The reader may have forgotten by now that we still have not said anything about
Bourgain’s lemma. We will do that now, and this will take us into the very different
realm of additive number theory. Lemma 3.1 is actually a modification of a result
of Gowers [26], [27] which in turn is a quantitative version of a result known as the
Balog-Szemerédi theorem. We will explain this in more detail in the next section.

This is a good moment to say that it was the connection between these questions
and the Kakeya conjecture, via Lemma 3.1 and Bourgain’s work in [10], that at-
tracted many harmonic analysts to additive number theory and inspired us to work
on its problems. The Green-Tao theorem and many other developments might have
never happened, were it not for Bourgain’s brilliant leap of thought in 1998.
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4. Additive number theory

Additive number theory is a mixture of number theory, combinatorics, and dis-
crete harmonic analysis, applied in various proportions to problems concerning
additive properties of sets of numbers. The questions of interest are often stated
in the language of first-grade arithmetic: addition, multiplication, and counting of
integers. Yet, starting with those most basic ingredients, one weaves a surprisingly
rich tapestry of techniques and results. We are actually interested in a certain
subfield of additive number theory that can be hard to define, but is often thought
to be closer to combinatorics than to the rest of number theory. Below we describe
two results that are central to, and representative of, this field: Freiman’s theorem
and Szemerédi’s theorem. There are excellent expositions and surveys of the area,
for example [15], [28] or [63], where the interested reader will find more information.

4.1. Freiman’s theorem. Let A ⊂ Z be a finite set, and let A + A = {a + b :
a, b ∈ A}. It is easy to prove that |A + A| ≥ 2|A| − 1, and that the equality is
attained if and only if A is an arithmetic progression. But what if we only know
that |A + A| ≤ C|A| for some (possibly large) constant C? Does this imply that A
has arithmetic structure? Of course arithmetic progressions still qualify, but so do
more general lattice-like sets of the form

(4.1) A = {a0 + j1r1 + · · ·+ jmrm : 0 ≤ ji ≤ Ji, i = 1, . . . ,m},

with m small enough depending on C. Such sets are called generalized arithmetic
progressions of dimension m. Freiman’s theorem [21], [22] asserts that all sets with
small sumsets are essentially of this form:

Theorem 4.1. Suppose that A ⊂ Z and that |A+A| ≤ C|A|. Then A is contained
in a generalized arithmetic progression (4.1) of size at most C ′|A| and dimension
m, where C ′ and m depend only on C.

Following Freiman’s work, there have been several other proofs of Theorem 4.1,
by Bilu [6], Ruzsa [49], [50], [51], and Chang [12], where the current best quantita-
tive bounds were obtained.

Freiman’s theorem has a variety of extensions and generalizations. It can be
extended to more general abelian groups – the most general result of this type was
recently obtained by Green and Ruzsa. In a different direction, the Balog-Szemerédi
theorem [1] addresses the case when we do not know the size of the entire sumset
A + A, assuming instead that the set {a + a′ : (a, a′) ∈ S} is small for a large
set S ⊂ A× A. It was a quantitative version of this theorem that was required in
Gowers’s proof of Szemerédi’s theorem (to be discussed in the next subsection), and
then strengthened further by Bourgain to produce Lemma 3.1 in the last section.

We recommend the book [46] for more information regarding Freiman’s theorem
and other inverse problems in additive number theory.

4.2. Szemerédi’s theorem. We will say that a set A ⊂ N has upper density δ if

limN→∞
|A ∪ [1, N ]|

N
= δ.

Motivated by van der Waerden’s theorem in Ramsey theory, Erdős and Turán
conjectured in 1936 that any set of integers A of positive upper density must contain
arithmetic progressions of length k for any k. This was indeed proved by Roth [48]
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for k = 3, then by Szemerédi [56], [57] for all k. Below is an equivalent statement
of this result:

Theorem 4.2. For any δ > 0 and any integer k there is a N(δ, k) such that if
N > N(δ, k) and A is a subset of {1, 2, . . . , N} of cardinality |A| ≥ δN , then A
must contain a non-trivial k-term arithmetic progression.

As of now, Szemerédi’s theorem has four remarkably distinct proofs, each of
which was a milestone in combinatorics in its own right. The original combinatorial
proof by Szemerédi [57], ingenious and complicated even by Szemerédi’s standards,
featured the regularity lemma, which has since become an invaluable tool in Ramsey
theory. Furstenberg’s ergodic-theoretic proof [24], based on the multiple recurrence
theorem, has the advantage of admitting a variety of extensions to more general
problems of similar type, for example the multidimensional Szemerédi theorem
due to Furstenberg and Katznelson [25], or the polynomial Szemerédi theorem
of Bergelson and Leibman [5]. Gowers’s proof [26], [27] is often referred to as
“harmonic analytic”, more for its resemblance to Roth’s proof for k = 3 than for its
actual use of harmonic analysis. It yields the best available quantitative bounds,
in terns of the dependence of N(δ, k) on k and δ, for k ≥ 4 (but this is now being
challenged by Green and Tao for k = 4). Finally, there is a very recent hypergraph
proof, due independently to Gowers and Nagle-Rödl-Schacht-Skokan (2004).

All known proofs of Szemerédi’s theorem rely on a certain dichotomy between
randomness and structure. Roughly speaking, if the elements of A were chosen
from {1, . . . , N} independently at random, each with probability δ, then with high
probability there would be about δkN2 k-term arithmetic progressions in A, as
there are about N2 k-term arithmetic progressions in {1, . . . , N}, and each one is
contained in A with probability δk. The same is true if A imitates a random set
closely enough, in a sense that needs to be made precise. On the other hand, a
non-random set should have a certain amount of additive structure, reminiscent of
that in Freiman’s theorem but much weaker. We then use that structure to our
advantage, for example by passing to a long arithmetic subprogression of {1, . . . , N}
on which A has higher density and then iterating the argument. The challenge is
to find a notion of randomness which is strong enough to guarantee existence of
k-term arithmetic progressions, but also weak enough so that its failure implies
useful structural properties.

We illustrate this by taking a brief look at Roth’s proof for k = 3. We will
identify {1, . . . , N} with the additive group ZN . The discrete Fourier transform on
ZN is defined by

f̂(ξ) = N−1
N∑

x=1

f(x)e−2πixξ.

Let A(x) be the characteristic function of A. A short Fourier-analytic calculation
shows that if A contains no non-trivial 3-term arithmetic progressions, then there
is a ξ 6= 0 such that

(4.2) |Â(ξ)| ≥ δ2.

In other words, a set whose Fourier coefficients Â(ξ) are small enough behaves like
a random set and contains 3-term arithmetic progressions. It remains to consider
the case when (4.2) holds for some ξ 6= 0. In this case, we use (4.2) to prove that A
cannot be uniformly distributed among long arithmetic progressions of step r for
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some r “dual” to ξ (i.e. |ξ · r| is small modulo N). This allows us to choose a long
subprogression of {1, . . . , N} on which A has increased density, and then continue
the inductive argument.

In Gowers’s proof for arbitrary k, randomness (or uniformity) of A is determined
by the size of the Gowers norms of its characteristic function. This is equivalent to
the above for k = 3, but more complicated for higher k. Again, if A is uniform then
it contains many k-term arithmetic progressions, but now uniformity is a stronger
notion and, unlike for k = 3, its failure does not imply linear structure. Instead
one must first find more complicated polynomial patterns in A, then exploit them,
eventually arriving again at a density increment on a subprogression. It is in this
part of the proof that advanced tools from additive number theory, such as the
theorems of Freiman and Balog-Szemerédi, become crucial.

While this offers a short glimpse at the outline of Roth’s and Gowers’s arguments,
we are not really able to do justice to any of this work here. More specialized
surveys, such as [61] or [63], offer a better look at Szemerédi’s theorem, its context
in combinatorics and number theory, and the wide diversity of techniques and ideas
involved in its proofs.

5. The Green-Tao theorem

5.1. Once in a lifetime. We finally turn to the k-term arithmetic progressions
in the primes. It has long been conjectured that such progressions should exist for
any k, for example this would follow from a much more general conjecture of Hardy
and Littlewood in [35]. Van der Corput proved in 1939, by an application of the
circle method, that primes contain infinitely many 3-term arithmetic progressions.
The conjecture was settled by Green and Tao in [33]:

Theorem 5.1. For any k ≥ 3, primes contain arithmetic progressions of length k.

An earlier result is due to van der Corput, who proved in 1939 that primes
contain infinitely many 3-term arithmetic progressions. Ben Green extended this
in [29] to dense subsets of primes. Both proofs rely on the circle method, a classic
Fourier-analytic technique in number theory.

By contrast, the Green-Tao proof employed ideas from all then-existing proofs
of Szemerédi’s theorem (combinatorics, ergodic theory, Fourier analysis), combined
with further number-theoretic information. Their approach was to embed the
primes in a sufficiently random background set in which they have positive density,
then prove a “relative Szemerédi theorem” which applies in this setting.

We begin with the latter part. Instead of sets A ⊂ {1, . . . , N} of positive relative
density, we consider functions f and ν on {1, . . . , N} such that 0 ≤ f ≤ ν and∑

x f(x) ≥ δ
∑

x ν(x). Here f is the target function (later on it will be supported
on the primes), and ν is the background function. We assume ν to be random in the
sense that it satisfies certain explicit correlation conditions (not easy to reproduce
here). A key point is that both f and ν need not be bounded uniformly in N .
We wish to prove a Szemerédi theorem in this setting; more precisely, we need to
estimate from below the quantity

(5.1)
∑
x,r

f(x)f(x + r)f(x + 2r) . . . f(x + (k − 1)r),

which counts the number of k − term arithmetic progressions in a set A if f is
the characteristic function of it. The proof of this proceeds roughly along the lines
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of Furstenberg’s ergodic proof of Szemerédi’s theorem. An inductive procedure
is used to decompose f into random and quasiperiodic parts. The contribution
of the random part to the quantity (5.1) is negligible. On the other hand, the
“usual” Szemerédi theorem gives a bound from below on the contribution of the
quasiperiodic part, and the result follows.

We now have to find appropriate functions f and ν. The reader should be used
by now to occasional cheating in this exposition, and we will do it again here. Let
f = Λ be the von Mangoldt function, i.e. Λ(n) = log p if n = pk and 0 otherwise.
This is not quite supported on the primes, but it is close enough and we can
pretend that prime powers do not exist. We also define ν to be a “truncated” von
Mangoldt function, supported on the almost primes (roughly, numbers which do
not have small divisors). Now we bless our good luck. An almost identical function
had been considered earlier by Goldston and Yildirim in their work on small gaps
between prime numbers. In fact, they had obtained correlation estimates on ν that
are very close to those we need to establish the randomness of ν. There is still some
work to do, but much of it has already been done for us. The work of Goldston and
Yildirim was first circulated in 2003, then a gap was found in the proof a few months
later. The main claims were withdrawn, but the preprints remained available and
they certainly turned out to be useful! Later on, Goldston and Yildirim, joined by
Pintz, fixed the proof and they now hold results on small gaps between primes that
far exceed anything previously known.

There are now many expositions and reviews of various aspects of the Green-
Tao work, see e.g. [31], [32], [44], [60], [61]. The focus of this note will remain on
connections to harmonic analysis, and thus we return to restriction theory for the
last time.

5.2. What goes around, comes around. Restriction estimates for finite expo-
nential sums, as opposed to continuous Fourier transforms, were first derived by
Bourgain [9] in the context of proving Strichartz estimates for solutions of evolu-
tion equations (such as Schrödinger and KdV) on the torus Td. They were then
revisited in 2003 by Green in [29], a paper that directly inspired the work in [33].

We will try to explain the approach of [29] in the framework of the last subsection.
Define f and ν as before (again we will not quite make this precise). Our goal is to
prove lower bounds on (5.1) for k = 3. In this context, the randomness of ν simply
means that ν has small Fourier coefficients, as explained earlier in connection with
Roth’s theorem. Green, however, does not proceed further along the same lines as
[33]. Instead, his main tool is the restriction estimate

(5.2) ‖f̂dν‖p ≤ Cp‖f‖L2(dν), p > 2.

This has exactly the same form as (2.2), if we interpret ν as the density of a
probabilistic measure supported on the almost primes. Moreover, the proof of
(5.2) follows the Tomas-Stein argument very closely, from the interpolation between
endpoints down to such details as the use of dyadic decompositions. Does this mean
that the almost primes have curvature? Or that they have a Hausdorff dimension?
Some questions are perhaps best dismissed without a hearing.

Although this type of Fourier analysis is not directly applicable to Szemerédi-type
problems for progressions of length 4 and more, it was reportedly a major source
of ideas for Green and Tao. They are currently working to develop a “quadratic
Fourier analysis” that could be applied to finding 4-term progressions, or more
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generally solutions to systems of 2 linear equations, in suitable sets such as the
primes or their dense subsets. This is a rapidly developing area and many more
exciting developments are sure to follow.

6. Notes and acknowledgements

I am grateful to David Eisenbud and Susan Friedlander for inviting me to speak
in the Current Events Bulletin and encouraging me to write this survey. This article
is also based in part on the expository talks I gave at the Canadian Mathematical
Society Winter 2004 meeting in Montreal, the MSRI workshop “Women in Math-
ematics: the legacy of Ladyzhenskaya and Oleinik” in May 2006 (there is some
overlap between this article and my extended abstract in the workshop proceed-
ings), and the American Mathematical Society 2006 Fall Western Section meeting
in Salt Lake City.

I have relied on a variety of sources in preparing the manuscript. In addition to
the many references cited in the text, I have also consulted the wonderful Internet-
based MacTutor History of Mathematics Archive, maintained at the University of
St. Andrews (http://www-history.mcs.st-andrews.ac.uk/history). This is
where some of the historical information in Section 1, including the quote in Sub-
section 1.1, came from, though I also found Kenneth Falconer’s historical comments
in [18] to be informative and reliable.

The Big Dipper image on the booklet cover illustrates a layman’s version of the
multidimensional Szemerédi theorem: if the stars in the night sky shine brightly
enough so that sufficiently many can be seen, then any desired pattern can be found
among them. Mathematicians, for example Benjamin Weiss and Terence Tao, have
sometimes used this metaphor in their lectures. In the film “A Beautiful Mind”,
there is a scene where the hero and his fiancée watch the night sky together. He
asks her to pick a pattern. She chooses an umbrella. He looks up for a few seconds.
Then their joined hands trace the shape of an umbrella between the stars.
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