Spectra of certain types of polynomials and tiling of integers with translates of finite sets

Sergei Konyagin and Izabella Łaba

September 16, 2002

1 Introduction

Definition 1.1 Let $A(x) \in \mathbf{Z}[x]$ be a polynomial. We say that $\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{N-1}\right\}$ is an N spectrum for $A(x)$ if the θ_{j} are all distinct and

$$
A\left(\epsilon_{j k}\right)=0 \text { for all } 0 \leq j, k \leq N-1, j \neq k,
$$

where

$$
\epsilon_{j k}=e^{2 \pi i\left(\theta_{j}-\theta_{k}\right)}, \theta_{0}=0
$$

Definition 1.1 is motivated by a conjecture of Fuglede [2], which asserts that a measurable set $E \subset \mathbf{R}^{n}$ tiles \mathbf{R}^{n} by translations if and only if the space $L^{2}(E)$ has an orthogonal basis consisting of exponential functions $\left\{e^{2 \pi i \lambda \cdot x}\right\}_{\lambda \in \Lambda}$; the set Λ is called a spectrum for E. For recent work on Fuglede's conjecture see e.g. [4], [5], [6], [7], [8], [9], [11], [12], [13], [14], [15], [16], [18], [20], [21], [22]. In the special case when $E \subset \mathbf{R}$ is a union of N intervals of length 1 , Fuglede's conjecture was proved in [8] (see also [18], [17], [15], [20]) to be equivalent to the following.

Conjecture 1.2 Let $A(x)$ be a polynomial whose all coefficients are nonnegative integers. Then the following are equivalent:
(T) There is a finite set $A \subset\{0,1,2, \ldots\}$ such that $A(x)=\sum_{a \in A} x^{a}$. Moreover, the set A tiles \mathbf{Z} by translations, i.e., there is a set $B \subset \mathbf{Z}$ (called the translation set) such that every integer n can be uniquely represented as $n=a+b$ with $a \in A$ and $b \in B$;
(S) $A(x)$ has an N-spectrum with $N=A(1)$.

If (T) holds for some B, we will write $A \oplus B=\mathbf{Z}$. Throughout this paper we will always assume that $2 \leq \# A<\infty$.

We will also address the question of characterizing finite sets A which tile \mathbf{Z} by translations. This problem has been considered by several authors and is closely related to many questions concerning factorization of finite groups, in particular periodicity and replacement of factors; see e.g. [1], [3], [17], [18], [19], [23], [24], [25]. In particular, the following conditions were formulated in [1]. Let $\Phi_{s}(x)$ denote the s-th cyclotomic polynomial, defined inductively by

$$
\begin{equation*}
x^{n}-1=\prod_{s \mid n} \Phi_{s}(x) . \tag{1.1}
\end{equation*}
$$

We define S_{A} to be the set of prime powers p^{α} such that $\Phi_{p^{\alpha}}(x)$ divides $A(x)$.

Conjecture 1.3 A tiles \mathbf{Z} by translations if and only if the following two conditions hold:
(T1) $A(1)=\prod_{s \in S_{A}} \Phi_{s}(1)$,
(T2) if $s_{1}, \ldots, s_{k} \in S_{A}$ are powers of different primes, then $\Phi_{s_{1} \ldots s_{k}}(x)$ divides $A(x)$.
It is proved in [1] that (T1)-(T2) imply (T), (T) implies (T1), and that (T) implies (T2) under the additional assumption that $\# A$ has at most two distinct prime factors. It is not known whether (T) always implies (T2); a partial result in the three-prime case was obtained in [3].

Conjecture 1.3, if true, implies one part of Conjecture 1.2, since (T1)-(T2) imply (S) with the spectrum

$$
\left\{\sum_{s \in S_{A}} \frac{k_{s}}{s}: 0 \leq k_{s}<p \text { if } s=p^{\alpha}, p \text { prime }\right\} \backslash\{0\}
$$

(see [15]). In particular, we have $(\mathrm{T}) \Rightarrow(\mathrm{S})$ if $\# A$ has at most two distinct prime factors.
Conjectures 1.2 and 1.3 have been verified in several other special cases. They are both true under the assumption that the degree of $A(x)$ is less than $\frac{3 N}{2}-1$, where $N=\# A$ [15]. It also follows from the results of [14] that Conjecture 1.2 is true for polynomials of the form

$$
A(x)=\frac{x^{k}-1}{x-1}+x^{m} \frac{x^{n}-1}{x-1}=1+x+\ldots+x^{k-1}+x^{m}+x^{m+1}+\ldots+x^{m+n-1}
$$

with $m \geq k$. It is also known [22] that if a set A tiles the nonnegative integers by translations, then (S) holds (in fact the result of [22] applies to more general sets $E \subset[0, \infty)$). Finally, it is proved in [15] that if $A(x)$ has degree less than $\frac{5 N}{2}-1$, where $N=\# A$, then an N-spectrum must be rational.

The results of this paper are as follows.

Theorem 1.4 Conjectures 1.2 and 1.3 are true if $A(x)$ is assumed to be irreducible. Furthermore, if $A(x)$ is irreducible, then $(T),(S)$ hold if and only if $\# A=p$ is prime and $A(x)=$ $1+x^{p^{\alpha-1}}+x^{2 p^{\alpha-1}}+\ldots+x^{(p-1) p^{\alpha-1}}$ for some $\alpha \in \mathbf{N}$.

Our next two theorems concerns polynomials of the form

$$
\begin{equation*}
A(x)=\prod_{i=1}^{N} A_{i}(x), A_{i}(x)=1+x^{m_{i}}+\ldots+x^{m_{i}\left(n_{i}-1\right)}=\frac{x^{m_{i} n_{i}}-1}{x^{m_{i}}-1} . \tag{1.2}
\end{equation*}
$$

Note that each factor A_{i} is the characteristic polynomial of the set $\left\{0, m_{i}, 2 m_{i}, \ldots,\left(n_{i}-1\right) m_{i}\right\}$, which tiles \mathbf{Z} with the translation set $\left\{0,1, \ldots, m_{i}-1\right\}+m_{i} n_{i} \mathbf{Z}$. Furthermore, $A_{i}(1)=n_{i}$ and each A_{i} has an n_{i}-spectrum $\left\{k / n_{i} m_{i}: k=1,2, \ldots, n_{i}-1\right\}$. It follows from Corollary 2.3 that $A(x)$ cannot have an M-spectrum with $M=n_{1} \ldots n_{N}=A(1)$ unless all coefficients of $A(x)$ are 0 or 1, i.e. $A(x)$ is a characteristic polynomial of a set $A \subset \mathbf{Z}$.

Theorem 1.5 Conjectures 1.2 and 1.3 are true for polynomials of the form (1.2) with $N=2$.

Theorem 1.6 Conjecture 1.3 is true for polynomials of the form (1.2) for all $N \geq 2$.

2 Preliminaries

It is well known (see e.g. [19]) that all tilings of \mathbf{Z} by finite sets are periodic: if A is finite and $A \oplus C=\mathbf{Z}$, then $C=B \oplus M \mathbf{Z}$ for some finite set B such that $\# A \cdot \# B=M$. Equivalently, $A \oplus B$ is a complete residue system modulo M, with M as above. We can rewrite it as

$$
\begin{equation*}
A(x) B(x)=1+x+\ldots+x^{M-1}\left(\bmod \left(x^{M}-1\right)\right) \tag{2.1}
\end{equation*}
$$

where $B(x)=\sum_{b \in B} x^{b}$. By (1.1), this is equivalent to

$$
\begin{equation*}
A(1) B(1)=M \text { and } \Phi_{s}(x) \mid A(x) B(x) \text { for all } s \mid M, s \neq 1 \tag{2.2}
\end{equation*}
$$

The following lemma is due to A. Granville (unpublished).

Lemma 2.1 If A tiles \mathbf{Z} by translations, then it admits a tiling whose period divides the number

$$
L=\operatorname{lcm}\left\{s: \Phi_{s}(x) \mid A(x)\right\} .
$$

Proof. Fix A, and let $A \oplus B=\mathbf{Z}_{M}(\bmod M)$. Replacing B by $\{c \in\{0,1, \ldots, M-1\}$: $c=b(\bmod M)$ for some $b \in B\}$ if necessary, we may assume that $B \subset\{0, \ldots, M-1\}$. Let $l=(L, M)$. If $d \mid M$ but $d \nmid L$ then

$$
\Phi_{d}(x)\left|\frac{x^{M}-1}{x-1}\right| A(x) B(x)
$$

but $\Phi_{d}(x) \nmid A(x)$, hence $\Phi_{d}(x) \mid B(x)$. Therefore

$$
\left.\frac{x^{M}-1}{x^{l}-1}=\prod_{d \mid M, d l} \Phi_{d}(x) \right\rvert\, B(x)
$$

Let $P(x)=B(x)\left(x^{l}-1\right) /\left(x^{M}-1\right)=\sum_{j=0}^{l-1} p_{j} x^{j}$. Then

$$
B(x)=\frac{x^{M}-1}{x^{l}-1} P(x)=\sum_{j=0}^{l-1} p_{j}\left(x^{j}+x^{j+l}+\ldots+x^{j+M-l}\right) .
$$

Thus the polynomial $P(x)$ has the form $P(x)=B_{0}(x)$, where $B_{0}=\{b \in B: 0 \leq b \leq l-1\}$. Then $A(x) B_{0}(x)=\frac{x^{l}-1}{x-1}\left(\bmod \left(x^{l}-1\right)\right)$ and $A(x) B_{0}(x)=\mathbf{Z}_{l}(\bmod l)$.

We will need the following well known property of cyclotomic polynomials:

$$
\Phi_{s}(1)= \begin{cases}0 & \text { if } s=1 \tag{2.3}\\ p & \text { if } s=p^{\alpha}, p \text { prime } \\ 1 & \text { otherwise }\end{cases}
$$

Finally, we will need the following lemma.

Lemma 2.2 Suppose that $A(x) \in \mathbf{Z}[x]$ has nonnegative coefficients. Then $A(x)$ cannot have an N-spectrum for any N greater than the number of non-zero coefficients of A.

Proof. The proof is a simple modification of an argument of [8]. Let $A(x)=\sum_{j=1}^{M} a_{j} x^{\alpha_{j}}$, where $a_{j}>0$ for all j. Let $\left\{\theta_{j}: j=1, \ldots, N-1\right\}$ be an N-spectrum for $A(x), \theta_{N}=0$, $\epsilon_{j}=e^{2 \pi i \theta_{j}}$ and $\epsilon_{j k}=e^{2 \pi i\left(\theta_{j}-\theta_{k}\right)}$. Then the condition $A\left(\epsilon_{j k}\right)=0$ means that the vectors

$$
\mathbf{u}_{j}=\left(\epsilon_{j}^{\alpha_{1}}, \ldots, \epsilon_{j}^{\alpha_{M}}\right)
$$

are mutually orthogonal in \mathbf{C}^{M} with respect to the inner product

$$
(\mathbf{v}, \mathbf{w})=\sum a_{k} v_{k} w_{k}, \mathbf{v}=\left(v_{1}, \ldots, v_{M}\right), \mathbf{w}=\left(w_{1}, \ldots, w_{M}\right)
$$

Since there can be at most M such vectors, it follows that $N \leq M$.

Corollary 2.3 Assume that $A(x) \in \mathbf{Z}[x]$ has nonnegative coefficients, and that it satisfies either (T1)-(T2) or (S). Then all non-zero coefficients of $A(x)$ are 1.

Proof. If $A(x)$ satisfies (T1)-(T2), then it also satisfies (S) [15]. Thus it suffices to consider the case when (S) holds. But then the corollary is an immediate consequence of Lemma 2.2.

3 Proof of Theorem 1.4

Throughout this section we assume that $A(x)$ is irreducible. Assume that A tiles \mathbf{Z} by translations. Then (T1) holds, and it follows from the irreducibility of $A(x)$ and (2.3) that $A(x)=$ $\Phi_{p^{\alpha}}(x)$ for some prime p. Hence $N=A(1)=p$ and the set $\left\{j p^{-\alpha}: j=1,2, \ldots, p^{\alpha}-1\right\}$ is an N-spectrum for A.

Suppose now that $A(x)$ has an N-spectrum. Let $e(u)=e^{2 \pi i u}$,

$$
A(x)=\sum_{k=0}^{N-1} x^{a_{k}}, a_{0}=M>a_{1}>\ldots>a_{N-1}=0
$$

let $\left\{\theta_{1}, \ldots, \theta_{N-1}\right\} \subset(0,1)$ be a spectrum for $A(x)$,

$$
\epsilon_{j k}=e\left(\theta_{j}-\theta_{k}\right), \theta_{0}=0,
$$

and let z_{1}, \ldots, z_{M} be the roots of the polynomial $A(x)$. The matrix $\left(e\left(\theta_{i} a_{j}\right)\right)_{i, j=0}^{N-1}$ is orthogonal. Therefore, for $j \neq k$

$$
\sum_{i=0}^{N-1} e\left(\theta_{i}\left(a_{j}-a_{k}\right)\right)=0
$$

or

$$
\begin{equation*}
\sum_{i=1}^{N-1} e\left(\theta_{i}\left(a_{j}-a_{k}\right)\right)=-1 \tag{3.1}
\end{equation*}
$$

Denote

$$
S_{j}=\sum_{i=1}^{M} z_{i}^{j}
$$

Let G be the Galois group of $A(x)$. Then, by (3.1), for any $\sigma \in G$

$$
\sum_{i=1}^{N-1} \sigma\left(e\left(\theta_{i}\right)\right)^{a_{j}-a_{k}}=-1
$$

Averaging over σ, we get

$$
\begin{equation*}
S_{a_{j}-a_{k}}=-M /(N-1) . \tag{3.2}
\end{equation*}
$$

By Newton's identities, if

$$
A(x)=\sum_{j=0}^{M} b_{j} x^{j}
$$

then

$$
\begin{equation*}
S_{j}+b_{M-1} S_{j-1}+\ldots+b_{M-j+1} S_{1}+j b_{M-j}=0 . \tag{3.3}
\end{equation*}
$$

Taking consequently $j=1, \ldots, M-a_{1}-1$, and using that all coefficients b_{i} in (3.3) are zeros, we get

$$
\begin{equation*}
S_{1}=\ldots=S_{M-a_{1}-1}=0 \tag{3.4}
\end{equation*}
$$

Furthermore, for $j=M-a_{1}$ Newton's identity gives

$$
\begin{equation*}
S_{M-a_{1}}+\left(M-a_{1}\right)=0 \tag{3.5}
\end{equation*}
$$

On the other hand, $S_{M-a_{1}}=-M /(N-1)$ by (3.2). Therefore,

$$
\begin{equation*}
M-a_{1}=M /(N-1) \tag{3.6}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
a_{j-1}-a_{j} \geq M /(N-1), j=1, \ldots, N-1 \tag{3.7}
\end{equation*}
$$

Indeed, suppose the contrary. Then, by (3.4), $S_{a_{j-1}-a_{j}}=0$, but this equality does not agree with (3.2). Hence,

$$
M=\sum_{j=1}^{N-1}\left(a_{j-1}-a_{j}\right) \geq \sum_{j=1}^{N-1} M /(N-1)=M
$$

Thus, the inequalities in (3.7) are actually equalities, and we have

$$
a_{j}=M-j M /(N-1), j=1, \ldots, N-1,
$$

and

$$
A(x)=\sum_{j=0}^{N-1} x^{j M /(N-1)}=\frac{x^{M N /(N-1)}-1}{x^{M /(N-1)}-1} .
$$

In particular, all roots of $A(x)$ are roots of unity. Since $A(x)$ is irreducible, $A(x)=\Phi_{s}(x)$ for some $s \in \mathbf{N}$; moreover, $A(1)=N>1$ implies that $N=p$ and $s=p^{\alpha}$ for some prime p. Hence $A(x)=\left(x^{p^{\alpha}}-1\right) /\left(\left(x^{p^{\alpha-1}}-1\right)\right.$ and

$$
A=\left\{0, p^{\alpha-1}, 2 p^{\alpha-1}, \ldots,(p-1) p^{\alpha-1}\right\} .
$$

It is easy to see that A tiles \mathbf{Z} with the translation set $B=\left\{0,1, \ldots, p^{\alpha-1}-1\right\}+p^{\alpha} \mathbf{Z}$.

4 Proof of Theorem 1.6

We will consider polynomials of the form

$$
\begin{equation*}
A(x)=\prod_{i=1}^{N} A_{i}(x), A_{i}(x)=1+x^{m_{i}}+\ldots+x^{m_{i}\left(n_{i}-1\right)}=\frac{x^{m_{i} n_{i}}-1}{x^{m_{i}}-1} \tag{4.1}
\end{equation*}
$$

It suffices to prove Theorem 1.6 under the assumption that

$$
\begin{equation*}
\left(m_{1}, \ldots, m_{N}\right)=1 \tag{4.2}
\end{equation*}
$$

Indeed, suppose that $\left(m_{1}, \ldots, m_{N}\right)=d>1$, and let $A^{\prime}=A / d, m_{i}^{\prime}=m_{i} / d$. Then A^{\prime} has the form (4.1) and satisfies (4.2). Furthermore, A tiles \mathbf{Z} if and only A^{\prime} tiles \mathbf{Z}, and A satisfies (T1)-(T2) if and only if so does A^{\prime} (see [1]).

Assume for now that m_{i}, n_{i} are chosen so that $A(x)$ has 0,1 coefficients. (By Theorem 1.6, (4.3) below is a sufficient condition.)

Let $m=\left(m_{1}, \ldots, m_{N}\right) \in \mathbf{R}^{N}$. Consider the projection $\pi: \mathbf{R}^{N} \rightarrow \mathbf{R}$ given by

$$
\pi:\left(u_{1}, \ldots, u_{N}\right)=u \rightarrow\langle u, m\rangle=u_{1} m_{1}+\ldots+u_{N} m_{N} .
$$

Let

$$
\mathcal{A}=\left\{\left(j_{1}, \ldots, j_{N}\right): j_{k}=0,1, \ldots, n_{k}-1\right\}
$$

so that $\pi(\mathcal{A})=A$, and

$$
W=\left\{\left(w_{1}, \ldots, w_{N}\right): w_{i} \in \mathbf{Z},\langle w, m\rangle=0\right\} .
$$

If A tiles \mathbf{Z} with the translation set B, we will write

$$
\mathcal{B}=\left\{\left(u_{1}, \ldots, u_{N}\right):\langle u, m\rangle \in B\right\}=\pi^{-1}(B) .
$$

Finally, we will denote $d_{i j}=\left(m_{i}, m_{j}\right)$. We will sometimes identify \mathcal{A} with the rectangular box $\left\{x \in \mathbf{R}^{N}: 0 \leq x_{j}<n_{j}\right\}$.

Lemma 4.1 Assume that $A \oplus B=\mathbf{Z}$, then:
(i) $\mathcal{A} \oplus \mathcal{B}$ is a tiling of \mathbf{Z}^{N};
(ii) \mathcal{B} is invariant under all translations by vectors in W.

Proof. Let $w \in \mathbf{Z}^{N}$, then $\pi(w)=a+b$ for unique $a \in A, b \in B$. Let $u=\pi^{-1}(a)$; we are assuming that π is one-to-one on \mathcal{A}, hence u is uniquely determined. Let also $v=w-u$. Then $\pi(v)=\pi(w)-\pi(u)=b$, hence $v \in \mathcal{B}$. This shows that each w can be represented as $u+v$ with $u \in \mathcal{A}, v \in \mathcal{B}$. Furthermore, for any such representation we must have $\pi(u)=a$ and $\pi(v)=b$, so that the above argument also shows uniqueness.

Remark We also have the following converse of Lemma 4.1. Let a tiling $\mathcal{A} \oplus \mathcal{B}=\mathbf{Z}^{N}$ be given, where \mathcal{A} and \mathcal{B} are as above. We claim that if (ii) holds, then $A \oplus B=\mathbf{Z}$, where $A=\pi(\mathcal{A})$ and $B=\pi(\mathcal{B})$. Indeed, by (4.2) π is onto. Let $x \in \mathbf{Z}$ and pick a vector in $\pi^{-1}(x)$; this vector can be written as $u+v$, where $u \in \mathcal{A}$ and $v \in \mathcal{B}$. Therefore $x=a+b$ with $a=\pi(u) \in A$ and $b=\pi(v) \in B$. It remains to verify that this representation is unique. Indeed, suppose that $x=\pi(w)=\pi\left(w^{\prime}\right)$, then $\pi\left(w-w^{\prime}\right)=0$ so that $w-w^{\prime} \in W$. By (ii), the tiling $\mathcal{A} \oplus \mathcal{B}$ is invariant under the translation by $w-w^{\prime}$. Hence if we write $w=u+v, w^{\prime}=u^{\prime}+v^{\prime}$ with $u, u^{\prime} \in \mathcal{A}$, $v, v^{\prime} \in \mathcal{B}$, it follows that $u=u^{\prime}$ and consequently $a=\pi(u)=\pi\left(u^{\prime}\right)$ is uniquely determined. This also determines $b=x-a$.

Lemma 4.2 Let $w_{i j}$ be the vector whose i-th coordinate is $m_{j} / d_{i j}, j$-th coordinate is $-m_{i} / d_{i j}$, and all other coordinates are 0. Then

$$
W=\left\{\sum_{i, j} k_{i j} w_{i j}: k_{i j} \in \mathbf{Z}\right\} .
$$

Proof. Denote the set on the right by W^{\prime}. Since $w_{i j}$ have integer coordinates and $\left\langle w_{i j}, m\right\rangle=$ 0 , it is clear that $W^{\prime} \subset W$. We will now prove the converse using induction in N. The inductive step will not necessarily preserve the property (4.2). However, if the lemma is proved for some N under the assumption (4.2), it also holds for the same N without this assumption. Indeed, suppose that $\left(m_{1}, \ldots, m_{N}\right)=d>1$, then d divides each $d_{i j}$, so that we may replace each m_{j} by $m_{j}^{\prime}=m_{j} / d$ and apply the version of the lemma in which (4.2) is assumed.

The case $N=1$ is trivial since $\langle w, m\rangle=0$ in dimension 1 only if $w=0$. Suppose that the lemma has been proved for $N-1$. We will show that any $w \in W$ can be written as $w=w^{\prime}+w^{\prime \prime}$, where $w^{\prime} \in W^{\prime}$ and $w^{\prime \prime} \in W, w_{1}^{\prime \prime}=0$; then the claim will follow by induction. It suffices to prove that

$$
w_{1}=\sum_{j=2}^{N} k_{j} \frac{m_{j}}{d_{1 j}}
$$

for some choice of integers k_{j}; in other words, that $\left(\frac{m_{2}}{d_{12}}, \ldots, \frac{m_{N}}{d_{1 N}}\right)$ divides w_{1}. Since $\langle w, m\rangle=0$, we have

$$
m_{1} w_{1}=-m_{2} w_{2}-\ldots-m_{N} w_{N}
$$

Hence $\left(m_{2}, \ldots, m_{N}\right)$ divides $m_{1} w_{1}$. By (4.2), it must in fact divide w_{1}. It only remains to observe that $\left(\frac{m_{2}}{d_{12}}, \ldots, \frac{m_{N}}{d_{1 N}}\right)$ divides $\left(m_{2}, \ldots, m_{N}\right)$.

Theorem 4.3 Let A be as in (4.1). Then the following are equivalent:
(i) A tiles \mathbf{Z} by translations;
(ii) A satisfies (T1)-(T2);
(iii) there is a labelling of the factors A_{i} for which the following holds:

$$
\begin{align*}
& n_{1} \left\lvert\,\left(\frac{m_{2}}{d_{12}}, \ldots, \frac{m_{N}}{d_{1 N}}\right)\right., \\
& n_{2} \left\lvert\,\left(\frac{m_{3}}{d_{23}}, \ldots, \frac{m_{N}}{d_{2 N}}\right)\right., \tag{4.3}\\
& \ldots, \\
& n_{N-1} \left\lvert\, \frac{m_{N}}{d_{N-1, N}} .\right.
\end{align*}
$$

Recall that we are assuming (4.2) throughout this section, including the proof that follows; however, it is easy to see that the theorem remains true without this assumption (see the remark after (4.2)).

Proof of Theorem 4.3. We will prove that (i) \Rightarrow (iii) \Rightarrow (ii); the implication (ii) \Rightarrow (i) is proved (for more general A) in [1].
(i) implies (iii): We will say that a set $V \subset \mathbf{R}^{N}$ has Keller's property if for each $v \in V, v \neq 0$, we have $v_{i} \in \mathbf{Z} \backslash\{0\}$ for at least one i. Let L be the linear transformation on \mathbf{R}^{N} defined by

$$
L\left(u_{1}, \ldots, u_{N}\right)=\left(\frac{u_{1}}{n_{1}}, \ldots, \frac{u_{N}}{n_{N}}\right) .
$$

If we identify \mathcal{A} with the rectangular box $\left\{x \in \mathbf{R}^{N}: 0 \leq x_{j}<n_{j}\right\}$, then $L(\mathcal{A})$ is the unit cube Q in \mathbf{R}^{N}, and by Lemma 4.1(i) $Q \oplus L(\mathcal{B})$ is a tiling of \mathbf{R}^{N}. We now use the following theorem of Keller on cube tilings [10].

Theorem 4.4 [10] If $Q \oplus V$ is a tiling of \mathbf{R}^{N}, then the set $V-V:=\left\{v-v^{\prime}: v, v^{\prime} \in V\right\}$ has Keller's property.

It follows that $L(\mathcal{B})-L(\mathcal{B})$ has Keller's property; in particular, since $W \subset \mathcal{B}-\mathcal{B}, L(W)$ has Keller's property.

We first claim that Keller's property for W implies the first equation in (4.3) for some labelling of A_{i}. Indeed, suppose that the first equation in (4.3) fails for all such labellings. Then for each $i \in\{1, \ldots, N\}$ there is a $\sigma(i) \neq i$ such that $n_{i} \backslash \frac{m_{i}}{d_{i \sigma(i)}}$. We may find a cycle i_{1}, \ldots, i_{r} such that $i_{j+1}=\sigma\left(i_{j}\right)$, with $i_{r+1}=i_{1}$. We thus have

$$
\begin{equation*}
n_{i_{j}} \nmid \frac{m_{i_{j+1}}}{d_{i_{j}, i_{j+1}}} \tag{4.4}
\end{equation*}
$$

for $j=1, \ldots, r$.
Define $w_{i j}$ as in Lemma 4.2. If there is a j such that

$$
\begin{equation*}
n_{i_{j+1}} \npreceq \frac{m_{i_{j}}}{d_{i_{j}, i_{j+1}}} \tag{4.5}
\end{equation*}
$$

then by (4.4), (4.5) Keller's property fails for $w_{i_{j}, i_{j+1}}$. If on the other hand (4.5) fails for all j, then this together with (4.4) implies that Keller's property fails for $\sum_{j=1}^{r} w_{i_{j}, i_{j+1}}$. This completes the proof of the claim.

The remaining equations in (4.3) can now be obtained by induction in N. Indeed, consider the set

$$
W_{1}=\left\{\left(w_{2}, \ldots, w_{N}\right):\left(0, w_{2}, \ldots, w_{N}\right) \in W\right\} \subset \mathbf{R}^{N-1}
$$

This set (as a subset of \mathbf{R}^{N-1}) has Keller's property, hence the previous argument with W replaced by W_{1} implies the second equation in (4.3). Similarly we obtain the rest of (4.3).
(iii) implies (ii): By the definition of $A_{i}(x)$,

$$
\begin{equation*}
\Phi_{s}(x) \mid A_{i}(x) \text { if and only if } s \mid m_{i} n_{i}, s \nmid m_{i} . \tag{4.6}
\end{equation*}
$$

We first prove (T1). By the definition of $A_{i}(x)$, all its irreducible factors are distinct cyclotomic polynomials, so that by (2.3) (T1) holds for each $A_{i}(x)$. It therefore suffices to prove that if (4.3) holds, then any prime power cyclotomic polynomial can divide at most one $A_{i}(x)$.

Let p be a prime such that $\Phi_{p^{\alpha}}(x)$ divides $A_{i}(x)$ for some α, i; it suffices to prove that $\Phi_{p^{\alpha}}(x)$ cannot divide $A_{j}(x)$ for any $j>i$. Let $p^{\beta_{k}} \| m_{k}$ and $p^{\gamma_{k}} \| n_{k}$ for $k=1, \ldots, N$, then

$$
\begin{equation*}
\Phi_{p^{\alpha}}(x) \mid A_{k}(x) \text { if and only if } \beta_{k}<\alpha \leq \beta_{k}+\gamma_{k} \tag{4.7}
\end{equation*}
$$

In particular, it follows that $\gamma_{i} \neq 0$.
Let $j>i$. By (4.3) we have $n_{i} \left\lvert\, \frac{m_{j}}{d_{i j}}\right.$, i.e. $n_{i}\left(m_{i}, m_{j}\right) \mid m_{j}$. Thus $\gamma_{i}+\min \left(\beta_{i}, \beta_{j}\right) \leq \beta_{j}$. Note that we cannot have $\min \left(\beta_{i}, \beta_{j}\right)=\beta_{j}$, since then γ_{i} would be 0 . Hence $\min \left(\beta_{i}, \beta_{j}\right)=\beta_{i}$ and $\alpha \leq \beta_{i}+\gamma_{i} \leq \beta_{j}$. This and (4.7) imply that $\Phi_{p^{\alpha}}(x) \not \Varangle A_{j}(x)$, as claimed.

We note for future reference that we have also proved the following:

$$
\begin{equation*}
\text { if } \Phi_{p^{\alpha}}(x) \mid A_{i}(x) \text { for some } \alpha \text {, then } \beta_{i}+\gamma_{i} \leq \beta_{j} \text { for all } j>i \text {. } \tag{4.8}
\end{equation*}
$$

It remains to prove (T2). We must prove that if $s>1$ is an integer such that $\Phi_{p^{\alpha}}(x) \mid A(x)$ for every $p^{\alpha}| | s$, then $\Phi_{s}(x) \mid A(x)$. We will in fact show that $\Phi_{s}(x) \mid A_{j}(x)$, where

$$
j=\max \left\{k: \Phi_{p^{\alpha}}(x) \mid A_{k}(x) \text { for some } p^{\alpha} \| s\right\} .
$$

By (4.6), it suffices to prove that $s \mid m_{j} n_{j}$ and $s \nmid m_{j}$.
For every $p^{\alpha}| | s$ we have $\Phi_{p^{\alpha}}(x) \mid A_{k}(x)$ for some $k \leq j$. Therefore $p^{\alpha} \mid m_{j} n_{j}$; this follows from (4.6) if $k=j$, and from (4.8) if $k<j$. Hence $s \mid m_{j} n_{j}$. On the other hand, by the definition of j there is at least one prime power $p^{\alpha} \| s$ such that $\Phi_{p^{\alpha}}(x) \mid A_{j}(x)$. By (4.6) we have $p^{\alpha} \chi m_{j}$, so that $s \nmid m_{j}$.

5 Proof of Theorem 1.5

In this section we will assume that $A(x)$ is as in (1.2). Denote also $d=\left(m_{1}, m_{2}\right)$. We will prove that, under the above hypotheses, each of (T), (S), (T1)-(T2) is equivalent to the statement that one of the following holds:

$$
\begin{align*}
& n_{1} \left\lvert\, \frac{m_{2}}{d}\right. \tag{5.1}\\
& n_{2} \left\lvert\, \frac{m_{1}}{d}\right. \tag{5.2}
\end{align*}
$$

We record for future reference that $\Phi_{s}(x) \mid A(x)$ if and only if

$$
\begin{equation*}
s \mid m_{i} n_{i}, s \nmid m_{i} \text { for at least one of } i=1,2 . \tag{5.3}
\end{equation*}
$$

By Theorem 4.3 and the remark following it, the statement that one of (5.1), (5.2) holds is equivalent to (T) and to (T1)-(T2). In light of [15], Theorem 1.5, this also implies (S). It remains to show that (S) implies one of (5.1), (5.2).

Suppose that $A(x)$ has an N-spectrum $\left\{\theta_{j}: j=1, \ldots, N-1\right\}$. Let $\theta_{N}=0, \epsilon_{j}=e^{2 \pi i \theta_{j}}(j=$ $1, \ldots, N-1), \epsilon_{N}=1$. Then the numbers

$$
\epsilon_{j} / \epsilon_{k}=e^{2 \pi i\left(\theta_{j}-\theta_{k}\right)}
$$

are roots of $A(x)$ for all $j \neq k, j \leq N, k \leq N$.
We will first prove that one of the following must hold:

$$
\begin{align*}
& \forall j m_{1} n_{1} \theta_{j} \in \mathbf{Z} \tag{5.4}\\
& \forall j m_{2} n_{2} \theta_{j} \in \mathbf{Z} \tag{5.5}
\end{align*}
$$

Indeed, suppose that (5.4) and (5.5) fail. Then there exist j and k such that

$$
\begin{align*}
& m_{1} n_{1} \theta_{j} \notin \mathbf{Z}, \tag{5.6}\\
& m_{2} n_{2} \theta_{k} \notin \mathbf{Z} . \tag{5.7}
\end{align*}
$$

Since ϵ_{j} is a root of $A(x)$, we get from (5.6) that

$$
\begin{equation*}
m_{2} n_{2} \theta_{j} \in \mathbf{Z} \tag{5.8}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
m_{1} n_{1} \theta_{k} \in \mathbf{Z} \tag{5.9}
\end{equation*}
$$

The conditions (5.6)-(5.9) imply

$$
\begin{aligned}
& m_{1} n_{1}\left(\theta_{j}-\theta_{k}\right) \notin \mathbf{Z}, \\
& m_{2} n_{2}\left(\theta_{j}-\theta_{k}\right) \notin \mathbf{Z} .
\end{aligned}
$$

Thus, $\epsilon_{j} / \epsilon_{k}$ is not a root of $A(x)$. This contradiction shows that our supposition cannot occur. Without loss of generality, we will assume that (5.4) holds.

For $l=0, \ldots, n_{1}-1$ denote

$$
J_{l}=\left\{j: m_{1} n_{1} \theta_{j} \equiv l\left(\bmod n_{1}\right)\right\} .
$$

For $j, k \in J_{l}, j \neq k$, the number $\epsilon_{j} / \epsilon_{k}$ is not a root of $A_{1}(x)$. Hence, it is a root of $A_{2}(x)$. This means that, for $j, k \in J_{l}, j \neq k$, the numbers $m_{2} n_{2}\left(\theta_{j}-\theta_{k}\right)$ are integers not divisible by n_{2}. This yields $\left|J_{l}\right| \leq n_{2}$. On the other hand, the equality

$$
N=n_{1} n_{2}=\sum_{l=0}^{n_{1}-1}\left|J_{l}\right|
$$

demonstrates that actually $\left|J_{l}\right|=n_{2}$ for all l, and, moreover, for a fixed $k \in J_{l}$, the numbers $m_{2} n_{2}\left(\theta_{j}-\theta_{k}\right)$ run over the complete residue system modulo n_{2}.

In particular, there exists $j \in J_{0}$ such that

$$
m_{2} n_{2} \theta_{j} \equiv 1\left(\bmod n_{2}\right) .
$$

Therefore,

$$
\begin{equation*}
\frac{m_{1} m_{2} n_{2}}{s} \theta_{j} \equiv \frac{m_{1}}{s}\left(\bmod n_{2}\right) \tag{5.10}
\end{equation*}
$$

On the other hand, the condition $j \in J_{0}$ means $m_{1} \theta_{j} \in \mathbf{Z}$. Therefore,

$$
m_{1} n_{2} \theta_{j} \equiv 0\left(\bmod n_{2}\right)
$$

and

$$
\begin{equation*}
\frac{m_{1} m_{2} n_{2}}{s} \theta_{j} \equiv 0\left(\bmod n_{2}\right) . \tag{5.11}
\end{equation*}
$$

Comparing (5.10) and (5.11), we obtain (5.2).

Acknowledgement. The first author was supported by Grants 02-01-00248 and 00-15-96109 from the Russian Foundation for Basic Research. The second author was supported by the NSERC Grant 22R80520.

References

[1] E. Coven, A. Meyerowitz: Tiling the integers with translates of one finite set, J. Algebra 212 (1999), 161-174.
[2] B.Fuglede: Commuting self-adjoint partial differential operators and a group-theoretic problem, J. Funct. Anal. 16 (1974), 101-121.
[3] A. Granville, I. Laba, Y. Wang: A characterization of finite sets that tile the integers, preprint, 2001.
[4] A. Iosevich, N. H. Katz, S. Pedersen: Fourier bases and a distance problem of Erdös, Math. Res. Lett. 6 (1999), 251-255.
[5] A. Iosevich, N. H. Katz, T. Tao: Convex bodies with a point of curvature do not have Fourier bases, Amer. J. Math. 123 (2001), 115-120.
[6] A. Iosevich, N. H. Katz, T. Tao: Fuglede conjecture holds for convex planar domains, preprint, 2001.
[7] A. Iosevich, S. Pedersen: Spectral and tiling properties of the unit cube, Internat. Math. Res. Notices 16 (1998), 819-828.
[8] P. Jorgensen, S. Pedersen: Fractal Geometry and Stochastics, in: Progress in Probability, vol. 17, Birkhäuser, Basel, 1995, 191-219.
[9] P. Jorgensen, S. Pedersen: Spectral pairs in Cartesian coordinates, J. Fourier Anal. Appl. 5 (1999), 285-302.
[10] O. H. Keller: Über die lückenlose Einfüllung des Raumes mit Würfeln, J. Reine Angew. Math. 163 (1930), 231-248.
[11] M. Kolountzakis: Non-symmetric convex domains have no basis of exponentials, Illinois J. Math. 44 (2000), 542-550.
[12] M. Kolountzakis: Packing, tiling, orthogonality, and completeness, Bull. London Math. Soc. 32 (2000), 589-599.
[13] M. Kolountzakis, M. Papadimitrakis: A class of non-convex polytopes that admit no orthogonal basis of exponentials, preprint, 2001.
[14] I. Laba: Fuglede's conjecture for a union of two intervals, Proc. AMS 129 (2001), 29652972.
[15] I. Laba: The spectral set conjecture and multiplicative properties of roots of polynomials, J. London Math. Soc. 65 (2002), 661-671.
[16] J. C. Lagarias, J. A. Reed, Y. Wang: Orthonormal bases of exponentials for the n-cube, Duke Math. J. 103 (2000), 25-37.
[17] J. C. Lagarias, S. Szabó: Universal spectra and Tijdeman's conjecture on factorization of cyclic groups, J. Fourier Anal. Appl. 7 (2001), 63-70.
[18] J. C. Lagarias, Y. Wang: Spectral sets and factorizations of finite abelian groups, J. Funct. Anal. 145 (1997), 73-98.
[19] D.J. Newman: Tesselation of integers, J. Number Theory 9 (1977), 107-111.
[20] S. Pedersen: Spectral sets whose spectrum is a lattice with a base, J. Funct. Anal. 141 (1996), 496-509.
[21] S. Pedersen: The dual spectral set conjecture, preprint, 2002.
[22] S. Pedersen, Y. Wang: Universal spectra, universal tiling sets, and the spectral set conjecture, Math. Scand. 88 (2001), 246-256.
[23] A. Sands: On Keller's conjecture for certain cyclic groups, Proc. Edinburgh Math. Soc. 2 (1979), 17-21.
[24] A. Sands: Replacement of factors by subgroups in the factorization of abelian groups, Bull. London Math. Soc. 32 (2000), 297-304.
[25] R. Tijdeman: Decomposition of the integers as a direct sum of two subsets, in Number Theory (Paris 1992-1993), London Math. Soc. Lecture Notes, vol. 215,261-276, Cambridge Univ. Press, Cambridge, 1995.

Department of Mechanics and Mathematics, Moscow State University, Moscow 11992, Russia

E-mail address: kon@mech.math.msu.su

Department of Mathematics, University of British Columbia, Vancouver, B.C. V6T 1Z2, Canada

E-mail address: ilaba@math.ubc.ca

