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Abstract

We study maximal averages associated with singular measures on
R. Our main result is a construction of singular Cantor-type mea-
sures supported on sets of Hausdorff dimension 1 − ε, 0 ≤ ε < 1

3 for
which the corresponding maximal operators are bounded on Lp(R) for
p > (1 + ε)/(1− ε). As a consequence, we are able to answer a ques-
tion of Aversa and Preiss on density and differentiation theorems in
one dimension. Our proof combines probabilistic techniques with the
methods developed in multidimensional Euclidean harmonic analysis,
in particular there are strong similarities to Bourgain’s proof of the
circular maximal theorem in two dimensions.

Mathematics Subject Classification: 26A24, 26A99, 28A78, 42B25.

1 Introduction

1.1 Maximal operators

Let {Sk : k ≥ 1} be a decreasing sequence of subsets of R. We define the
maximal operator associated with this sequence by

M̃f(x) := sup
r>0,k≥1

1

|Sk|

∫
Sk

|f(x + ry)|dy. (1.1)

While the definition (1.1) is quite general, we will focus on cases where the
sequence {Sk} arises from a Cantor-type iteration, so that in particular each
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Sk is a union of finitely many intervals. We will further assume that |Sk| → 0
as k →∞.

Under mild conditions on the Cantor iteration process, the densities φk =
1
|Sk|

1Sk
converge weakly to a probability measure µ supported on the set

S =
⋂∞

k=1 Sk. We then define the maximal operator with respect to µ:

M̃f(x) := sup
r>0

∫
|f(x + ry)| dµ(y). (1.2)

We will be interested in the Lp mapping properties of M̃. Since M̃ is
clearly dominated by M̃, similar estimates will follow for M̃ with the same
range of exponents.

We will also be concerned with Lp → Lq maximal estimates with p < q.
For this purpose, it is necessary to define the modified maximal operators

M̃af(x) := sup
r>0, k≥1

ra

∫
|f(x + ry)|φk(y)dy , (1.3)

M̃af(x) := sup
r>0

ra

∫
|f(x + ry)| dµ(y) , (1.4)

where the exponent a = 1
p
− 1

q
accounts for the appropriate scaling correction.

Note that M̃0 = M̃ and M̃0 = M̃.
Finally, we will need the restricted maximal operators

Mf(x) := sup
1<r<2,k≥1

1

|Sk|

∫
Sk

|f(x + ry)|dy , (1.5)

Mf(x) := sup
1<r<2

∫
|f(x + ry)| dµ(y) , (1.6)

where the range of the dilation factor r is limited to a single scale. These
operators will play a critical role in the proofs of the unrestricted maximal
estimates.

1.2 The main results

Theorem 1.1. There is a decreasing sequence of sets Sk ⊆ [1, 2] with the
following properties:

(a) each Sk is a disjoint union of finitely many intervals,
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(b) |Sk| ↘ 0 as k →∞,

(c) the weak-∗ limit µ of the densities 1Sk
/|Sk| exists.

(d) The restricted maximal operators M and M defined in (1.5) and (1.6)
are bounded from Lp[0, 1] to Lq(R) for any p, q ∈ (1,∞), and from Lp(R)
to Lq(R) for any 1 < p ≤ q < ∞.

(e) The unrestricted maximal operators M̃a and M̃a defined in (1.1) and
(1.2) are bounded from Lp(R) to Lq(R) whenever 1 < p ≤ q < ∞, with
a = 1

p
− 1

q
. In particular, M̃ and M̃ are bounded on Lp(R) for p > 1.

As a corollary, we obtain a differentiation theorem for averages on Sk that
answers a question of Aversa and Preiss [3] (see §1.3.3 for more details).

Theorem 1.2. Let {Sk : k ≥ 1} be the sequence of sets given by Theorem
1.1, with the limiting measure µ. Then for every f ∈ Lp(R) with p ∈ (1,∞)
we have

lim
r→0

sup
k

∣∣∣∣ 1

r|Sk|

∫
x+rSk

f(y)dy − f(x)

∣∣∣∣ = 0 for a.e. x ∈ R, and (1.7)

lim
r→0

∣∣∣∣∫ f(x + ry)dµ(y)− f(x)

∣∣∣∣ = 0 for a.e. x ∈ R. (1.8)

The limiting set S =
⋂∞

k=1 Sk constructed in our proof of Theorem 1.1 has
Hausdorff dimension 1. However, we are also able to prove similar maximal
estimates for sequences of sets whose limit has Hausdorff dimension 1 − ε
with ε > 0, provided that the range of exponents is adjusted accordingly.

Theorem 1.3. For any 0 < ε < 1
3
, there is a decreasing sequence of sets

Sk ⊂ [1, 2] obeying the conditions (a)–(c) of Theorem 1.1 and such that:

(a) S =
⋂∞

k=1 Sk has Hausdorff dimension 1− ε,

(b) The restricted maximal operators M and M are bounded from Lp[0, 1] to
Lq(R) for any p, q such that

1 + ε

1− ε
< p < ∞ and 1 < q <

1− ε

2ε
p, (1.9)

and from Lp(R) to Lq(R) for any p, q such that p ≤ q and (1.9) holds.
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(c) The unrestricted maximal operators M̃a and M̃a are bounded from Lp(R)
to Lq(R) with a = 1

p
− 1

q
for any p, q such that p ≤ q and (1.9) holds. In

particular, M̃ and M̃ are bounded on Lp(R) for p > 1+ε
1−ε

.

(d) The family of sets S = {rSk : k ≥ 1} and the measure µ differentiate
Lp(R) in the sense of (1.7) and (1.8) for all p > 1+ε

1−ε
.

Remarks.

1. It is possible to use the ideas of [24] to modify the construction of the
sequence of sets Sk so that, in addition to all the conclusions of Theorems
1.1 and 1.3, the limiting set S =

⋂∞
k=1 Sk is a Salem set. See §1.3.2 for

the definitions and more details.

2. It may be of greater interest that the correlation condition (4.2) used to
prove Theorems 1.1 and 1.3 already implies that S has positive Fourier
dimension, provided that the ε in Theorem 1.3 is small enough (ε < 1

5
will

suffice). We hope to address this issue at length in a subsequent paper.

3. An argument due to David Preiss, included here in Subsection 8.2, shows
that Theorem 1.2 (hence also Theorem 1.1(e)) cannot hold with p = 1. On
the other hand, we do not know whether the range of ε or the exponents
p, q in Theorem 1.3 is optimal.

1.3 Motivation

The motivation for the study of the maximal operators introduced in this
article comes from two different directions. On the one hand, our maxi-
mal operators provide a one-dimensional analogue of higher dimensional Eu-
clidean phenomena that have been studied extensively in harmonic analysis
in the context of hypersurfaces and singular measures on Rd. On the other
hand, they arise naturally in the consideration of density and differentiation
theorems for averages on sparse sets. We describe these below.

1.3.1 Analogues of averaging operators over submanifolds of Rd

There is a vast literature on maximal and averaging operators over families
of lower-dimensional submanifolds of Rd. A fundamental and representative
result is the spherical maximal theorem, due to E.M. Stein [37] for d ≥ 3 and
Bourgain [8] for d = 2. We state it here for future reference.
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Theorem 1.4. (Stein [37], Bourgain [8]) Recall the spherical maximal op-
erator in Rd:

M̃Sd−1f(x) = sup
r>0

∫
Sd−1

|f(x + ry)|dσ(y), (1.10)

where σ is the normalized Lebesgue measure on the unit sphere Sd−1. Then
M̃Sd−1 is bounded on Lp(Rd) for p > d

d−1
, and this range of p is optimal.

Many results of this type are known for other classes of manifolds in
Rd obeying appropriate smoothness and curvature conditions. We refer the
reader to [39], [10], [29], [30] for an introduction to this area of research and
further references.

No similar theory has been developed so far in one dimension. Indeed, it
is not clear a priori what such a theory might look like, given that the real
line has no nontrivial lower-dimensional submanifolds. However, given any
ε > 0, there are many singular measures on R supported on sets of Hausdorff
dimension 1 − ε. Viewing ε as an analogue of “codimension”, it is natural
to ask whether by imposing additional structure on these sets that would
assume the role of curvature, one might obtain Lp estimates similar to those
in Theorem 1.4 for the associated maximal operators and for a range p > pε,
where pε ↘ 1 as ε → 0. Theorem 1.3 provides an affirmative answer to this
question. Theorem 1.1 may be interpreted as the limiting situation as ε → 0
(compare with Theorem 1.4 as n → ∞) where the maximal range (1,∞] of
p is achieved for a single set S of zero Lebesgue measure.

1.3.2 Maximal averages via Fourier decay estimates

We now turn to the study of maximal operators M̃ defined as in (1.2) with µ
obeying appropriate Fourier decay conditions. It turns out that such condi-
tions may often be substituted for the geometric assumptions of §1.3.1 (see
e.g. [13], [32] and the references therein). From this perspective, our result
may be viewed as an extension of the following result by Rubio de Francia
[32]. We write µ̂(ξ) =

∫
e−2πiξxdµ(x).

Theorem 1.5. (Rubio de Francia [32]) Suppose that σ is a compactly sup-
ported Borel measure on Rd, d ≥ 1, such that

|σ̂(ξ)| ≤ C(1 + |ξ|)−a (1.11)

for some a > 1
2
. Then the maximal operator M̃σ, defined as in (1.2) but with

µ replaced by σ, is bounded on Lp(Rd) for p > (2a + 1)/(2a).
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Theorem 1.5 implies Theorem 1.4 for d ≥ 3, since then the surface mea-
sure σ on the sphere obeys the above assumption with a = d−1

2
> 1

2
, but

it fails to capture the circular maximal estimate in R2 for which a = 1
2

just
misses the stated range. We also observe that the range of p in Theorem 1.5
is independent of the dimension d; rather, it is given in terms of the Fourier
decay exponent a.

It is not possible for a singular measure σ on R to obey (1.11) with a > 1
2

(see [34]). In particular, Theorem 1.5 does not apply in this case. On the
other hand, there are many such measures obeying (1.11) with a smaller
exponent. Recall that the Fourier dimension of a compact set S ⊂ R is
defined by

dimF(S) = sup{0 ≤ β ≤ 1 : ∃ a probability measure σ supported on S

such that |σ̂(ξ)| ≤ C(1 + |ξ|)−β/2 for all ξ ∈ R}.

It is well known that dimF(S) ≤ dimH(S) for all compact S ⊂ R, and that the
inequality is often strict ([26], [14]). However, there are also many examples
of sets with dimF(S) = dimH(S), see e.g. [34], [23], [5], [6], [22], [24]. Such
sets are known as Salem sets. It is of interest to ask whether there is an
analogue of Theorem 1.5 that might apply to singular measures supported
on Salem sets and obeying (1.11), possibly with additional assumptions.

It turns out that the proofs of Theorems 1.1 and 1.3 do not use any
Fourier decay conditions of the form (1.11). Instead, the key to the proofs is
the correlation condition (4.2). If (1.11) indicates the linear uniformity of S
(see [24]), then (4.2) may be viewed as analogous to higher-order uniformity
conditions in additive combinatorics (cf. [16], [18]). Such conditions are
known to be strictly stronger than Fourier-analytic estimates. It is in fact
possible to prove that the correlation condition (4.2) implies Fourier decay
estimates of the form (1.11); in particular, it follows that the sets we construct
must have positive Fourier dimension, at least if the ε in Theorem 1.3 is
sufficiently small (ε < 1

5
will do). However, the rate of decay obtained in this

manner is far from optimal. In the case of the set S of dimension 1 given
by Theorem 1.1, our current methods yield (1.11) for all a < 1

8
, whereas the

optimal range would be a ≤ 1
2
. Note that the range of p in Theorems 1.1 and

1.3 is better than what would follow from the numerology of Theorem 1.5
with that value of a. We do not know whether it is possible to prove maximal
estimates such as those in Theorems 1.1 or 1.3 based solely on Fourier decay
with a < 1

2
.
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With some additional effort, it is possible to construct sequences of sets
Sk obeying all conditions of Theorems 1.1 and 1.3, respectively, such that S
is also a Salem set. This can be done (as shown in Section 9.1) by adding the
appropriate Fourier-analytic conditions to Theorem 5.1 and proving them
along the same lines as in [24, Section 6]. However, the Fourier decay is not
actually used in the proofs of any of our theorems.

1.3.3 Density theorems and differentiation of integrals

In addition to the considerations above, there are natural questions concern-
ing density and differentiation theorems in one dimension that suggest the
directions we pursue here. We do not attempt to survey the vast literature
on density theorems and differentiation of integrals (see [7], [12] for more
information) and focus only on the specific problems relevant to the present
discussion.

The following question was raised and investigated by Preiss [31] and
Aversa-Preiss [2], [3]: to what extent can the Lebesgue density theorem be
viewed as “canonical” in R, in the sense that any other density theorem
that takes into account the affine structure of the reals must follow from the
Lebesgue density theorem?

Let us clarify and motivate this statement. Consider a family S of mea-
surable subsets of R. We will say that S has the translational density property
if for every measurable set E ⊂ R we have

lim
S∈S,diam(S∪{0})→0

|(x + S) ∩ E|
|S|

= 1 for a.e. x ∈ E. (1.12)

Here and below, we use x + S to denote the translated set {x + y : y ∈ S}.
It follows from the Lebesgue density theorem that the collection of in-

tervals {(−r, r) : r > 0} has this property. A moment’s thought shows that
collections such as {(0, r) : r > 0} or {( r

2
, r) : r > 0} also have it, simply

because the intervals in question occupy at least a fixed positive proportion
of (−r, r).

Consider now the family of intervals S = {Ik}∞k=1, where Ik = ( k
(k+1)!

, 1
k!

).

We have |Ik| = 1
(k+1)!

and diam(Ik ∪ {0}) = 1
k!

, hence the last argument
no longer applies. In other words, the Lebesgue density theorem does not
imply any density properties of S. Nonetheless, S does have the translational
density property, courtesy of the hearts density theorem of Preiss [31] and
Aversa-Preiss [2] (see also [11] for an alternative proof).
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The collection S in the last example does not generate an affine invariant
density system: if we let Ik = ( k

(k+1)!
, 1

k!
) as before and define S ′ = {rSk :

r > 0, k ∈ N}, then (1.12) does not hold with S replaced by S ′. (Note that
the limit in (1.12) is now being taken over the two parameters k and r.) In
fact, Aversa-Preiss prove in [2] that no sequence of intervals Ik can generate
an affine invariant density system unless lim infk→∞ |Ik|/diam(Ik ∪ {0}) > 0,
in which case the density property in question follows from the Lebesgue
theorem as explained above.

On the other hand, if we drop the requirement that S be a family of
intervals, it is possible for S to generate an affine invariant density system
independently of the Lebesgue density theorem. This was announced by
Aversa and Preiss in [2] and proved in [3].

Theorem 1.6. (Aversa-Preiss [2], [3]) There is a sequence {Sk} of compact
sets of positive measure such that |Sk| → 0 and:

(a) 0 is a Lebesgue density point for R \
⋃

Sk, and in particular we have

lim
n→∞

|Sk|
diam(Sk ∪ {0})

= 0;

(b) the family {rSk : r > 0, k ∈ N} has the affine density property.

This essentially settles the matter for density theorems, except that con-
structing an explicit example of sets Sk as in Theorem 1.6 is still an open
problem. (The Aversa-Preiss construction is probabilistic, and so is ours
below.) However, the analogous question for Lp differentiation theorems re-
mained unanswered.

We will say that S differentiates1 Lp
loc(R) for some 1 ≤ p ≤ ∞ if for every

f ∈ Lp
loc(R) we have

lim
S∈S,diam(S∪{0})→0

1

|S|

∫
x+S

f(y)dy = f(x) for a.e. x ∈ R. (1.13)

For instance, the Lebesgue differentiation theorem states that the collec-
tion {(−r, r) : r > 0} differentiates L1

loc(R). Note that the differentiation
property (1.13) implies the density property (1.12), by letting f range over
characteristic functions of measurable sets. There is no reason, though, why
the converse implication should automatically hold.

1This is a slight abuse of the standard terminology, which would require us to say
instead that the family {S + x}x∈R differentiates Lp

loc(R).
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While density theorems (such as Theorem 1.6 or the hearts density theo-
rem mentioned earlier) can often be proved using purely geometrical consid-
erations, differentiation theorems tend to require additional analytic input,
usually in the form of maximal estimates. A well-known and representative
example is provided by the Hardy-Littlewood maximal theorem [20], [41],
which easily implies the Lebesgue differentiation theorem.

Aversa and Preiss conjectured in [3] that their Theorem 1.6 could be
strengthened to an L2 differentiation theorem. Specifically, there should
exist a sequence of sets {Sk} as in Theorem 1.6 such that the family {rSk :
r > 0, k ∈ N} differentiates L2(R) in the sense of (1.13). Our maximal
estimates in Theorem 1.1 imply the Aversa-Preiss conjecture along the lines
of the standard Hardy-Littlewood argument. Our Theorem 1.2 is in fact
stronger, providing a family of sparse sets which differentiates Lp(R) for all
p > 1. Preiss’s argument in Subsection 8.2 shows that this range is optimal.

1.4 Outline of the proofs

The intuition behind the construction in Theorems 1.1 and 1.3 is, roughly,
that such results might hold if the sets Sk (hence also S) are sufficiently ran-
domly distributed throughout the interval [1, 2]. Thus the challenge is first
to find appropriate pseudorandomness conditions that guarantee the bound-
edness of our maximal operators, then to actually construct a family of sets
obeying such conditions. Our arguments are largely inspired by considera-
tions from multidimensional harmonic analysis, in particular by Bourgain’s
proof of the circular maximal theorem [8]. The probabilistic construction
of Sk is somewhat similar to that in [24, Section 6], but significantly more
complicated.

The sets Sk will be constructed by randomizing a Cantor-type iteration
whose general features are described in Section 2. The main task is to prove
that Sk may be chosen so that the restricted maximal operator M obeys
Lp → Lq bounds as indicated in Theorems 1.1 and 1.3. Once such bounds
are available, the corresponding estimates on M̃a are obtained through the
scaling analysis in Section 7, and the estimates on M and M̃ follow auto-
matically provided that the limiting measure µ exists. The differentiation
theorems (Theorem 1.2 and 1.3 (d)) are deduced in Section 8.

Our analysis of M begins with several preliminary reductions carried out
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in Section 3.2. Consider the auxiliary restricted maximal operators

Mkf(x) = sup
1<t<2

∣∣∣ ∫ f(x + ty)σk(y)dy
∣∣∣ ,

where σk = φk+1 − φk, and φk is the normalized Lebesgue density on Sk.
The bulk of the work is to prove appropriate Lp → Lq bounds on Mk; this
implies the bounds on M upon summation in k. We further replace each
Mk by its discretized and linearized counterpart Φk, the discretization be-
ing in the space of affine transformations. By duality and interpolation, the
desired Lp estimates on Φk will follow from restricted strong-type estimates
on the “dual” operator Φ∗

k. These reductions are all well known in the har-
monic analysis literature, even though the details are specific to the problem
at hand. We will follow the approach of [8], [36], and especially [35] with
relatively minor modifications.

The main part of our argument is to prove the required estimates on
Φ∗

k. Before we describe it in more detail, we pause for a moment to recall
the analogous part of Bourgain’s proof of the circular maximal theorem in
[8]. In his context, the dual linearized operator Φ∗

k acting on characteristic
functions g = 1Ω has the form

Φ∗
kg(z) =

∫
Ω

1

|Ex,k|
1Ex,k

(z)dx,

where each Ex,k is an annulus of thickness 2−k and radius rx centered at x.
The main task is to prove that Φ∗

k is bounded on Lp′ with 1 ≤ p′ < 2. The L1

bound is trivial, and the proof would be complete if we could prove a similar
bound on L2. We have

‖Φ∗
kg‖2

2 =

∫ ∫
Ω×Ω

1

|Ex,k| |Ey,k|
1Ex,k

(z)1Ey,k
(z)dx dy dz

=

∫
Ω×Ω

1

|Ex,k| |Ey,k|
|Ex,k ∩ Ey,k|dx dy .

(1.14)

If we had
|Ex,k ∩ Ey,k| ≤ Ck|Ex,k| |Ey,k|, (1.15)

the needed L2 bound would follow. Unfortunately, (1.15) need not always
hold. Specifically, if the two annuli are “internally tangent” in a clamshell
configuration, the area of the intersection on the left side of (1.15) can easily
be much larger than |Ex,k| |Ey,k| ≈ 2−2k.
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Bourgain’s key observation is that geometric considerations put a strict
limit on the size of the set of pairs (x, y) ∈ Ω2 for which the associated annuli
are internally tangent. The remaining generic (or transverse) intersections
do have reduced area. This allows him to split the region of integration in
two parts. One of them involves only transverse intersections, hence there
is a good L2 bound as described above. The other part covers the inter-
nal tangencies; here the L2 estimates are poor, but on the other hand the
L1 estimates can be improved thanks to the small size of the region. An
interpolation argument completes the proof.

Let us now try to apply a similar argument in our setting, with p restricted
for now to the range (2,∞] so that 1 ≤ p′ < 2. As in Bourgain’s proof, the
restricted weak L2 bounds for Φ∗

k are based on estimates on the size of the
double intersections (x + rSk) ∩ (y + sSk) via the appropriate analogue of
(1.14). While we still expect that generic double intersections should be
significantly smaller than |Sk|, the task of actually estimating them turns
out to be quite hard, due to the interplay between the different scales in the
Cantor iteration.

To illustrate the problem, we consider the following somewhat simplified
setting. Suppose that the k-th iteration Sk of the Cantor set is given. Sub-
divide each of the intervals of Sk into Nk+1 subintervals of equal length, and
choose N1−ε

k+1 of them within each interval of Sk. Given the translation and
dilation parameters x, y, r, s, what is the size of (x + rSk+1) ∩ (y + sSk+1)?

We write the intersection in question as a union of sets

(x + r(I ∩ Sk+1)) ∩ (y + s(J ∩ Sk+1)), (1.16)

where I and J range over all intervals of Sk. If I 6= J , the Sk+1-subintervals
of I and J were chosen independently, hence (1.16) is expected to consist of
about N1−2ε

k+1 such subintervals. In other words, we expect a substantial gain
compared to the size of each of the sets I ∩Sk+1 and J ∩Sk+1. On the other
hand, this argument does not apply to (1.16) with I = J , where we cannot
expect to do better than the trivial bound.

Following Bourgain, we will refer to the first type of intersections ((1.16)
with I 6= J) as transverse intersections, and to the second type (with I = J)
as internal tangencies. At each step k of the iteration, a typical intersection of
two affine copies of Sk will consist of both transverse intersections and internal
tangencies. If there are few internal tangencies, we expect an overall gain as
described above. If on the other hand there are many internal tangencies,
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a geometrical argument shows that both |x − y| and |r − s| must be small
relative to the current scale, which in turn restricts the relevant domain of
(x, y). As in Bourgain’s proof, we are able to combine these two observations
to prove the desired maximal bound. To extend our bounds to 1 < p ≤ 2
(hence 2 ≤ p′ < ∞), we consider the Ln analogues of (1.14) which involve
n-fold intersections of affine copies of Sk.

The precise statement of the intersection bound we need is given by the
transverse correlation condition (4.2). In Section 4 we formulate the corre-
lation condition and prove that it does indeed guarantee a restricted strong
type estimate on Φ∗

k. The correlation condition (4.2) may be viewed as a
multiscale analogue of the higher order uniformity conditions in additive
combinatorics, see e.g. [16], [18]. It appears to be stronger than the pseudo-
randomness conditions considered so far in the literature, due to the inclusion
of the dilation factor and the interplay between different scales.

The random construction of sets Sk obeying our correlation condition is
carried out in Section 5. This part of the proof contains the bulk of the
technical work and requires the full strength of our probabilistic machinery.
The procedure is based on a Cantor-type iteration as described in Section 2,
but now each Sk is randomized subject to appropriate constraints on the pa-
rameters. We then use large deviation inequalities (specifically, Bernstein’s
inequality and Azuma’s inequality) to prove that at each step of the construc-
tion there is a positive probability that the set Sk has the required properties
including (4.2). Finally, in Section 6 we fix the parameters of the random
construction and complete the proof of our restricted maximal estimates.
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2 The general Cantor-type construction

2.1 Basic construction of the sets {Sk}
All the nested sequences of sets {Sk : k ≥ 1} considered in this paper will
be obtained using a Cantor-type construction, whose basic features we now
describe. The parameters in the construction are the following:

(a) a nondecreasing sequence of positive integers {Nk : k ≥ 1} with δ−1
k =

N1N2 · · ·Nk,

(b) certain sequences κκκk and τττ k+1(i) of 0-s and 1-s,

κκκk = {κk(i) : i = (i1, · · · , ik), 1 ≤ ij ≤ Nj, 1 ≤ j ≤ k}, and

τττ k+1(i) = {τk+1(i, j) : 1 ≤ j ≤ Nk+1} satisfying

κk+1(i) = κk(i)τk+1(i), where i = (i1, · · · , ik+1).

Given these quantities, we denote

I = Ik = {i = (i1, · · · , ik) ∈ Zk : 1 ≤ ir ≤ Nr, 1 ≤ r ≤ k},

and for every multi-index i = (i1, · · · , ik) ∈ Ik,

α(i) = αk(i) = 1 +
i1 − 1

N1

+
i2 − 1

N1N2

+ · · ·+ ik − 1

N1 · · ·Nk

, (2.1)

Ik(i) = [α(i), α(i) + δk] , so that Ik(i) =

Nk+1⋃
ik+1=1

Ik+1(i). (2.2)

The argument k will sometimes be suppressed if it is clear from the context.
We also set for k ≥ 1,

Mk = N1N2 · · ·Nk(so that δk = M−1
k ), Pk = #{i : κk(i) = 1}.
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The construction proceeds as follows. Starting with the interval [1, 2]
equipped with the Lebesgue measure, we subdivide it into N1 intervals {I1(i) :
1 ≤ i ≤ N1} of equal length. We choose the P1 intervals I1(i1) for which
κ1(i1) = 1 and assign weight P−1

1 to each one. At the second step, we
subdivide each of the intervals chosen at the first step into N2 subintervals of
equal length δ2, and choose from I1(i1) the subintervals {I2(i), i = (i1, i2)}
such that τ2(i) = 1. The total number of chosen subintervals at this stage is
therefore P2, and each one is assigned a weight of P−1

2 . We continue to iterate
the procedure, selecting at the (k + 1)-th stage subintervals of the intervals
chosen at the k-th step, based on the sequences τττ k+1(i). In summary, the
sets Sk are chosen according to the scheme

S0 = [1, 2], Sk =
⋃
i

{Ik(i) : κk(i) = 1} .

We will always assume that |Sk| ↘ 0, i.e., Pkδk → 0.

2.2 The Hausdorff dimension of the set S

We now investigate the Hausdorff dimension of the resulting set S =
⋂∞

k=1 Sk

as a function of the parameters of the construction.

Lemma 2.1. Let dimH(S) denote the Hausdorff dimension of S constructed
above. Then

(a) dimH(S) ≤ lim infk→∞ log(Pk)/ log(Mk).

(b) dimH(S) ≥ s0 := lim infk→∞ log(Pk/Nk)/ log(Mk−1).

Proof. Part (a) follows immediately from Proposition 4.1 in [15]. For the
proof of part (b), we follow an approach similar to Example 4.6 in [15]. The
goal is to define a measure ν on S such that for any s < s0, there exists a
constant Cs < ∞ satisfying

ν(J) ≤ Cs|J |s for all intervals J ⊂ R. (2.3)

The desired conclusion would then follow from Frostman’s lemma (see e.g.
Proposition 8.2 in [42]).

In order to define ν, we follow a standard procedure due to Caratheodory
(see Chapter 4, [26]). Let B =

⋃
Bk, where B0 = [1, 2] and Bk for k ≥ 1 is the

14



family of all basic intervals of Sk, i.e., intervals of the form {Ik(i) : κk(i) = 1}.
For each interval I ∈ B, we define its weight w(I) to be

w([1, 2]) = 1, w(I) = P−1
k if I ∈ Bk, (2.4)

and a family of outer measures νk as follows,

νk(F ) := inf
{ ∞∑

i=1

w(Ji) : F ⊆
∞⋃
i=1

Ji, |Ji| ≤ δk, Ji ∈ B
}

(2.5)

for all F ⊆ S. It is easy to see that νk is monotonic, so we can define ν by

ν(F ) = lim
k→∞

νk(F ) = sup
k≥1

νk(F ). (2.6)

Then ν is a non-negative regular Borel measure of unit mass on subsets of S
(Theorem 4.2, [26]).

To prove (2.3), let J be an interval with 0 < |J | ≤ δ1. Given such a J ,
there is a unique k = k(J) such that δk+1 ≤ |J | < δk. The number of basic
intervals of Sk+1 that intersect J is

(i) at most 2Nk+1 since J intersects at most two intervals of Sk, and

(ii) at most |J |/δk+1, since the basic intervals comprising Sk+1 are of length
δk+1 and have disjoint interiors.

It therefore follows from the definitions (2.4) and (2.5) that

νk+1(J) ≤ P−1
k+1 min

[
2Nk+1,

|J |
δk+1

]
≤ P−1

k+1(2Nk+1)
1−s

(
|J |
δk+1

)s

for all 0 ≤ s ≤ 1,

i.e.,
νk+1(J)

|J |s
≤

21−sN1−s
k+1

Pk+1δs
k+1

.

Letting k → ∞ and recalling (2.6), we find that the right hand side of the
inequality above is bounded above by a constant provided that s < s0. This
completes the proof.

Remark: In our applications, the sequences κκκk of 0-s and 1-s will be chosen
according to a random mechanism, to be described in Section 5. We will see
in these instances that the upper and the lower bounds given by Lemma 2.1
coincide, providing an exact value of the Hausdorff dimension.
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2.3 A limiting measure

Although most of our results can be stated purely in terms of the maximal
operators M associated with the sequence of sets {Sk : k ≥ 1}, it is often of
interest to know whether the normalized Lebesgue measures φk = 1Sk

/|Sk|
have a nontrivial weak-∗ limit µ. In this case, the maximal operator M

associated with µ is bounded by M. If each interval in Sk contains the
same number of subintervals of Sk+1, it is easy to see that µ exists and is
identical to the measure ν defined in the last subsection. Below we provide a
sufficient condition for the existence of the weak-∗ limiting measure under a
slightly weaker assumption that will be verified for certain constructions in
the sequel.

Lemma 2.2. Suppose that the distribution of the chosen subintervals {Ii(k) :
κi(k) = 1} within Sk−1 is approximately uniform in the following sense:

sup
k′:k′≥k

∑
i

κk(i)=1

∣∣∣∣∫
Ik(i)

[φk′ − φk] (x) dx

∣∣∣∣→ 0 as k →∞. (2.7)

Then there exists a probability measure µ on [1, 2] such that φk → µ in the
weak−∗ topology, i.e., for all f ∈ C[1, 2]∫

fφk →
∫

fdµ as k →∞.

Proof. It suffices to show that limk→∞
∫

fφk exists for all continuous func-
tions f on [1, 2], i.e., that the sequence {

∫
fφk : k ≥ 1} is Cauchy. Since f

is uniformly continuous, given any ε > 0 there exists δ > 0 such that

|f(x)− f(y)| < ε

4
whenever |x− y| < δ. (2.8)

Fix K ≥ 1 such that δK < δ and

sup
k′:k′≥k

∑
i

κk(i)=1

∣∣∣∣∫
Ik(i)

[φk′ − φk] (x) dx

∣∣∣∣ < ε

2||f ||∞
for all k ≥ K. (2.9)

Let {xk(i) : κk(i) = 1} be a collection of points in [1, 2] such that xk(i) ∈ Ik(i).
Then for all k′ ≥ k ≥ K,∣∣∣∣∫ f(x)

(
φk′(x)− φk(x)

)
dx

∣∣∣∣
16



≤
∑

i
κk(i)=1

∫
Ik(i)

∣∣∣ [f(x)− f(xk(i))] (φk′ − φk) (x)
∣∣∣ dx

+
∑

i
κk(i)=1

|f(xk(i))|
∣∣∣∣∫

Ik(i)

(φk′ − φk) (x) dx

∣∣∣∣
≤ ε

4

∫
Sk

(φk′ + φk)(x) dx + ‖f‖∞
∑

i
κk(i)=1

∣∣∣∣∫
Ik(i)

(φk′ − φk) (x) dx

∣∣∣∣
≤ 2

ε

4
+

ε

2
= ε,

where we have used (2.8) and (2.9) at the last two steps.

2.4 Internal tangencies and transverse intersections

An important ingredient in the derivation of the maximal estimates is the be-
havior of the intersections of a fixed number of affine copies of Sk. Obviously,
much of our analysis will depend on the specific structure of {Sk}, which will
be described in detail in Section 5. However, we also need certain general
properties of the n-fold intersections of affine copies of sets Sk constructed
as in Subsection 2.1. The relevant results of this type are collected in this
subsection.

Fix k ≥ 1, r, s ∈ [1, 2] and points x, y in a fixed compact set, say [−4, 0]
(the reason for this choice will be made clear in the next section). We will
be interested in classifying pairs of multi-indices (i, j) ∈ I2

k such that

(x + rIk(i)) ∩ (y + sIk(j)) 6= ∅. (2.10)

We will need to distinguish between the situations where |αk(i)−αk(j)| is
“small” or “large”. The first case will be referred to as an internal tangency
and the second as a transverse intersection. In view of subsequent appli-
cations, we give the precise definitions of these notions for general n-fold
intersections of intervals. However, the main ideas are already contained in
the case n = 2, which we encourage the reader to investigate first.

Definition 2.3. For integers k ≥ 1, n ≥ 2 and any set

An = {(c`, r`) : 1 ≤ ` ≤ n, c` ∈ [−4, 0], r` ∈ [1, 2]}

17



of n translation-dilation pairs, we define a set F = F[n, k; An] and n projec-
tion maps π` = π`[n, k; An](i1, · · · , in) : F → Ik as follows,

F =
{

(i1, · · · , in) ∈ In
k :

n⋂
`=1

(
c` + r`Ik(i`)

)
6= ∅
}

, (2.11)

π`(i1, · · · , in) = i`.

Remarks:

1. We emphasize that F consists of all tuples (i1, · · · , in) ∈ In
k such that (2.11)

holds, regardless of the actual choice of the sets Sk. Thus F depends only
on the parameters n, k, Nj, and on the choice of An.

2. Eventually, our translation and dilation parameters c` and r` will be cho-
sen from discrete subsets C,R of the respective spaces [−4, 0] and [1, 2].
Then the total number of possible collections F cannot exceed |C|n|R|n,
again irrespective of the choice of the sets Sk.

The next lemma is an easy observation concerning the “almost injectivity”
of the projections π`.

Lemma 2.4. For any 1 ≤ ` ≤ n and any fixed choice of multi-indices
(i`′ : 1 ≤ `′ ≤ n, `′ 6= `) ∈ In−1

k ,

max
i`: (i1,··· ,in)∈F

αk(i`)− min
i`: (i1,··· ,in)∈F

αk(i`) ≤ 4δk. (2.12)

In particular, for any 1 ≤ ` ≤ n the map π` is at most four-to-one, i.e.,

sup
i`∈Ik

#
(
π−1

` (i`)
)
≤ 4. (2.13)

Proof. The second part of the lemma follows from the first. The inequality
in (2.12) is essentially a fact about two-fold intersections. Fix `′ 6= ` and
(i1, · · · , in) ∈ F, so that by definition (2.11)

(x`′ ∩ r`′Ik(i`′)) ∩ (x` ∩ r`Ik(i`)) 6= ∅.

Since r`, r`′ ∈ [1, 2] any interval of the form x`′+r`′Ik(i`′) can intersect at most
four intervals of the form x` + r`Ik(i`) and these intervals must necessarily
be adjacent. The claim follows.
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Corollary 2.5. There exists a decomposition of F into at most 4n−1 subsets
so that all the projection maps π` restricted to each subset are injective.

Proof. The proof is an easy induction on n combined with (2.13), and is left
to the interested reader.

The lemma above motivates the following definition. Setting i` = (i′`, i`k) ∈
Ik−1 × {1, 2, · · · , Nk}, we find that each F = F[n, k; An] decomposes as

F = Fint ∪ Ftr, where Fint :=
⋃

1≤` 6=`′≤n

Fint(`, `
′), with

Fint(`, `
′) := {(i1, · · · , in) ∈ F : i′` = i′`′ , |i`k − i`′k| ≤ 4}, and

Ftr := F \ Fint.

Note that in view of (2.1),

(i1, · · · , in) ∈ Fint(`, `
′) implies |αk(i`)− αk(i`′)| ≤ 4δk. (2.14)

Definition 2.6. The collections Fint and Ftr, which depend only on n, k, {Nj :
1 ≤ j ≤ k} and An = {(c`, r`) : 1 ≤ ` ≤ n}, are referred to as the classes of
internal tangencies and transverse intersections respectively.

A large number of internal tangencies forces a relation between the trans-
lation (and hence dilation) parameters, in a sense made precise by the next
lemma. (A similar observation was made by Aversa and Preiss in [3].)

Lemma 2.7. Suppose #(Fint) ≥ L. Then

min{|c` − c`′| : 1 ≤ ` 6= `′ ≤ n} ≤ min (4, 80n(n− 1)/L) .

Proof. Since the translation parameters all lie in [−4, 0], we may assume
without loss of generality that L > 20n(n − 1). Using the definition of Fint

and pigeonholing we can find indices ` 6= `′ such that #(Fint(`, `
′)) ≥ 2L

n(n−1)
.

By Lemma 2.4, there exists a further subset F∗ ⊆ Fint(`, `
′) such that

#(F∗) ≥ 1

4
#(Fint(`, `

′)) ≥ L

2n(n− 1)
, and π`

∣∣∣
F∗

is injective . (2.15)

Let (i1, · · · in), (j1, · · · , jn) ∈ F. Since r`, r`′ ∈ [1, 2], it follows from the
definition (2.11) that∣∣(c` + r`αk(i`)

)
−
(
c`′ + r`′αk(i`′)

)∣∣ ≤ max(r`, r`′)δk ≤ 2δk,

and similarly
∣∣(c` + r`αk(j`)

)
−
(
c`′ + r`′αk(j`′)

)∣∣ ≤ 2δk.
(2.16)
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If further (i1, · · · , in), (j1, · · · , jn) ∈ Fint(`, `
′), then (2.16) and (2.14) imply

that ∣∣(c` − c`′) + (r` − r`′)αk(i`)
∣∣ ≤ 2δk + r`′|αk(i`′)− αk(i`)| ≤ 10δk,∣∣(c` − c`′) + (r` − r`′)αk(j`)
∣∣ ≤ 2δk + r`′|αk(j`′)− αk(j`)| ≤ 10δk.

Eliminating (r` − r`′) from the two inequalities above we find that

|c` − c`′|
∣∣αk(i`)− αk(j`)

∣∣ ≤ 40δk.

If we now choose (i1, · · · , in), (j1, · · · , jn) ∈ F∗ so that
∣∣αk(i`) − αk(j`)

∣∣ is

maximal in this class, it follows from (2.15) that |αk(i`)− αk(j`)| ≥ Lδk

2n(n−1)
,

from which the desired conclusion follows.

We end this section by applying these definitions to the intersections
of the sets Sk. Fix k ≥ 1, and suppose that the sets S1, . . . , Sk have been
chosen. Recalling from Subsection 2.1 that Sk =

⋃
κk(i)=1 Ik(i) and restricting

the scale factors r, s ∈ [1, 2], we find that any intersection of the form (x +
rSk) ∩ (y + sSk) is nonempty if and only if there exists at least one pair of
multi-indices (i, j) such that κk(i) = κk(j) = 1 and (2.10) holds. In general,
there may be many such pairs (i, j). Given two affine copies of Sk with a
large intersection, one of two cases must arise: either there will be a strong
match, in the sense that the number of internal tangencies will be large, or
else all but a few such pairs will be transverse intersections. We will need
to treat these two situations differently. As before, the exact definitions are
stated for general n-fold intersections of affine copies of Sk.

Definition 2.8. Let {Sk : k ≥ 1} be a sequence of sets constructed as in
Subsection 2.1. Given An = {(c`, r`) : 1 ≤ ` ≤ n} ⊆ [0, 1] × [1, 2], the
sets x` + r`Sk are said to have L internal tangencies (respectively transverse
intersections) if

#{(i1, · · · , in) ∈ Fint (resp. Ftr) : κk(i1) = · · · = κk(in) = 1} = L.

The total number of intersections among x` + r`Sk is defined to be the sum
of the numbers of internal tangencies and transverse intersections.

A large number of internal tangencies among c` + r`Sk implies a lower
bound on #(Fint), which in light of Lemma 2.6 (and regardless of what Sk

may be) provides a gain in the form of relative proximity of the translation
parameters {c`}. On the other hand, controlling the transverse intersections
will be possible only under certain additional assumptions on Sk. We take
up this issue in Sections 4 and 5.
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3 Preliminary reductions

We now begin our analysis of the restricted maximal operator M defined
in (1.5). In this section, we decompose M as a sum of auxiliary restricted
maximal operators Mk, each of which is then replaced by a linearized and
discretized operator Φk. We will subsequently investigate the Lp → Lq map-
ping properties of Φk when acting on functions supported in a fixed compact
set. While these reductions are well known and have been used extensively in
the literature, it is not entirely straightforward to adapt them to the specific
situation at hand, hence we include them for completeness.

3.1 Spatial restriction

Lemma 3.1. Suppose that there are exponents (p, q) with 1 ≤ p ≤ q < ∞
and a constant A > 0 such that M as in (1.5) satisfies

‖Mf‖q ≤ A‖f‖p for all f ∈ Lp[0, 1]. (3.1)

Then the inequality in (3.1) continues to hold for all f ∈ Lp(R), with the

constant A replaced by 4
1
q A.

Proof. It suffices to prove the assertion for functions f ∈ Lp(R) of arbitrary
compact support. Given any such f , we can find an integer R such that
f =

∑R
i=−R fi, where fi is supported in [i, i + 1]. Observe that the support

of Mfi is contained in [i− 4, i], which implies

‖Mf‖q
q =

∥∥∥M(∑
i

fi

)∥∥∥q

q
≤
∥∥∥∑

i

Mfi

∥∥∥q

q

≤ 4
∑

i

‖Mfi‖q
q ≤ 4

R∑
i=−R

Aq‖fi‖q
p .

(3.2)

In the second line we have used the finitely overlapping supports for Mfi,
and then applied (3.1) to each fi. If p ≤ q, we estimate the last sum in (3.2)
by

4Aq

R∑
i=−R

(
‖fi‖p

p

) q
p ≤ 4Aq

[ R∑
i=−R

‖fi‖p
p

] q
p ≤ 4Aq‖f‖q

p .

We will henceforth assume that all functions are supported on [0, 1], so
that M is supported within the fixed compact set [−4, 0].
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3.2 Linearization and discretization

Define the auxiliary restricted maximal operators

Mkf(x) := sup
1<r<2

∣∣∣ ∫ f(x + ry)σk(y)dy
∣∣∣ where σk = φk+1 − φk. (3.3)

Then

Mf ≤ N f +
∞∑

k=1

Mk|f |,

where N f(x) = sup1<r<2

∫
|f(x + ry)|φ1(y)dy. It is an easy exercise to

deduce from Hölder’s inequality that ‖N f‖q ≤ 41/q‖N f‖∞ ≤ 41/q‖φ1‖p′‖f‖p

for any p, q ∈ [1,∞]; the main task is to estimate Mk with k ≥ 1. We begin
by discretizing each Mk in the space of affine transformations. Specifically,
we decompose the spaces of translations x and dilations r (i.e. the intervals
[−4, 0] and [1, 2]) into disjoint intervals {Qi} and {Ri} respectively, of length
δL
k+1, where L is an integer to be fixed at the end of this subsection. The

centers of Qi and Ri are denoted by ci and ri respectively. Let

C = {ci : 1 ≤ i ≤ 4δ−L
k+1}, R = {ri : 1 ≤ i ≤ δ−L

k+1}.

Proposition 3.2. Fix 1 < p < ∞. Then there is a large integer L = L(p)
and a small constant η = η(p) > 0 such that the following conclusions hold:

(a) For every f ∈ Cc[0, 1], there are measurable functions c(x) and r(x) de-
pending on f and taking values in the discrete sets C and R respectively,
such that

Mkf(x) ≤ 4|Φkf(x)|+ Ekf(x), (3.4)

where

Φkf(x) =

∫
f(z)Vk,x(z)dz, with Vk,x(z) = σk

(
z − c(x)

r(x)

)
.

(b) Both Φkf and Ekf are supported on [−4, 0].

(c) For every q ≥ 1 there is a constant Cp,q such that

‖Ekf‖q ≤ Cp,q2
−kη‖f‖p. (3.5)
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Proof. Fix a function f ∈ Cc[0, 1]. Since f is bounded, so is Mkf(x). Hence
we may choose xi ∈ Qi and r̃i ∈ [1, 2] such that for all x ∈ Qi we have

Mkf(x) ≤ 2

∣∣∣∣∫ f(xi + r̃iy)σk(y)dy

∣∣∣∣
≤ 4

∣∣∣∣∫ f(z)σk

(
z − xi

r̃i

)
dz

∣∣∣∣
≤ 4

∣∣∣∣∫ f(z)σk

(
z − ci

rj(i)

)
dz

∣∣∣∣+ Ekf(x),

(3.6)

where

Ekf(x) = 4

∣∣∣∣∫ f(z)

[
σk

(
z − xi

r̃i

)
− σk

(
z − ci

rj(i)

)]
dz

∣∣∣∣ (3.7)

and rj(i) is chosen so that r̃i ∈ Rj(i). Note that |r̃i − rj(i)| ≤ δL
k+1. Thus (3.4)

holds with c(x) = ci and r(x) = rj(i).
Since each Mkf is supported on [−4, 0], it is obvious from (3.6) and (3.7)

that so are Φkf and Ekf . It remains to prove (3.5). For this we observe that

|Ekf(x)| ≤4

∣∣∣∣∫ f(z)

[
φk+1

(
z − xi

r̃i

)
− φk+1

(
z − ci

rj(i)

)]
dz

∣∣∣∣
+ 4

∣∣∣∣∫ f(z)

[
φk

(
z − xi

r̃i

)
− φk

(
z − ci

rj(i)

)]
dz

∣∣∣∣ . (3.8)

By Hölder’s inequality, the first term on the right side of (3.8) is bounded by

‖f‖p

∥∥∥∥φk+1

(
z − xi

r̃i

)
− φk+1

(
z − ci

rj(i)

)∥∥∥∥
p′

=
1

Pk+1δk+1

‖f‖p

∥∥∥∑
m

(1
xi+r̃iI

(k+1)
m

− 1
ci+rj(i)I

(k+1)
m

)
∥∥∥

p′

≤ 21/p

Pk+1δk+1

‖f‖p

∥∥∥∑
m

(1
xi+r̃iI

(k+1)
m

− 1
ci+rj(i)I

(k+1)
m

)
∥∥∥1/p′

1

≤ 21/p

Pk+1δk+1

‖f‖p ·

(∑
m

|(xi + r̃iI
(k+1)
m )4(ci + rj(i)I

(k+1)
m )|

)1/p′

.

By Lemma 3.3 below, each symmetric difference (xi+r̃iI
(k+1)
m )4(ci+rj(i)I

(k+1)
m )

has measure bounded by 3δL
k+1. Hence the last expression is bounded by

21/p

Pk+1δk+1

‖f‖p

(
Pk+1δ

L
k+1

)1/p′

≤
21/pδ

(L−1)/p′

k+1

(Pk+1δk+1)1/p
‖f‖p
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≤ 21/pδ
L
p′−1

k+1 ‖f‖p ≤ C2−(k+1)η‖f‖p,

where η = L
p′
− 1 is positive for large enough L whenever p > 1. We have

used the trivial bounds Pk+1 ≥ 1 and Nk ≥ 2. The second term in (3.8) is
bounded similarly, with Pk+1, δk+1 replaced by Pk, δk. Finally, (3.5) follows
from the pointwise bound above and the fact that Ek are supported on the
bounded interval [−4, 0].

Lemma 3.3. Let 0 < t < 1, 1
2

< r, s < 2. Then for any x, y ∈ R we have

|[x, x + rt]4[y, y + st]| ≤ 3η

whenever η < t/2 and |x− y| < η, |r − s| < η.

Proof. We may assume without loss of generality that x ≤ y. Observe first
that the two intervals cannot be disjoint, since y − x < η < t

2
< rt. Hence

we must have either x ≤ y ≤ x + rt ≤ y + st or x ≤ y ≤ y + st ≤ x + rt.
In the first case, the symmetric difference has measure (y − x) + (y + st −
x − rt) = 2(y − x) + t(r − s) ≤ 3η. In the second case, its measure is
(y − x) + (x + rt− y − st) = (r − s)t ≤ η.

3.3 The interpolation argument

We now turn to the question of proving Lp → Lq bounds for Φk. In the
next lemma we show how such bounds follow from a restricted strong-type
estimate for the “adjoint” operator Φ∗

k given by

Φ∗
kg(z) =

∫
g(x)Vk,x(z) dx. (3.9)

Although similar interpolation arguments are ubiquitous in the literature,
the sequence of steps in the proof is somewhat more complicated than usual,
due to the additional challenge of keeping track of the dependence of the
operator norm of Φ∗

k on k.

Lemma 3.4. Let Φ∗
k be as in (3.9) and q0 ≥ 2. Suppose that Φ∗

k obeys the
restricted strong-type estimate

||Φ∗
k1Ω||q0 ≤ 2−kη0|Ω|

q0−1
q0 for all sets Ω ⊆ [0, 1] (3.10)
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with some η0 > 0. Then for any p > q0

q0−1
there is an η(p) > 0 such that

Φk is bounded from Lp[0, 1] to Lp(q0−1)[−4, 0] with operator norm bounded by
2−kη(p).

Proof. The operator Φ∗
k satisfies a trivial L1 → L1 bound, with operator

norm bounded by a constant independent of k. On one hand, by a standard
interpolation theorem for operators satisfying restricted weak-type endpoint
bounds (Chapter 4, Theorem 5.5, [4]), Φ∗

k is bounded from Lp → Lq for all
(p, q) satisfying p′ = q0/θ and q′ = q0/(θ(q0 − 1)), 0 < θ < 1, with norm
bounded uniformly in k but not necessarily decaying as k → ∞. On the
other hand, by Hölder’s inequality

||Φ∗
k1Ω||q ≤ ||Φ∗

k1Ω||θq0
||Φ∗

k1Ω||1−θ
1 ≤ C2−kη0θ|Ω|

1
p .

By Theorem 5.3 of [4, Chapter 4]), the last two statements imply that the
weak-type (p, q) norm of Φ∗

k is bounded by C2−kη0θ (possibly with a different
constant). Note that p ≤ q, hence we may apply the Marcinkiewicz interpo-
lation theorem (Theorem 4.13 and Corollary 4.14, Chapter 4, [4]) to two such
pairs (p, q) to get the desired strong-type Lebesgue mapping properties on all
the intermediate spaces and with the operator norms decaying exponentially
in k. The statement for Φk follows by duality.

Combining Lemma 3.4 with Proposition 3.2 and Lemma 3.1, we arrive at
the following corollary.

Corollary 3.5. Assume that (3.10) holds. Then for every q0

q0−1
< p < ∞,

there is an η(p) > 0 such that

‖Mkf‖(q0−1)p ≤ 2−kη(p)‖f‖p

for all f ∈ Lp[0, 1]. Moreover, the restricted maximal operator M is bounded
from Lp(R) to L(q0−1)p(R).

4 Transverse correlations

We now come to the main part of our proof. The first step, to be accom-
plished in this section, is to reduce the problem of deriving restricted strong-
type L

n
n−1 → Ln bounds on Φ∗

k to estimating n-fold correlations between
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affine copies of Sk with few internal tangencies. The construction of a se-
quence of sets Sk that will meet the correlation condition in question will be
addressed in Section 5. We start by setting up the notation for such n-fold
correlations and giving a precise statement of our correlation criterion.

Throughout this section, n ≥ 2 will be a fixed even integer. We will use
A = A[n, k, L] to denote the finite collection of all n-tuples of translation-
dilation pairs that arise from the δL

k+1 discretization procedure in Section
3.2:

A := {An : An = {(c`, r`) : 1 ≤ ` ≤ n}, c` ∈ C, r` ∈ R}.

In particular, we have #(A) ≤ 4δ−2Ln
k+1 . We will also use Atr to denote the

subcollection of those n-tuples which have few internal tangencies:

Atr = {An ∈ A : #(Fint[n, k; An]) < P 1−ε0
k },

where ε0 ∈ (0, 1) is a fixed constant (eventually, we will let ε0 = 1
2
). We write

Aint = A \ Atr.

Definition 4.1. Let An ∈ A, and let f1, . . . , fn be functions on R. We define
the n-fold correlation of f1, . . . , fn according to An as follows:

Λ(An; f1, . . . , fn) =

∫ n∏
`=1

f`

(z − c`

r`

)
dz. (4.1)

If f1 = · · · = fn = f , we will write Λ(An; f, . . . , f) = Λ(An; f).
The main result in this section is the following.

Proposition 4.2. Suppose that for some positive even integer n ≥ 1 and
small constant ε0 > 0, the following transverse correlation condition holds:

sup
An∈Atr

|Λ(An; σk)| ≤ C0(k, n, ε0) (4.2)

Then the operator Φ∗
k defined in (3.9) satisfies the restricted strong-type es-

timate

sup
Ω⊆[0,1]

‖Φ∗
k1Ω‖n

|Ω|n−1
n

≤ C

[
max

(
2nn4P ε0−1

k

(Pk+1δk+1)n−1
, C0(k, n, ε0)

)] 1
n

, (4.3)

where C > 0 is an absolute constant independent of n, k and ε0.
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Remarks:

1. Our goal will be to construct sets Sk for which C0(k, n, ε0), and indeed
the right hand side of (4.3), decay exponentially in k. It will then follow
from Corollary 3.5 that M is bounded from Lp(R) → L(n−1)p(R) for
all p > n

n−1
.

2. The heuristic reason why (4.2) should hold is that, essentially, σk are
highly oscillating random functions with

∫
σk = 0, so that two affine

copies of σk with generic translation and scaling parameters should be
close to orthogonal. In other words, there should be a lot of cancellation
in the integral defining Λ(An; σk). The only exception to this is when
relatively close correlations between two or more such copies are forced
by a large number of internal tangencies.

In the proof of the proposition we will need the following trivial bound
(ignoring all cancellation) on Λ(An; σk).

Lemma 4.3. For all k ≥ 1 and An ∈ A, we have

|Λ(An; σk)| ≤ 2n+1

(Pk+1δk+1)n−1
. (4.4)

Proof. Recalling that σk = φk+1−φk, and expanding the product in Λ(An; σk),
we arrive at the expression

|Λ(An; σk)| ≤
∑

λλλ∈{0,1}n

|Λ(An; φk+λ1 , . . . , φk+λn)|, (4.5)

where λλλ = (λ1, · · · , λn). We treat each summand separately. Suppose first
that λ`0 = 1 for some `0. Since φk+1 = (Pk+1δk+1)

−11Sk+1
, we may estimate

all factors pointwise by (Pk+1δk+1)
−1, so that

|Λ(An; φk+λ1 , . . . , φk+λn)| ≤ 1

(Pk+1δk+1)n

∫
1Sk+1

(z − c`0

r`0

)
dz

≤ 2Pk+1δk+1

(Pk+1δk+1)n
=

2

(Pk+1δk+1)n−1
.

(4.6)

If on the other hand λ` = 0 for all `, we have

|Λ(An; φk+λ1 , . . . , φk+λn)| ≤ 1

(Pkδk)n

∫
1Sk

(z − c1

r1

)
dz

≤ 2Pkδk

(Pkδk)n
=

2

(Pkδk)n−1
≤ 2

(Pk+1δk+1)n−1
,

(4.7)
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where the last step uses the fact that the sequence {Pkδk} is monotone de-
creasing. Combining (4.5), (4.6) and (4.7) yields the desired conclusion.

Proof of Proposition 4.2. For x1, x2, . . . , xn ∈ [0, 1]n, let

A(x1, . . . , xn) = {(c(x`), r(x`)) : 1 ≤ ` ≤ n},

where c(x`), r(x`) are chosen as in Section 3.2. Thus A(x1, . . . , xn) ∈ A. Let
Ω ⊆ [0, 1], then

‖Φ∗
k1Ω‖n

n =

∥∥∥∥∫
Ω

Vk,x(·)dx

∥∥∥∥n

n

=

∫ n∏
j=1

[∫
Ω

Vk,xj
(z) dxj

]
dz

=

∫
Ωn

[∫ n∏
j=1

Vk,xj
(z) dz

]
dx1 · · · dxn

=

∫
Ωn

Λ(A(x1, . . . , xn); σk) dx1 . . . dxn

=

[∫
Θ1

+

∫
Θ2

]
Λ(A(x1, . . . , xn); σk) dx1 . . . dxn,

where

Θ1 = {(x1, · · · , xn) ∈ Ωn : A(x1, . . . , xn) ∈ Aint} ,

Θ2 = {(x1, · · · , xn) ∈ Ωn : A(x1, . . . , xn) ∈ Atr} .

We first estimate the integral on Θ1. While the high order of internal tan-
gency does not allow a better estimate than (4.4) on the integrand, the
domain of the integration is restricted to a small set. Specifically, by Lemma
2.7 we have

Θ1 ⊆
⋃

1≤` 6=`′≤n

{
(x1, · · · , xn) ∈ Ωn : |c(x`)− c(x`′)| ≤

80n(n− 1)

P 1−ε0
k

}
⊆

⋃
1≤` 6=`′≤n

{
(x1, · · · , xn) ∈ Ωn : |x` − x`′| ≤

160n(n− 1)

P 1−ε0
k

}
,
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where we used that |x` − c(x`)| ≤ δL
k+1 ≤ δL

k ≤ P−1+ε0
k . Combining this with

Lemma 4.3 we obtain∫
Θ1

Λ(A(x1, . . . , xn); σk) dx1 . . . dxn

≤ 2n+1

(Pk+1δk+1)n−1

∑
1≤` 6=`′≤n

∫
Ωn−1

[∫
|x`−x`′ |≤

160n(n−1)

P
1−ε0
k

dx`

]∏
j 6=`

dxj

≤ 2n+1160n2(n− 1)2

(Pk+1δk+1)n−1P 1−ε0
k

|Ω|n−1 ≤ 320
2nn4P ε0−1

k

(Pk+1δk+1)n−1
|Ω|n−1.

(4.8)

On the other hand, the desired estimate on the integral on Θ2 follows directly
from (4.2):∫

Θ2

Λ(A(x1, . . . , xn); σk) dx1 . . . dxn ≤ C0(k, n, ε0)|Ω|n ≤ C0(k, n, ε0)|Ω|n−1.

By (4.8), the conclusion follows.

5 The random construction

5.1 Selection of the sets {Sk}
We are now ready to describe the probabilistic construction of the sets {Sk}
satisfying the transverse correlation condition (4.2) with acceptable constants
C0(k, n, ε0). The basic procedure is as in Subsection 2.1, with the crucial
additional point that the sequences κκκk, τττ k are now randomized.

Here and in the sequel, {εk : k ≥ 1} be a sequence of small constants
with 0 < εk < 1

2
, and {Nk : k ≥ 1} will be a nondecreasing sequence of large

constants with N1 large enough. Specific choices of both sequences will be
made in the next section. Let X1 = {X1(i) : 1 ≤ i ≤ N1} be a sequence of
independent and identically distributed Bernoulli random variables:

X1(i) =

{
1 with probability p1 = N−ε1

1 ,

0 with probability 1− p1.
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Each realization of the Bernoulli sequence generates a possible candidate for
S1:

S1 = S1(X1) =
⋃

1≤i≤N1
X1(i)=1

[α1(i), α1(i + 1)].

In general, at the end of the k-th step, we will have selected a realization
of S1, S2, · · · , Sk. At step k + 1, we will consider an iid Bernoulli sequence
Yk+1 = {Yk+1(i) : i = (i, ik+1) ∈ Ik+1} with success probability pk+1 =
N
−εk+1

k+1 , and set

Xk+1 = {Xk+1(i) : i ∈ Ik+1}, Xk+1(i) = Xk(i)Yk+1(i),

Pk+1 = Pk+1(Xk+1) =
∑

i

Xk+1(i),

Qk+1 = PkNk+1pk+1 = PkN
1−εk+1

k+1

Sk+1 = Sk+1(Xk+1) =
⋃

Xk+1(i)=1

[
αk+1(i), αk+1(i) + δk+1

]
.

(5.1)

At step k +1, the only random variables are the entries of the sequence Yk+1

(and hence Xk+1), the sequence Xk having already been fixed at the previous
step. Thus at step k + 1, Pk+1 is a random variable, whereas Qk+1 is not.

For every k ≥ 1, we have a large sample space of possible choices for Sk.
The goal of this section is to show that at every stage of the construction
a selection can be made that satisfies a specified list of criteria, eventually
leading up to (4.2). The main result in this section is the following.

Theorem 5.1. Let B > 0 be an absolute constant, independent of k and n
(B = 10 will work). Then there exists a sequence of sets {Sk} constructed
as described above (for some realization of the Bernoulli sequences X1, Yk)
such that all of the following conditions hold:

(a) 2−k
∏k

j=1 N
1−εj

j ≤ Pk ≤ 2k
∏k

j=1 N
1−εj

j .

(b) |Pk −Qk| ≤ B
√

Qk.

(c) The transverse correlation condition (4.2) holds with ε0 = 1
2

and

C0(k, n,
1

2
) = 4n+2n! B2k(n+ 3

2
)
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×
[ k∏

j=1

N
− 1

2
+εj(n− 1

2
)

j

]
N

nεk+1

k+1

[
ln(4nn! B

k+1∏
j=1

N2Ln
j )

]1/2

. (5.2)

(d) sup
i:Xk(i)=1

∣∣∣ Nk+1∑
ik+1=1

(
Xk+1(i)− pk+1

)∣∣∣ ≤ [8N
1−εk+1

k+1 ln(4BPk)
] 1

2 .

Corollary 5.2. Let {Sk} be the sequence of sets given by Theorem 5.1. Then:

(a) The associated operators Φ∗
k defined in (3.9) satisfy the restricted strong-

type estimate

sup
Ω⊆[0,1]

‖Φ∗
k1Ω‖n

|Ω|n−1
n

≤ C(n! B)1/n2k(1+ 3
2n

)
[ k∏

j=1

N
− 1

2
+εj(n− 1

2
)

j

]1/n

N
εk+1

k+1

×
[
ln(4nn! B

k+1∏
j=1

N2Ln
j )

]1/2n

,

(5.3)

where C > 0 is an absolute constant independent of n and k.

(b) Assume that the parameters Nk, εk have been set so that

sup
k≥1

2(5+γ)k ln(Mk)

N
1−εk+1

k+1

≤ 1

32
. (5.4)

for some γ > 0. Then we further have

sup
k′:k′≥k

∑
i:Xk(i)=1

∣∣∣∫
Ik(i)

(
φk′ − φk

)
dx
∣∣∣ ≤ 2B

1− 2−γ/2
2−kγ/2. (5.5)

Consequently, the densities φk converge weakly to a probability measure
µ supported on S =

⋂∞
k=1 Sk.

Proof. Part (a) follows from Proposition 4.2. By Theorem 5.1(a), we have

2nn4P
−1/2
k

(Pk+1δk+1)n−1
≤ 22n−1n42k(n− 1

2
)
[ k∏

j=1

N
− 1

2
+εj(n− 1

2
)

j

]
N

(n−1)εk+1

k+1 .

Plugging this together with (5.2) into (4.3), we get (5.3). The inequality (5.5)
follows from Theorem 5.1(d); we defer the proof of this to Subsection 5.5.
Since (5.5) implies in particular that (2.7) holds, the convergence statement
follows from Lemma 2.2.
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The proof of Theorem 5.1 is arranged as follows. Note that parts (a)–
(b) concern the set Sk, whereas (c)–(d) are properties of Sk+1; accordingly,
we will say that Sk obeys (a)–(b) if (a)–(b) hold as stated above, and that
Sk obeys (c)–(d) if (c)–(d) hold with k replaced by k − 1. Fix B as in the
statement of the theorem, and choose N1 sufficiently large relative to B. To
initialize, we prove that S1 obeys (a)–(b) with probability at least 1− B−1,
in particular there exists a choice of S1 with these properties. Assume now
that we have already chosen S1, . . . , Sk obeying (a)–(d) (where (c)–(d) hold
vacuously for S1), and consider the space of all possible choices of Sk+1. We
will prove in Subsections 5.3–5.5 that each of (a)-(b) and (d) fails to hold
for Sk+1 with probability at most B−1, and the event that (a)-(b) hold but
(c) fails has probability at most B−1. Thus there is a probability of at least
1−4B−1 that Sk+1 obeys all of (a)–(d). Fix this choice of Sk+1, and continue
by induction.

We emphasize here that we do not attempt to randomize the entire se-
quence of steps simultaneously. By the (k + 1)-th stage of the iteration we
have restricted attention to a deterministic sequence Xk, with the proba-
bilistic machinery being applied to the random sequence Xk+1 conditional
on the previously obtained Xk. As a consequence, we ensure the existence of
some sequence of desirable sets, but (in contrast to e.g. Salem’s construction
in [34]) we can make no claim as to its frequency of occurrence among all
possible iterative constructions subject to the given parameters.

5.2 Two large deviation inequalities

In this subsection, we record two large deviation inequalities widely used in
probability theory that will play a key role in the sequel. The first one is
a version of Bernstein’s inequality borrowed from [17]. We will use it here
much as we did in [24].

Lemma 5.3 (Bernstein’s inequality). Let Z1, . . . , Zm be independent random
variables with |Zj| ≤ 1, EZj = 0 and E|Zj|2 = σ2

j . Let
∑

σ2
j ≤ σ2, and

assume that σ2 ≥ 6mλ. Then

P
(∣∣∣ n∑

1

Zj

∣∣∣ ≥ mλ
)
≤ 4e−m2λ2/8σ2

. (5.6)

We will also need a similar inequality for random variables which are
not independent, but instead are allowed to interact with one another to a
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limited extent. The exact statement that we need is contained in Lemma 5.4
below. Recall that a sequence U1, U2, . . . of random variables is a martingale
if E|Uj| < ∞ for all j and

E(Um+1|U1, . . . , Um) = Um, m = 1, 2, . . . .

Lemma 5.4 (Azuma’s inequality, [40] or [1], p. 95). Suppose that {Uk : k =
0, 1, 2, · · · } is a martingale and {ck : k ≥ 0} is a sequence of positive numbers
such that |Uk+1 − Uk| ≤ ck a.s. Then for all integers m ≥ 1 and all λ ∈ R,

P(|Um − U0| ≥ λ) ≤ 2 exp

(
− λ2

2
∑m

k=1 c2
k

)
.

5.3 Proof of Theorem 5.1 (a)-(b)

For k = 1, let N1 be chosen so that 6B ≤ N
(1−ε1)/2
1 . By Bernstein’s inequality

(Lemma 5.3) with Zi = X1(i) − p1, m = N1, σ2 = N1p1 = N1−ε1
1 and

λ = BN
−(1+ε1)/2
1 , we have

P(
∣∣P1 −N1p1

∣∣ > BN
1−ε1

2
1 ) = P

(∣∣∣ N1∑
i=1

[
X1(i)− p1

]∣∣∣ > BN
1−ε1

2
1

)
≤ 4e−

B2

8 .

Since Q1 = N1p1 = N1−ε1
1 , this shows that the inequality in (b) holds for

k = 1 with probability ≥ 1− 4e−B2/8. Further, for any X1 that satisfies (b),
the estimate

1

2
N1−ε1

1 ≤ N1−ε1
1 (1−BN

− 1−ε1
2

1 ) ≤ P1 ≤ N1−ε1
1 (1 + BN

− 1−ε1
2

1 ) ≤ 2N1−ε1
1

holds. Assume now that Xk has been selected so that (a) and (b) hold for
some k ≥ 1. The random variables

Zi =
1

Nk+1

Nk+1∑
ik+1=1

[
Yk+1(i)− pk+1

]
,

indexed by i ∈ Ik with Xk(i) = 1, are iid with mean zero and variance pk+1(1−
pk+1)/Nk+1. Hence Lemma 5.3 applies with m = Pk, σ2 = Pkpk+1/Nk+1, and
λ = B

√
pk+1/(PkNk+1), yielding

P
(∣∣∣Pk+1 −Qk+1

∣∣∣ > B
√

Qk+1

)
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= P
(∣∣∣∑

i∈Ik

Xk(i)

Nk+1∑
ik+1=1

[
Yk+1(i)− pk+1

]∣∣∣ > B
√

Qk+1

)
= P

(∣∣∣ ∑
Xk(i)=1

Zi

∣∣∣ > Pkλ
)

≤ 4e−
B2

8 < B−1.

Thus with large probability, (b) holds with k replaced by k + 1. Further by
induction hypothesis (a) and the definition of Q,

2−k

k+1∏
j=1

N
1−εj

j ≤ Qk+1 ≤ 2k

k+1∏
j=1

N
1−εj

j , (5.7)

which in particular implies that Qk+1 ≥ 2−kN
(k+1)(1−ε1)
1 ≥ 4B2 if N1 is chosen

sufficiently large. Thus for any Xk+1 satisfying (b),

1

2
≤ 1− B√

Qk+1

≤ Pk+1

Qk+1

≤ 1 +
B√
Qk+1

≤ 2,

which coupled with (5.7) proves the inductive step for (a).

5.4 Proof of Theorem 5.1(c)

We now begin the proof of (c), which is substantially more difficult. The
strategy of the proof is outlined in §5.4.1 below, the execution of the various
steps being relegated to the later parts of this subsection.

5.4.1 Steps of the proof

Throughout this section we will assume that Sk has been selected so as to
obey Theorem 5.1(a)-(b). We begin by replacing the measure σk = φk+1−φk

in (4.2) by σk, where

σk(z) =
1

Qk+1δk+1

1Sk+1
(z)− 1

Pkδk

1Sk
(z). (5.8)

This renders the expression in (4.2) more amenable to the application of the
large deviation inequalities from Subsection 5.2, at the expense of a harmless
error term that we estimate below.
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Lemma 5.5 (Step 1). Assume that Theorem 5.1(a)–(b) holds at step k +1.
For any An = {(c`, r`) : 1 ≤ ` ≤ n} ∈ A,

|Λ(An; σk)| ≤ |Λ(An; σk)|+ 22n+1B2k(n+ 3
2
)
[k+1∏

j=1

N
− 1

2
+εj(n− 1

2
)

j

]
. (5.9)

In particular, this means that for any 0 < ε0 < 1, (4.2) holds with

C0(k, n, ε0) = sup
An∈Atr

∣∣Λ(An; σk)
∣∣+ 22n+1B2k+ 3

2

[k+1∏
j=1

N
− 1

2
+εj(n− 1

2
)

j

]
. (5.10)

Proposition 5.6 (Step 2). Suppose that there is a constant C1(k, n, ε0) such
that for all An ∈ Atr the following estimate holds:∣∣∣∣∣∑

I∈Ftr

n∏
`=1

Xk(i`)
∑

ιιι

n∏
`=1

(
Yk+1(i`)− pk+1

)
·
∣∣ n⋂
`=1

(
c` + r`Ik+1(i`)

)∣∣∣∣∣∣∣
≤ C1(k, n, ε0)

(5.11)

where I = (i1, · · · , in), i` = (i`, ik+1,`), and ιιι = (ik+1,1, . . . , ik+1,n) denotes
the n-vector whose entries are the (k + 1)-th entries of i1, · · · , in respectively
(thus ιιι ranges over the set {1, 2 · · · , Nk+1}n). Then

sup
An∈Atr

|Λ(An; σk)| ≤C1(k, n, ε0)2
kn
[k+1∏

j=1

N
nεj

j

]
+ 2k(n+1−ε0)+3

[ k∏
j=1

N
−ε0+εj(n+ε0−1))
j

]
N

nεk+1

k+1 .

(5.12)

Proposition 5.7 (Step 3). The event that (5.11) holds with

C1(k, n, ε0) = 4nn!
[ k∏

j=1

N
−

1+εj
2

j

]
×
[
ln
(
4nn!B

k+1∏
j=1

N2Ln
j

)] 1
2

(5.13)

has probability at least 1−B−1.

Assume for now the claims in steps 1–3.
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Conclusion of the proof of Theorem 5.1 (c). Of the three estimates (5.10),
(5.12), and (5.13), the first one holds with probability at least 1−B−1 (Sub-
section 5.3), the second one holds always, and the third one holds with prob-
ability at least 1−B−1 as indicated in the last proposition. Combining these
estimates yields that

|Λ(An; σk)|

≤ 22n+1B2k(n+ 3
2
)
[k+1∏

j=1

N
− 1

2
+εj(n− 1

2
)

j

]
+ 2k(n+1−ε0)+3

[ k∏
j=1

N
−ε0+εj(n+ε0−1)
j

]
N

nεk+1

k+1

+ 4nn! 2k(n+ 1
2
)+ 1

2

[ k∏
j=1

N
− 1

2
+εj(n− 1

2
)

j

]
N

nεk+1

k+1 ×
[
ln(4nn! B

k+1∏
j=1

N2Ln
j )

] 1
2
,

with probability at least 1 − 2B−1. Plugging in ε0 = 1
2
, we see after some

simple algebra that in this event |Λ(An; σk)| is bounded as indicated in (5.2).

5.4.2 Proof of Lemma 5.5

It suffices to prove (5.9), since (5.10) follows directly from it. We write
σk = σk + ek, where σk is as in (5.8) so that

ek(z) =

[
1

Pk+1δk+1

− 1

Qk+1δk+1

]
1Sk+1

(z),

Then

Λ(An; σk) = Λ(An; σk) + Ek, where

Ek =
∑

λλλ∈{0,1}n

λ1+···+λn≥1

Λ(An; uλ1 , . . . , uλn) with uλ =

{
σk if λ = 0,

ek if λ = 1.

We need to show that |Ek| is bounded by the quantity in (5.9).
We observe that by the definition of Qk in (5.1) and Theorem 5.1(a) at

step k,

|σk(z)| ≤

[
1

Qk+1δk+1

+
1

Pkδk

]
1Sk

(z) =

[
N

εk+1

k+1

Pkδk

+
1

Pkδk

]
1Sk

(z)
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≤ 2
N

εk+1

k+1

Pkδk

1Sk
(z) ≤ 2k+1

k+1∏
j=1

N
εj

j 1Sk
(z),

whereas by Theorem 5.1(b) at step k + 1,

|ek(z)| ≤ |Qk+1 − Pk+1|
Pk+1Qk+1δk+1

1Sk+1
(z) ≤ B

1

Pk+1

√
Qk+1δk+1

1Sk+1
(z)

≤ B2
3k
2

+1
[k+1∏

j=1

N
− 1

2
+

3εj
2

j

]
1Sk+1

(z).

Therefore for any λλλ ∈ {0, 1}n with λ1 + · · · + λn ≥ 1, there exists an index
1 ≤ `0 ≤ n such that

supp
[ n∏

`=1

uλ`

( · − c`

r`

)]
⊆ c`0 + r`0Sk+1.

Note also that the estimate on |ek| is better than the estimate on |σk| if
Nj ≥ N and N has been chosen large enough. Hence

|Λ(An; uλ1 , . . . , uλn)|

≤
(

2k+1

k+1∏
j=1

N
εj

j

)n−1(
B2

3k
2

+1

k+1∏
j=1

N
− 1

2
+

3εj
2

j

)
|
(
c`0 + r`0Sk+1

)
|

≤ 2nB2k(n+ 1
2
)
[k+1∏

j=1

N
− 1

2
+εj(n+ 1

2
)

j

]
Pk+1δk+1

≤ 2n+1B2k(n+ 3
2
)
[k+1∏

j=1

N
− 1

2
+εj(n− 1

2
)

j

]
.

Since the total number of terms in the sum representing Ek is 2n − 1, the
desired conclusion follows.

5.4.3 Proof of Proposition 5.6

We need to estimate

Λ(An; σk) =

∫ n∏
`=1

σk

(z − c`

r`

)
dz (5.14)
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for An = {(c`, r`) : 1 ≤ ` ≤ n} ∈ Atr. We start by rewriting σk as

σk(z) =
1

Qk+1δk+1

∑
Xk+1(i)=1

1Ik+1(i)(z)− 1

Pkδk

∑
Xk(i)=1

1Ik(i)(z)

=
1

Qk+1δk+1

∑
Xk(i)=1

Nk+1∑
ik+1=1

(
Yk+1(i)− pk+1

)
1Ik+1(i)(z)

=
1

Qk+1δk+1

∑
i∈Ik

Xk(i)

Nk+1∑
ik+1=1

(Yk+1(i)− pk+1)1Ik+1(i)(z).

Hence

n∏
`=1

σk

(z − c`

r`

)
=

1

(Qk+1δk+1)n

∑
I∈In

k

[
n∏

`=1

Xk(i`)

×
∑

ιιι

( n∏
`=1

(
Yk+1(i`)− pk+1

))
1Tn

`=1(c`+r`Ik+1(i`))
(z)

]
(5.15)

where I and ιιι are as in Proposition 5.6. Since

n⋂
`=1

(c` + r`Ik+1(i`)) ⊆
n⋂

`=1

(c` + r`Ik(i`)),

a summand in (5.15) is nonzero only if the n-fold intersection on the right
hand side above is nonempty, i.e., only if I ∈ F = F[n, k; An]. Splitting F
further into Fint and Ftr as in Subsection 2.4, we find that

Λ(An; σk) =
1

(Qk+1δk+1)n

{∑
I∈Fint

+
∑
I∈Ftr

}[ n∏
`=1

Xk(i`)

×
∑

ιιι

( n∏
`=1

(
Yk+1(i`)− pk+1

))∣∣∣ n⋂
`=1

(c` + r`Ik+1(i`))
∣∣∣]

:= Ξint + Ξtr.

We treat these two sums separately.
Since An ∈ Atr, we have #(Fint) < P 1−ε0

k , therefore∣∣Ξint

∣∣ ≤ 1

(Qk+1δk+1)n

∑
I∈Fint

∑
ιιι

n∏
`=1

∣∣Yk+1(i`)− pk+1

∣∣× ∣∣ n⋂
`=1

(
c` + r`Ik+1(i`)

)∣∣
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≤ 1

(Qk+1δk+1)n

∑
I∈Fint

∑
ιιι

∣∣ n⋂
`=1

(
c` + r`Ik+1(i`)

)∣∣
≤ 4P 1−ε0

k Nk+1δk+1

(Qk+1δk+1)n

≤ 2k(n+1−ε0)+3
[ k∏

j=1

N
−ε0+εj(n+ε0−1)
j

]
N

nεk+1

k+1 ,

where at the third step we have used Lemma 5.8 below to estimate the
number of non-zero summands in the inner sum on the second line by 4Nk+1.

On the other hand, by (5.11)

∣∣Ξtr

∣∣ ≤ C1(k, n, ε0)

(Qk+1δk+1)n
≤ C1(k, n, ε0)2

kn
[k+1∏

j=1

N
nεj

j

]
.

Combining the two estimates, we get (5.12).

Lemma 5.8. For each fixed I ∈ Ik, there are at most 4Nk+1 distinct choices
of ιιι = (ik+1,1, · · · , ik+1,n) such that

n⋂
`=1

(
c` + r`Ik+1(i`)

)
6= ∅. (5.16)

Proof. Suppose that (5.16) holds, then(
i1, · · · , in

)
∈ F[n, k + 1,An]. (5.17)

If ik+1,1 is fixed, this fixes i1 and it follows from Lemma 2.4 that the number
of possible tuples (i2, · · · , in) such that (5.17) holds is at most 4. Hence the
number of possible choices of (ik+1,2, . . . , ik+1,n) is at most 4. This proves the
claim, since there are at most Nk+1 choices of ik+1,1.

5.4.4 Proof of Proposition 5.7

The heart of the proof is a convenient re-indexing of the sum in (5.11) that
permits the application of Azuma’s inequality from Subsection 5.2. The next
lemma is a preparatory step for arranging this sum in the desired form. The
lemma following it completes the verification of the martingale criterion.
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Lemma 5.9. Fix An ∈ A. Then there is a decomposition of Ftr into at most
4n−1n! subclasses such that

(a) For all 1 ≤ ` ≤ n, π` is injective on each subclass.

(b) For each subclass, there is a permutation ρ of {1, . . . , n} such that

αk(iρ(1)) < · · · < αk(iρ(n)) (5.18)

for all I = (i1, . . . , in) in the subclass.

Proof. Let I = (i1, . . . , in) ∈ Ftr, then for all ` 6= `′ we have

|αk(i`)− αk(i`′)| > 4δk. (5.19)

Thus for every I, all αk(i`), 1 ≤ ` ≤ n, are distinct, and in particular there
is a permutation ρ = ρ(I) such that (5.18) holds for that I. Let Fρ = {I :
ρ(I) = ρ} for each such permutation. By Corollary 2.5, each Fρ can be
decomposed further into at most 4n−1 subsets on which all the projections
π` are injective.

By a slight abuse of notation, we will continue to use Fρ to denote a
subclass of Ftr such that both (i) and (ii) hold for the permutation ρ. In
view of Lemma 5.9, it suffices to estimate∣∣∣∣∣∑

I∈Fρ

n∏
`=1

Xk(i`)
∑

ιιι

n∏
`=1

(
Yk+1(i`)− pk+1

)
·
∣∣ n⋂
`=1

(
c` + r`Ik+1(i`)

)∣∣∣∣∣∣∣ (5.20)

for each such Fρ.
Observe that by part (a) of Lemma 5.9, the index I in the outer sum is

in fact determined uniquely by iρ(n) = πρ(n)(I). In other words, the elements
{αk(iρ(n)) : I ∈ Fρ} are all distinct. Furthermore, the only indices that
contribute to (5.20) are those with

∏n
`=1 Xk(i`) = 1. Accordingly, let

J =
{
I = (i1, . . . , in) ∈ Fρ :

n∏
`=1

Xk(i`) = 1
}

,

and let us arrange the elements of J in a sequence {I(j) = (i1(j), . . . , in(j)) :
j = 1, . . . , T} so that

αk(iρ(n)(1)) < · · · < αk(iρ(n)(T )). (5.21)

40



For 1 ≤ j ≤ T , we define

Wj =
∑

ιιι

n∏
`=1

(
Yk+1(i`(j), ik+1,`)−pk+1

)∣∣∣ n⋂
`=1

(
c`+r`Ik+1(i`(j), ik+1,`)

)∣∣∣, (5.22)

where the summation index ιιι = (ik+1,1, . . . , ik+1,n) is as in the statement of
Proposition 5.6, hence ranges over all vectors in {1, . . . , Nk+1}n. We also let
W0 = 0. Then the sum in (5.20) is simply W1 + · · ·+ WT .

Lemma 5.10. {Wj : 0 ≤ j ≤ T} is a martingale difference sequence (i.e.
the sequence {W1 + · · ·+Wm : 1 ≤ m ≤ T} is a martingale), with |Wj| ≤ 4δk

for all 1 ≤ j ≤ T .

Proof. We need to prove that E(Wm|W1, . . . ,Wm−1) = 0. It suffices to
demonstrate that the random variables Yk+1(iρ(n)(m), ·) are

(i) independent of all Yk+1(iρ(`)(m), ·) with ` < n,

(ii) independent of all Wj with j < m.

Once we have this, the desired conclusion follows by setting W to be the col-
lection of random variables in (i) and (ii) above, andW ′ = W\{W1, · · · , Wm−1},
so that

E(Wm|W1, · · ·Wm−1) = EW ′

[
E
(
Wm

∣∣W)]
= EW ′

[∑
ιιι

Fιιι,m(W)E
(
Yk+1(iρ(n)(m), ik+1,ρ(n))− pk+1

)]
= 0.

Here {Fιιι,m} are measurable functions of W specified by the expression (5.22)
for Wm but whose exact functional forms are unimportant.

By (5.18), we have

αk(iρ(`)(m)) < αk(iρ(n)(m)), ` < n,

which implies immediately the first claim (i). It remains to prove (ii). Ob-
serve that Wj depends only on Yk+1(i`(j), ·), 1 ≤ ` ≤ n, hence it suffices to
prove that

iρ(n)(m) /∈
{
iρ(`)(j) : 1 ≤ ` ≤ n, 1 ≤ j < m

}
.
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But this follows from

αk(iρ(`)(j)) ≤ αk(iρ(n)(j)) < αk(iρ(n)(m)), ` ≤ n, j < m

where we used (5.18) again and then (5.21).
It remains to prove the almost sure bound on Wj. Indeed, by Lemma 5.8

the number of summands in (5.22) that make a non-zero contribution to Wj

is bounded by 4Nk+1. Since the size of each summand is bounded by δk+1,
it follows that |Wj| ≤ 4Nk+1δk+1 = 4δk, as claimed.

Conclusion of the proof of Proposition 5.7. In light of Lemma 5.10, we apply
Azuma’s inequality (Lemma 5.4) to the martingale sequence Uj = W1 + · · ·+
Wj, with cj = 4δk and

λ = 4δk

√
2Pk

√
ln(4nn!Bδ−2Ln

k+1 ),

and obtain

P
(

(5.20) > λ
)
≤ 2 exp(− λ2

32δ2
kT

) ≤ 2 exp(− λ2

32δ2
kPk

) ≤
δ2Ln
k+1

4n−1n!B
.

Since there are at most 4n−1n! classes Fρ, the probability that (5.20)> λ for
at least of them is bounded by B−1δ2Ln

k+1. Summing over such classes, we see
that

P
(

LHS of (5.11) > 4n−1n! λ
)
≤

δ2Ln
k+1

B
.

Finally, since #(A) = δ−2Ln
k+1 , there is a probability of at least 1 − 1

B
that

(5.11) holds for every A ∈ Atr with

C1(k, n, ε0) = 4n−1n! λ = 4nn! δk

√
2Pk

√
ln(4nn!Bδ−2Ln

k+1 ).

By Theorem 5.1(a) at step k,

C1(k, n, ε0) ≤ 4nn! 2
k+1
2

[ k∏
j=1

N
−

1+εj
2

j

]
×
[
ln(4nn! B

k+1∏
j=1

N2Ln
j )

] 1
2
.

This completes the proof of the proposition.

42



5.5 Existence of the limiting measure

5.5.1 Proof of Theorem 5.1(d)

Let i ∈ Ik with Xk(i) = 1. Applying Bernstein’s inequality to the random
variables Xk+1(i) − pk+1 = Yk+1(i) − pk+1, with σ2 = Nk+1pk+1 and λ =

(8pk+1 ln(4BPk)/Nk+1)
1
2 , we obtain

P

∣∣∣ Nk+1∑
ik+1=1

[
Yk+1(i)− pk+1

]∣∣∣ > Nk+1λ

 ≤ 4 exp

[
−

N2
k+1λ

2

8Nk+1pk+1

]
=

1

BPk

.

Since there are Pk-many such choices of i, we find that Theorem 5.1(d) holds
with probability at least 1− 1

B
, as claimed.

5.5.2 Proof of Corollary 5.2(b)

Lemma 5.11. Assume that (5.4) and Theorem 5.1(d) hold for all k. Then
for all k ≥ 1, m ≥ 0 and every i ∈ Ik with Xk(i) = 1,

2−m
[ m∏

r=1

N
1−εk+r

k+r

]
≤
∑

j

Xk+m(i, j) ≤ 2m
[ m∏

r=1

N
1−εk+r

k+r

]
, (5.23)

where the sum is taken over all m-dimensional multi-indices j such that
(i, j) ∈ Ik+m.

Proof. This follows from Theorem 5.1(d) by induction on m. For m = 0,
(5.23) holds trivially. Assuming that Theorem 5.1(d) holds for m and sum-
ming over j = (j, jm+1), we arrive at the following estimate∣∣∣∑

j

Xk+m+1(i, j)−
∑

j

Xk+m(i, j)N
1−εk+m+1

k+m+1

∣∣∣
≤
∑

j

Xk+m(i, j)
[
N

1−εk+m+1

k+m+1 ln(4BPk+m)
] 1

2
,

so that ∣∣∣∣∣
∑

j Xk+m+1(i, j)

N
1−εk+m+1

k+m+1

∑
j Xk+m(i, j)

− 1

∣∣∣∣∣ ≤
√

ln(4BPk+m)

N
1−εk+m+1

k+m+1

≤ 1

2
,

43



where at the last step we used (5.4). Thus

1

2
≤

∑
j Xk+m+1(i, j)

N
1−εk+m+1

k+m+1

∑
j Xk+m(i, j)

≤ 2 for all m ≥ 1,

which yields the desired result by induction.

Proof of Corollary 5.2(b). Since

sup
k′:k′≥k

∑
i:Xk(i)=1

∣∣∣∫
Ik(i)

(
φk′ − φk

)
(x) dx

∣∣∣ ≤ ∑
i:Xk(i)=1

∞∑
m=0

∣∣∣∫
Ik(i)

σk+m(x) dx
∣∣∣

≤ Pk sup
i:Xk(i)=1

[
∞∑

m=0

∣∣∣∫
Ik(i)

σk+m(x) dx
∣∣∣],

it suffices to prove that the quantity in the last line is bounded above by
the right hand side of (5.5). To this end, we fix an m ≥ 0 and i ∈ Ik with
Xk(i) = 1 and write

Pk

∫
Ik(i)

σk+m(x) dx =
Pk

Pk+m+1

∑
j

Xk+m+1(i, j)−
Pk

Pk+m

∑
j

Xk+m(i, j)

= Ξ1 + Ξ2, where

Ξ1 := Pk

[ 1

Pk+m+1

− 1

Qk+m+1

]∑
j

Xk+m+1(i, j), and

Ξ2 :=
Pk

Qk+m+1

∑
j

Xk+m(i, j)
∑
jm+1

(
Yk+m+1(i, j, jm+1)− pk+m+1

)
.

By Theorem 5.1(a) and (5.23), we have

|Ξ1| ≤ Pk
|Qk+m+1 − Pk+m+1|

Pk+m+1Qk+m+1

∑
j

Xk+m+1(i, j)

≤ BPk

Pk+m+1

√
Qk+m+1

2m+1
[m+1∏

j=1

N
1−εk+j

k+j

]
≤ B2

5
2
(k+m+1)

[k+m+1∏
j=1

N
1−εj

j

]− 1
2
.

(5.24)
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On the other hand, using both Theorem 5.1(d) and (5.23),

|Ξ2| ≤
Pk

Qk+m+1

∑
j

Xk+m(i, j)
[
8N

1−εk+m+1

k+m+1 ln(BPk+m)
] 1

2

≤ Pk

Qk+m+1

2m
[ m∏

j=1

N
1−εk+j

k+j

]
×
[
8N

1−εk+m+1

k+m+1 ln(BPk+m)
] 1

2

≤ 22(k+m)
√

8

[
ln(BPk+m)

] 1
2

N
(1−εk+m+1)/2
k+m+1

.

(5.25)

Combining (5.24) and (5.25) and using (5.4), we obtain

|Ξ1|+ |Ξ2| ≤ 2B2
5
2
(k+m+1)

[
ln(BPk+m)

] 1
2

N
(1−εk+m+1)/2
k+m+1

≤ 2B · 2−
(k+m)γ

2 .

The conclusion (5.5) follows upon summation in m.

6 The estimates for M and M

In this section we prove those parts of Theorems 1.1 and 1.3 that concern
the restricted maximal operators with 1 < r < 2. We will do this by fixing
the parameters Nk, εk of the random construction in Section 5 and showing
that the conclusions of the theorems hold for the sets Sk with those choices
of parameters. Specifically, the conclusions of Theorem 1.1 will hold for Sk

with

Nk = Nk+1, εk =
1

k + 1
, (6.1)

and the conclusions of Theorem 1.3 will hold for Sk with

Nk = Nk, εk = ε, (6.2)

where N is a large integer.

Lemma 6.1. Let Nk, εk be as above with N sufficiently large. Then:

(a) the set S =
⋂∞

k=1 Sk has Hausdorff dimension 1 if (6.1) holds and 1− ε
if (6.2) holds,
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(b) assuming (6.1), (3.10) holds for all q0 ≥ 2,

(c) assuming (6.2), (3.10) holds for all 2 ≤ q0 < qε, where qε = ε+1
2ε

as in
Theorem 1.3,

(d) assuming either (6.1) or (6.2), (5.4) holds with γ = 1.

Lemma 6.1 will be proved in Subsections 6.1 and 6.2 for (6.1) and (6.2),
respectively.

Assuming the lemma, the proof of the restricted maximal estimates is
completed as follows. By parts (b) and (c) of the lemma, (3.10) holds with
q0 as above. It follows by Corollary 3.5 that

‖Mkf‖(q0−1)p ≤ C2−kη(p)‖f‖p, p >
q0

q0 − 1
, (6.3)

for the same q0.
Consider first the case when (6.1) holds. We claim that then

‖Mkf‖q ≤ C2−kη(p)‖f‖p (6.4)

for all p, q ∈ (1,∞). Indeed, fix p and q, and choose q0 large enough so that
q0

q0−1
< p and (q0 − 1)p > q. Since Mkf is supported on [−4, 0], we have

‖Mkf‖q ≤ 5
1
q
− 1

(p−1)q0 ‖Mkf‖(q0−1)p

by Hölder’s inequality. Combining this with (6.3), we get (6.4).
Summing up (6.4) in k, we see that M is bounded from Lp[0, 1] to

Lq[−4, 0] for any p, q ∈ (1,∞). By Lemma 3.1, it follows that M is bounded
from Lp(R) to Lq(R) whenever 1 < p ≤ q < ∞.

Assume now that (6.2) holds instead. We claim that in this case (6.4)
holds whenever

1 + ε

1− ε
< p < ∞ and 1 < q <

1− ε

2ε
p. (6.5)

Indeed, fix such p and q, then p′ < 1+ε
2ε

= qε. Choose q0 so that p′ < q0 < qε,
then (6.3) yields (6.4) with q = (q0−1)p. As in the first case, (6.4) also holds
for q < (q0 − 1)p by Hölder’s inequality. Taking q0 → qε, we get (6.4) for
all p′ < qε and q < (qε − 1)p, which is equivalent to (6.5). We now sum up
(6.4) in k to obtain the boundedness of M from Lp[0, 1] to Lq[−4, 0] for p, q
as in (6.5). By (3.1), M is bounded from Lp(R) to Lq(R) whenever p ≤ q
and (6.5) holds. Note that the range of p, q is nonempty whenever ε < 1/3.
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The same conclusions follow automatically for M, provided that the weak
limit µ of φk exists. But thanks to Lemma 6.1(d), (5.4) holds, hence the
existence of µ follows from Theorem 5.1(d) for both (6.1) and (6.2).

6.1 The 1-dimensional case

Let Nk, εk be as in (6.1). Then Mk = N
k(k+3)

2 and, by Theorem 5.1(a),

2−kN
k(k+1)

2 ≤ Pk ≤ 2kN
k(k+1)

2 .

By Lemma 2.1(b),

dimH(S) ≥ lim inf
k→∞

log(Pk/Nk)/ log(Mk−1)

≥ lim inf
k→∞

log(2−kN
k(k+1)

2
−(k+1))

log(N
(k−1)(k+2)

2 )
= 1.

Hence S has dimension 1.
To prove Lemma 6.1(b), it suffices to show that for any q0 ≥ 2 the right

side of (5.3) is bounded by C(q0)2
−ηk with η = η(q0) > 0. Suppose first that

q0 = n is an even integer. Plugging our values of Nj and εj into (5.3), we see
after some straightforward but cumbersome algebra that

sup
Ω⊆[0,1]

‖Φ∗
k1Ω‖n

|Ω|n−1
n

≤ C(n! B)1/n2k(1+ 3
2n

)N− k2

4n
+(1− 5

4n
)k+1

×
[
ln(4nn! B) + (k + 1)(k + 4)Ln ln N

]1/2n

,

which is bounded by C(n)2−η(n)k with η(n) = 1
4n

> 0 for all even integers n.
The estimate in (b) for all q0 ≥ 2 (not necessarily an even integer) follows by
interpolation.

Finally, to prove (d) we estimate

26k ln(Mk)

N
1−εk+1

k+1

≤ 26k−1 k(k + 3) ln N

Nk+1
<

1

32

for all k, provided that N is large enough.
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6.2 The lower-dimensional case

Let Nk, εk be as in (6.2). Then Mk = N
k(k+1)

2 and by Theorem 5.1(a),

2−kN
k(k+1)

2
(1−ε) ≤ Pk ≤ 2kN

k(k+1)
2

(1−ε).

By Lemma 2.1(a),

dimH(S) ≤ lim inf
k→∞

log(Pk)/ log(Mk)

≤ lim inf
k→∞

log(2kN
k(k+1)

2
(1−ε))

log(N
k(k+1)

2 )
= 1− ε,

whereas by Lemma 2.1(b),

dimH(S) ≥ lim inf
k→∞

log(Pk/Nk)/ log(Mk−1)

≥ lim inf
k→∞

log(2−kN
k(k+1)

2
(1−ε)−k)

log(N
k(k−1)

2 )
= 1− ε.

Hence S has dimension 1− ε.
Next, we verify Lemma 6.1(c). Plugging (6.2) into (5.3), we see after

some more algebra that

sup
Ω⊆[0,1]

‖Φ∗
k1Ω‖n

|Ω|n−1
n

≤ C(n! B)1/n2k(1+ 3
2n

)N
k(k+1)

2n
(− 1

2
+ε(n− 1

2
))+(k+1)ε

×
[
ln(4nn! B) + (k + 1)(k + 2)Ln ln N

]1/2n

.

This is majorized by C(n)2−η(n)k with η(n) = 1+ε
2n
− ε. Note that η(n) > 0 if

and only if ε(n− 1
2
) < 1

2
, i.e.

ε <
1

2n− 1
, or n <

1

2
+

1

2ε
= qε. (6.6)

Let n1 = n1(ε) be the largest even integer such that (6.6) holds, and let
n2 = n1 + 2. Interpolating between the estimates for n1 and n2, we get that

sup
Ω⊆[0,1]

‖Φ∗
k1Ω‖q0

|Ω|
q0−1

q0

≤ C(q0)2
−η(q0)k
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with η(q0) > 0 for all q0 < qε.
For part (d), we check as before that

26k ln(Mk)

N
1−εk+1

k+1

≤ 26k+1 k(k + 1) ln N

N (k+1)(1−ε)
≤ 1

32

for all k, if N was chosen large enough. This proves (d) and establishes the
existence of µ.

7 Extension to the unrestricted operator

It remains to prove the statements for the unrestricted maximal operators
M̃a and M̃a claimed in Theorem 1.1 (e) and Theorem 1.3(c). Obtaining
bounds for global maximal operators using known bounds for single-scale
ones is a common theme in the harmonic analysis literature, often involving
interpolation and scaling. In this section we present these arguments with
the necessary modifications for our problem. The proof naturally splits into
two cases q ≥ 2 and q < 2, which are handled in Propositions 7.1 and 7.2
respectively. The former follows an approach closely related to [8], [35]. The
proof for p = q < 2 is due to Andreas Seeger, who also indicated to us prior
work in this direction [28], [9]. Proposition 7.2 combines his argument with
interpolation techniques used in a similar setting in [19].

We remark that the scaling arguments below are quite general and apply
to any sequence Sk as described in Section 2 subject to the bounds on Mk

and (in Lemma 7.4) the subexponential growth of Nk. In other words, we
will not be invoking the probabilistic arguments of Section 5.

Recall the definitions (1.1), (1.2), (1.3), (1.4) and (3.3) of M̃, M̃, M̃a,
M̃a and Mk respectively. Denote by Ar[k] the averaging operator associated
to φk:

Ar[k]f(x) =

∫
f(x + ry)φk(y) dy, where φk =

1

|Sk|
1Sk

. (7.1)

The main results in this section are the following.

Proposition 7.1. Fix two exponents p, q satisfying 1 < p ≤ q < ∞, q ≥ 2.
Assume that for some C > 0 and η0 > 0 we have the estimate

‖Mkf‖q ≤ C2−η0k‖f‖p (7.2)
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for all f supported on [0, 1]. Assume furthermore that Nk have been chosen as
in (6.1) or (6.2). Then M̃a is bounded from Lp(R) to Lq(R), with a = 1

p
− 1

q
.

Proposition 7.2. Suppose that there exists ε ∈ [0, 1
3
) such that (7.2) holds

for all functions f supported in [0, 1] and all exponents (p, q) satisfying

1 < p ≤ q ≤ 2,
1 + ε

1− ε
< p < ∞, 1 < q <

1− ε

2ε
p. (7.3)

Then M̃a is bounded from Lp(R) to Lq(R) for all such (p, q), with a = 1
p
− 1

q
.

Remark: Despite the formal similarity, it is worth noting the distinction
between the statements of the two propositions. In Proposition 7.1, the
assumption (7.2) is for a fixed (p, q), and the conclusion is the estimate for
the global operator with the same (p, q). In contrast, for Proposition 7.2, the
hypothesis (7.2) is for all (p, q) in the domain (7.3).

Conclusion of the proofs of Theorems 1.1(e) and 1.3(c). Assuming the two
propositions, the unrestricted maximal bounds are proved as follows. It
suffices to prove the bounds on M̃a. Suppose first that we are in the one-
dimensional case (6.1). Then (6.4) asserts that the hypotheses of both Propo-
sitions 7.1 and 7.2 hold (the latter with ε = 0), hence so do the conclusions.
In the lower-dimensional case (6.2), the same argument shows that M̃a is
bounded from Lp(R) to Lq(R) whenever p, q obey (6.5) with p ≤ q.

7.1 Scaling arguments

The proofs of both Propositions 7.1 and 7.2 use the Haar decomposition of a
function f and the relation between the averaging operators Ar[k] for various
scales of the dilation parameter r. We record the necessary facts in the
following sequence of lemmas. Following [8], we denote by Ds the σ-algebra
generated by dyadic intervals of length 2−s, and by Es the corresponding
conditional expectation operators, i.e., Es(f) = E(f |Ds). We also set

∆sf = Es+1(f)− Es(f). (7.4)

Lemma 7.3. Let 1 < p, q < ∞ and η0 > 0. Suppose that (7.2) holds for all
f supported on [0, 1]. Then there exists η > 0 such that

‖Mf‖q ≤ C2−η
√

s‖f‖p (7.5)

for all functions f ∈ Lp(R) satisfying Es(f) = 0, s ≥ 0.
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Proof. For any f supported in [0, 1],

|Ar[k](f)| ≤ N f(x) +
k−1∑
m=0

Mm|f |, hence Mf ≤ N f +
∞∑

k=0

Mk|f |,

where N was defined at the beginning of Subsection 3.2. Therefore

‖Mf‖q ≤
∞∑

k=0

‖Mkf‖q. (7.6)

The right side is clearly summable by (7.2). To obtain decay as required in
(7.5), we will use the assumption that Esf = 0 to improve the estimate on
the terms with k ≤ k0, where k0 will be determined shortly. We have

Mkf(x) = sup
1<r<2

∣∣∣ ∫ f(x + ry)(φk+1(y)− φk(y))dy
∣∣∣

≤
∣∣∣ ∫ f(x + ry)φk(y)dy

∣∣∣+
∣∣∣ ∫ f(x + ry)φk+1(y)dy

∣∣∣.
Suppose that 2−s < δk+1, and consider the term with φk first. Each of the
δk-intervals {Ik(i) : κk(i) = 1} in the support of φk can be written as a union
of some number of dyadic 2−s-intervals together with two intervals J1(i, s)
and J2(i, s) of length at most 2−s, one at each end of Ik(i). Since f integrates
to 0 on each dyadic interval, the only non-zero contribution comes from the
intervals Jj(i, s). By Hölder’s inequality, we see that

∣∣∣∫ f(x + ry)φk(y) dy
∣∣∣ =

1

Pkδk

∣∣∣ 2∑
j=1

∑
κk(i)=1

∫
Jj(i,s)

f(ry)dy
∣∣∣

≤ 1

Pkδk

‖f‖p(2Pk · 2−s)
1
p′

=
1

P
1/p
k δk

2
1− s

p′ ‖f‖p ≤ Mk2
1− s

p′ ‖f‖p .

The term with φk+1 is estimated similarly. Taking the Lq norm of the left
side and using the fixed compact support of Mkf , we see that

‖Mkf‖q ≤ Mk2
1− s

p′ ‖f‖p ≤ C2
− s

p′ Nk(k+3)/2‖f‖p,
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where we used (6.1) and (6.2) at the last step. Let k0 ≈ c
√

s with a small
enough constant, then for all k ≤ k0 we have Nk(k+3)/22−s/(2p′) ≤ C, so that

‖Mkf‖q ≤ C2−s/(2p′)‖f‖p for k ≤ k0.

We now use this along with (7.2) to estimate the right side of (7.6):

∞∑
k=1

‖Mkf‖q =

k0∑
k=1

‖Mkf‖q +
∑
k>k0

‖Mkf‖q

≤ Ck02
−s/(2p′)‖f‖p + C

∑
k>k0

2−η0k‖f‖p

≤ C2−s/(4p′)‖f‖p + C2−cη0
√

s‖f‖p ≤ C2−η
√

s‖f‖p,

as claimed in (7.5). This proves the result for functions f supported in
[0,1]. The extension to a general f is achieved by a “disjointness of support”
argument identical to the one given in Lemma 3.1 and is left to the reader.

We will also need the following rescaled version of (7.5).

Lemma 7.4. Suppose that (7.5) holds for all functions f ∈ Lp(R) satisfying
Es(f) = 0 for some s ≥ 0. Then for any m ∈ Z and all f ∈ Lp(R),∥∥∥ sup

k≥1
1≤r2m≤2

|Ar[k](∆s+mf)|
∥∥∥

q
≤ C · 2ma−η

√
s‖∆s+mf‖p. (7.7)

Here ∆sf is as in (7.4).

Proof. Let u = r2m, so that 1 ≤ u ≤ 2. We have

Ar[k]f(x) =

∫
f(x + ry)φk(y)dy

=

∫
f(x + 2−muy)φk(y)dy

=

∫
f(2−m(2mx + uy))φk(y)dy

= Au[k](f (m))(2mx),

(7.8)
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where f (m)(·) = f(2−m·). Note also that (∆s+mf)(m) = ∆s+m(2−m·) is con-
stant on dyadic 2−s-intervals, i.e. Es((∆s+mf)(m)) = 0. By (7.5), we have∥∥∥ sup

k≥1
1≤r2m≤2

|Ar[k](∆s+mf)|
∥∥∥

q
=
∥∥∥ sup

k≥1
1≤u≤2

∣∣(Au[k](∆s+mf)(m)
)
(2m·)

∣∣∥∥∥
q

= 2−m/q‖M(∆s+mf)(m)‖q

≤ C2−m/q 2−η
√

s
∥∥(∆s+mf)(m)

∥∥
p

= C2−m/q 2−η
√

s 2m/p ‖∆s+mf‖p

= C2ma 2−η
√

s ‖∆s+mf‖p .

Finally, we need a technical lemma.

Lemma 7.5. Given any 0 ≤ a < 1, there is a constant C = C(a) such that
for any m ∈ Z and all f ∈ Lp(R),

sup
k≥1

1≤r2m≤2

ra
∣∣Ar[k]Emf(x)

∣∣ ≤ Cf ∗(x), where

f ∗(x) := sup
r>0

ra−1

∫
|y|≤r

|f(x− y)|dy.

The mapping f 7→ f ∗ is bounded from Lp(R) → Lq(R) for all 1 < p ≤ q ≤ ∞
for which a = 1

p
− 1

q
.

Proof. Since Sk ⊆ [1, 2] and r ≤ 2−m+1, the set x + rSk is contained in an
interval J centered at x of length 2−m+3. Observe that J can be covered by at
most 10 dyadic 2−m-intervals Ji. On each Ji, we have Em(f) ≡ λi, where λi

is the average of f on Ji. Since Ar[k]Emf(x) is a convex linear combination
of the λi-s, it suffices to prove that raλi ≤ f ∗(x). But this follows from

raλi =
ra

|Ji|

∫
Ji

|f(y)|dy ≤ 10ra

|J |

∫
J ′
|f(y)|dy ≤ C

|J ′|1−a

∫
J ′
|f(y)|dy ≤ f ∗(x),

where J ′ is an interval of length 2|J | centered at x so that J ⊂
⋃

Ji ⊂ J ′.
If p = q, then a = 0 and f ∗ is simply the Hardy-Littlewood maximal

function of f , which is bounded on all Lp for p > 1. If on the other hand
1 < p < q ≤ ∞, then 0 < a < 1 and

f ∗(x) = sup
r>0

ra−1

∫
|x−z|≤r

|f(z)|dz ≤
∫ ∞

−∞

|f(z)|
|x− z|1−a

dz.
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Since f ∈ Lp(R) and |z|a−1 is in weak L
1

1−a (R), it follows by Young’s in-
equality that the mapping f → f ∗ is bounded from Lp(R) to Lq(R) with
1 + 1

q
= 1

p
+ (1− a), as claimed.

7.2 Proof of Proposition 7.1

Given m ∈ Z such that 2−m ≤ r ≤ 2−m+1, we write f = Em(f)+
∑

s≥m ∆s(f),
where ∆s(f) is defined as in (7.4). Therefore

Ar[k](f) = Ar[k](Emf) +
∑
s≥m

Ar[k](∆sf), (7.9)

so that

M̃af ≤ sup
m∈Z

sup
k≥1

1≤r2m≤2

ra

[
|Ar[k]Em(f)(x)|+

∣∣∣∑
s≥m

Ar[k](∆sf)
∣∣∣]. (7.10)

The first term is bounded from Lp → Lq by Lemma 7.5. Turning our atten-
tion to the second term of (7.10), it suffices to prove that∥∥∥∥∥sup

m∈Z
sup
k≥1

1≤r2m≤2

2−ma
∣∣∣∑
s≥m

Ar[k](∆sf)
∣∣∣∥∥∥∥∥

q

≤ C‖f‖p . (7.11)

We write

sup
m∈Z

sup
k≥1

1≤r2m≤2

2−ma
∣∣∣∑
s≥m

Ar[k](∆sf)
∣∣∣ ≤ [∑

m∈Z

2−maq sup
k≥1

1≤r2m≤2

∣∣∣∑
s≥m

Ar[k](∆sf)
∣∣∣q] 1

q

≤

[∑
m∈Z

2−maq
(∑

s≥m

sup
k≥1

1≤r2m≤2

|Ar[k](∆sf)|
)q
] 1

q

Taking the Lq-norms of both sides, then using Lemma 7.4 (whose hypothesis
in turn is true by Lemma 7.3), we see that the left side of (7.11) is bounded
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by (∑
m∈Z

2−maq

∥∥∥∥∥∑
s≥m

sup
k≥1

1≤r2m≤2

|Ar[k](∆sf)|

∥∥∥∥∥
q

q

) 1
q

≤

(∑
m∈Z

2−maq

[∑
s≥m

∥∥∥ sup
k≥1

1≤r2m≤2

∣∣Ar[k](∆sf)
∣∣∥∥∥

q

]q) 1
q

≤ C
(∑

m∈Z

[∑
s≥m

2−η
√

s−m ‖∆sf‖p

]q) 1
q
.

The last line is the `q-norm of the convolution of the discrete functions
1m≥02

−η
√

m and ‖∆mf‖p. Applying Young’s inequality with s = max(p, 2)
and 1

s
+ 1

r
= 1 + 1

q
, we bound it by(∑

m≥0

2−η
√

mr
) 1

r
(∑

m∈Z

‖∆mf‖s
p

) 1
s ≤ C

(∑
m

‖∆mf‖s
p

) 1
s

. (7.12)

It remains to show that (∑
m

‖∆mf‖s
p

) 1
s ≤ C‖f‖p . (7.13)

Suppose first that p ≥ 2, so that s = p. Then the claim is trivial for p = ∞,
and for p = 2 it follows from the orthogonality of ∆mf . By interpolation,
this implies (7.13) for all p ∈ [2,∞). Assume next that 1 < p < 2, so that
s = 2. Then (∑

m∈Z

‖∆mf‖2
p

) 1
2 ≤

∥∥∥(∑
m∈Z

|∆mf |2
) 1

2

∥∥∥
p
≤ Cp||f ||p,

where the first step follows from the generalized Minkowski inequality and
the second from Littlewood-Paley theory. This proves the claim (7.13).

7.3 Proof of Proposition 7.2

As indicated in the remark following Proposition 7.2, the conclusion is imme-
diate from Proposition 7.1 if q = 2. Fix ε ∈ [0, 1

3
) and exponents (p, q), q < 2
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satisfying (7.3). We denote by C(p, q; R) the norm of the linear operator

f 7→
{

2−maAr2−m [k]f : −R ≤ m ≤ R, 1 ≤ r ≤ 2, k ≥ 1
}
, (7.14)

mapping Lp(R) to Lq(`∞mL∞r `∞k ), where a = 1
p
− 1

q
. In other words, C(p, q; R)

is the best constant such that the following inequality holds for all f :∥∥ sup
−R≤m≤R

sup
1≤r≤2

sup
k≥1

2−ma
∣∣Ar2−m [k]f

∣∣∥∥
q
≤ C(p, q; R)‖f‖p. (7.15)

We first ensure that C(p, q; R) is well-defined. The hypothesis (7.2) implies
(3.1) after summing in k, hence the inequality in (3.1) continues to hold for
all f ∈ Lp(R) by Lemma 3.1. By the scaling argument in (7.8), this implies
that for every fixed m ∈ Z,∥∥2−ma sup

1≤r≤2
sup
k≥1

∣∣Ar2−m [k]f
∣∣∥∥

q
≤ ‖M‖p→q‖f‖p, f ∈ Lp(R). (7.16)

Thus we already have the trivial bound C(p, q; R) ≤ R‖M‖p→q. Our goal
is to show that for each p, q in the indicated range, C(p, q; R) is bounded
uniformly in R:

C(p, q; R) = Op,q(1). (7.17)

This would imply the conclusion of the proposition, since the left hand side
of (7.15) converges as R → ∞ to a limit that is bounded above and below
by positive constant multiples of ‖M̃af‖q. The convergence is justified by
the monotone convergence theorem, which applies because the the operators
Ar[k] are non-negative and the functions f can be chosen to be non-negative.

In order to prove (7.17) we fix two other auxiliary exponents (p1, q1)
and (p2, q2) obeying (7.3), such that p1 < p < p2, q2 = 2, and the points
{(1

p
, 1

q
), ( 1

p1
, 1

q1
), ( 1

p2
, 1

2
)} are collinear. The following lemma provides an es-

sential interpolation ingredient of the proof.

Lemma 7.6. Given any sequence of functions {gm : −R ≤ m ≤ R}, define

Ta({gm}) =
{

2−maAr2−m [k]gm : −R ≤ m ≤ R, 1 ≤ r ≤ 2, k ≥ 1
}
.

(a) For any (p, q) obeying (7.3), the operator Ta(p,q) : Lp
x`
∞
m → Lq

x`
∞
mL∞r `∞k

has norm bounded by C(p, q; R), with a(p, q) = 1
p
− 1

q
.

(b) For any (p1, q1) obeying (7.3), there is a constant K1 = K1(p1, q1) inde-
pendent of R such that the operator Ta(p1,q1) : Lp1

x `p1
m → Lq1

x `p1
mL∞r `∞k is

bounded with norm ≤ K1.
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(c) If p1 < p, the norm of the operator Ta(p3,q3) : Lp3
x `2

m → Lq3
x `2

mL∞r `∞k is

bounded by K
p1
2

1 C(p, q; R)1− p1
2 ; i.e.,

∥∥∥( R∑
m=−R

[
2−ma sup

1≤r≤2
sup
k≥1

∣∣Ar2−m [k]gm

∣∣]2) 1
2
∥∥∥

q3

≤ K
p1
2

1 C(p, q; R)1− p1
2

∥∥∥(∑
m

|gm|2
) 1

2
∥∥∥

p3

. (7.18)

Here 1
p3

= 1
p

+ p1

2
( 1

p1
− 1

p
), and ( 1

pi
, 1

qi
), i = 1, 2, 3 are collinear.

Proof. Part (a) is a consequence of the non-negativity of Ar[k] combined with
(7.15):∥∥∥ sup

−R≤m≤R
sup

1≤r≤2
sup
k≥1

2−ma
∣∣Ar2−m [k]gm

∣∣∥∥∥
q

≤
∥∥∥ sup
−R≤m≤R

sup
1≤r≤2

sup
k≥1

2−ma
∣∣Ar2−m [k]

∣∣sup
j

gj

∣∣∣∣∥∥∥
q
≤ C(p, q; R)

∥∥sup
m
|gm|

∥∥
p
.

For part (b), by the triangle inequality in Lq1/p1 applied to functions |Gm|p1

we have ∥∥(∑
m

|Gm|p1
) 1

p1

∥∥
q1
≤
(∑

m

∥∥Gm

∥∥p1

q1

) 1
p1 since p1 ≤ q1.

Using this with Gm = 2−ma sup1≤r≤2 supk≥1 Ar2−m [k]gm, we find∥∥∥(∑
m

∣∣∣2−ma sup
1≤r≤2

sup
k≥1

∣∣Ar2−m [k]gm

∣∣∣∣∣p1
) 1

p1

∥∥∥
q1

≤
(∑

m

∥∥∥2−ma sup
1≤r≤2

sup
k≥1

Ar2−m [k]gm

∥∥∥p1

q1

) 1
p1

≤ ‖M‖p1→q1

(∑
m

‖gm‖p1
p1

) 1
p1

= K1

∥∥∥(∑
m

|gm|p1
) 1

p1

∥∥∥
p1

,

where we have used (7.16) with (p1, q1) at the second step. This gives the
conclusion with K1 = ‖M‖p1→q1 . Part (c) now follows by complex interpo-
lation of the family of operators Ta between the spaces in parts (a) and (b).
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The interpolation works because p1 < 2, so that `2 is intermediate between
`p1 and `∞.

Conclusion of the proof of Proposition 7.2. In order to prove (7.17), we start
again with the Haar decomposition of the function f , so that (7.9) holds.
Thus

sup
−R≤m≤R

sup
1≤r≤2

sup
k≥1

2−ma
∣∣Ar2−m [k]f

∣∣
≤ sup

−R≤m≤R
sup

1≤r≤2
sup
k≥1

2−ma
∣∣Ar2−m [k]Emf

∣∣
+
∑
s≥1

sup
−R≤m≤R

sup
1≤r≤2

sup
k≥1

2−ma
∣∣Ar2−m [k]

(
∆s+mf

)∣∣. (7.19)

As before, the first term on the right is bounded pointwise by f ∗, and there-
fore bounded from Lp → Lq with norm independent of R by Lemma 7.5. We
estimate the Lq norms of the summands in (7.19) as follows. On one hand,
(7.18) with gm = ∆s+mf implies∥∥∥( R∑

m=−R

[
2−ma sup

1≤r≤2
sup
k≥1

∣∣Ar2−m [k](∆s+mf)
∣∣]2) 1

2
∥∥∥

q3

≤ K
p1
2

1 C(p1, q1; R)1− p1
2

∥∥∥(∑
m

|∆s+mf |2
) 1

2
∥∥∥

p3

≤ K
p1
2

1 C(p1, q1; R)1− p1
2 ‖f‖p3 ,

(7.20)

where the last step is a consequence of the Littlewood-Paley inequality. On
the other hand, for all s ≥ 1,∥∥∥( R∑

m=−R

[
2−ma sup

1≤r≤2
sup
k≥1

∣∣Ar2−m [k](∆s+mf)
∣∣]2) 1

2
∥∥∥

2

=
(∑

m

∥∥2−ma sup
1≤r≤2

sup
k≥1

∣∣Ar2−m(∆s+mf)
∣∣∥∥2

2

) 1
2

≤ C2−η
√

s
[∑

m

‖∆s+mf‖2
p2

] 1
2

≤ C2−η
√

s
∥∥∥(∑

m

|∆m+sf |2
) 1

2
∥∥∥

p2

≤ C2−η
√

s‖f‖p2 .

(7.21)
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Here η is a positive constant (independent of m) whose existence is guaran-
teed by Lemma 7.4. The third step above uses the generalized Minkowski
inequality (since p2 ≤ 2) and the fourth follows from Littlewood-Paley theory.

Since p3 < p < p2 and {( 1
p3

, 1
q3

), (1
p
, 1

q
), ( 1

p2
, 1

q2
)} are collinear, we can

interpolate between (7.20) and (7.21) to obtain 0 < θ < 1 such that∥∥∥ sup
−R≤m≤R

sup
1≤r≤2

sup
k≥1

2−ma
∣∣Ar2−m

(
∆s+mf

)∣∣∥∥∥
q

≤
∥∥∥( R∑

m=−R

[
2−ma sup

1≤r≤2
sup
k≥1

∣∣Ar2−m [k]∆s+mf
∣∣]2) 1

2
∥∥∥

q

≤
(
K

p1
2

1 C(p, q; R)1− p1
2

)θ(
C2−η

√
s
)1−θ‖f‖p.

The right hand side is summable in s. In summary, we have obtained the
following estimate for the Lq norm of the left hand side of (7.19): there is a
large constant K and 0 < ρ < 1 such that∥∥ sup

−R≤m≤R
sup

1≤r≤2
sup
k≥1

2−ma
∣∣Ar2−m [k]f

∣∣∥∥
q
≤ K(1 + C(p, q; R)ρ)‖f‖p.

In view of the definition (7.15) of C(p, q; R), we obtain C(p, q; R) ≤ C(1 +
C(p, q; R)ρ). But this implies that C(p, q; R) is bounded above by a constant
depending only on K, p, q, but not on R, which is the desired conclusion
(7.17).

8 Differentiation results

8.1 Proof of Theorem 1.2 and Theorem 1.3(d)

Assume that {Sk} is a sequence of sets for which the maximal operator M̃
is bounded on Lp(R) for some p ∈ (1,∞). We claim that in this case {rSk}
differentiates Lp in the sense that (1.7) holds.

Let f ∈ Lp[0, 1]. We need to prove that

lim
r→0

sup
k≥1

|Ar[k]f(x)− f(x)| = 0 (8.1)

for almost all x, where the averages Ar[k] are defined as in (7.1). In other
words, it suffices to show that for any λ > 0∣∣∣{x : lim

r→0
sup
k≥1

∣∣Ar[k]f(x)− f(x)
∣∣ > λ

}∣∣∣ = 0. (8.2)
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To this end, fix t > 0 and a continuous function ft on [0, 1] such that ‖f −
ft‖p < ε. Since (8.1) holds for all x for continuous functions,∣∣∣{x : lim

r→0
sup
k≥1

∣∣Ar[k]f(x)− f(x)
∣∣ > λ

}∣∣∣
=
∣∣∣{x : lim

r→0
sup
k≥1

∣∣∣Ar[k](f − ft)(x)− (f − ft)(x)
∣∣∣ > λ

}∣∣∣
≤
∣∣∣{x : M̃(f − ft)(x) >

λ

2

}∣∣∣+
∣∣∣{x : |f − ft|(x) >

λ

2

}∣∣∣
≤

2p‖M̃(f − ft)‖p
p

λp
+

2p‖f − ft‖p
p

λp
≤ Cpλ

−ptp,

where the last step uses the boundedness of M̃ on Lp. Since t was arbitrary,
(8.2) and hence (8.1) are proved.

The proof of (1.8) is similar, except that we use the bounds on the max-
imal operator M̃ instead of M̃. The details are left to the interested reader.

8.2 The L1 case

The following proposition, due to David Preiss (private communication),
shows that (1.8) cannot hold for all f ∈ L1(R) if µ is a probability measure
singular with respect to Lebesgue.

Proposition 8.1. Suppose that µ is a probability measure on R such that its
restriction to R\{0} is not absolutely continuous with respect to the Lebesgue
measure. Then there is a function f ∈ L1(R) such that for every x ∈ R the
set

Zx =
{

r ∈ (0,∞) :

∫
f(x + ry)dµ(y) = ∞

}
is dense in (0,∞).

Proof. We may choose an x0 6= 0 such that µ(x0 − r, x0 + r)/(2r) → ∞
as r ↘ 0 (see [33, Theorem 7.15]). In particular, there is a ρ0 > 0 and a
continuous function η : (0,∞) → [0,∞) such that η(r) →∞ as r ↘ 0, η ≡ 0
on [ρ0,∞), η is strictly decreasing on (0, ρ0), and

µ(x0 − r, x0 + r)

2r
≥ η(r) for all r ∈ (0, ρ0). (8.3)
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Let g ∈ L1(0,∞) be a continuous, nonnegative and strictly decreasing func-
tion such that ∫ ∞

0

g(y)η(λg(y))dy = ∞ for any λ > 0.

(For a construction of such a function, see Subsection 9.2.) Let h(x) =
g−1(|x|) for 0 < |x| < ρ0 and h(x) = 0 for |x| > ρ0. Define

f(x) =
∞∑

j=1

2−jh(x− xj),

where the sequence {xj}∞j=1 is dense in R. Then f ∈ L1(R), since∫
R

f(x)dx =

∫
R

h(x)dx =

∫ ∞

0

|{x : h(x) > t}|dt = 2

∫ ∞

0

g(t)dt < ∞.

We must prove that for any x ∈ R and a < b, the interval (a, b) contains
a point of Zx. Indeed, by the density of {xj} there is a j ≥ 1 such that
r := (xj − x)/x0 ∈ (a, b). Then∫

h(x− xj + ry)dµ(y) =

∫
h(r(y − x0))dµ(y)

=

∫ ∞

0

µ({y : h(r(y − x0)) > t})dt

=

∫ ∞

0

µ
(
x0 −

g(t)

r
, x0 +

g(t)

r

)
dt

≥
∫ ∞

0

g(t)

r
η
(g(t)

r

)
dt = ∞,

(8.4)

so that ∫
f(x + ry)dµ(y) ≥

∞∑
j=1

2−j

∫
h(x− xj + ry)dµ(y) = ∞ (8.5)

as required.

Remark. The above argument can be adapted to show that (1.7) cannot
hold for all f ∈ L1(R) if {Ek} is a decreasing sequence of subsets of [1, 2] (or
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any other interval separated from zero) with |Ek| → 0. Namely, fix any such
sequence {Ek} and let φk = 1Ek

/|Ek| as before. Then there is a subsequence
{φjk

}∞k=1 converging weakly to a probability measure µ supported on a set E
of measure 0. Without loss of generality we may assume that jk = k. Let
also µk be the absolutely continuous measure with density φk. We claim that

lim
k→∞

∫
f(x + ry)dµk(y)dy = ∞ for all r ∈ Zx, x ∈ R. (8.6)

To prove (8.6), we first ask the reader to verify that (8.3) implies the following
statement: for every ρ1 > 0 there is a K = K(ρ1) such that

µk(x0 − ρ, x0 + ρ)

2ρ
≥ 1

4
η(ρ) for all ρ1 < ρ < ρ0, k > K(ρ1).

With g, h, f as above, we then have as in (8.4)∫
h(x− xj + ry)dµk(y) =

∫ ∞

0

µk

(
x0 −

g(t)

r
, x0 +

g(t)

r

)
dt

≥
∫ R

0

g(t)

2r
η
(g(t)

r

)
dt,

for any R > 0, provided that k > K(g(R)/r). Since the last integral can be
made arbitrarily large as R →∞, (8.6) follows as in (8.5).

9 Appendix

9.1 Fourier analytic estimates

We now discuss the Fourier analytic estimates for µ, as indicated in Remark
1 following Theorems 1.1 - 1.3. Our arguments are very similar to those in
Section 6 of [24], hence we only give an outline of the proof and leave the
details to the reader. The main result is the following.

Proposition 9.1. Assume that (5.4) holds. Then there exists a sequence
of sets {Sk : k ≥ 1} that satisfies, in addition to the conditions (a)-(d) of
Theorem 5.1, the following estimate: for all ξ ∈ R,

|σ̂k(ξ)| ≤ B min

[
1,

Mk+1

|ξ|

][
2k+3 ln(BMk+1)∏k+1

j=1 N
1−εj

j

] 1
2

. (9.1)
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Proof. It will suffice to prove (9.1) for ξ ∈ Z, since the more general statement
then follows by standard arguments (see e.g. Lemma 9.A.4 in [42]). Setting

Sk(ξ) =
∑
i∈Ik

Xk(i)e−2πiξαk(i),

we observe after a brief calculation that

σ̂k(ξ) =
1− e−2πiξδk+1

2πiξδk+1

P−1
k+1Sk+1(ξ)− 1− e−2πiξδk

2πiξδk

P−1
k Sk(ξ)

=
1− e−2πiξδk+1

2πiξδk+1

[
Ξ1(ξ) + Ξ2(ξ)

]
, where

Ξ1(ξ) =
[
P−1

k+1 −Q−1
k+1

]
Sk+1(ξ), and

Ξ2(ξ) = Q−1
k+1

∑
i∈Ik

Xk(i)
∑
ik+1

(
Yk+1(i)− pk+1

)
e−2πiξαk+1(i).

Since |(1 − e−2πiξδk+1)/(2πiξδk+1)| ≤ C min(1, Mk+1/|ξ|) with an absolute
constant C, and both Ξ1 and Ξ2 are Mk+1-periodic, it suffices to show that

|Ξ1(ξ)|+ |Ξ2(ξ)| ≤ B

[
2k+3 ln(BMk+1)∏k+1

j=1 N
1−εj

j

] 1
2

for ξ ∈ {1, 2, · · · , Mk+1}.

For Ξ1, this follows even without the logarithmic term from parts (a) and
(b) of Theorem 5.1 and the trivial bound |Sk+1(ξ)| ≤ Pk+1. For Ξ2, this is
a consequence of Bernstein’s inequality (Lemma 5.3) applied to the random
variables

Zi =
1

Nk+1

Nk+1∑
ik+1=1

(
Yk+1(i)− pk+1

)
e−2πiξαk+1(i)

where i ranges over the indices with Xk(i) = 1, m = Pk, σ2 = Pkpk+1/Nk+1

and λ =
√

8pk+1 ln(BMk+1)/(PkNk+1). We omit the details.

Lemma 9.2. Assume that Sk have been chosen as in Proposition 9.1, with
Nk, εk given by either (6.1) or (6.2). Then in addition to all conclusions of
Lemma 6.1, the limiting measure µ satisfies

|µ̂(ξ)| ≤ Cα|ξ|−
β
2
+α for all α > 0, (9.2)

where β = 1 if (6.1) holds and β = 1− ε if (6.2) holds.
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Proof. Assume first that (6.1) holds. We then ask the reader to verify that

|µ̂(ξ)| ≤
∞∑

k=0

∣∣σ̂k(ξ)
∣∣

≤ B

∞∑
k=0

min

[
1,

N
(k+1)(k+4)

2

|ξ|

][
2k+3

(
ln B + (k+1)(k+4)

2
ln N

)
N

(k+1)(k+2)
2

] 1
2

≤ C|ξ|−
1
2 C
√

ln |ξ|,

which implies (9.2) with β = 1. The proof for (6.2) is similar.

9.2 A claim in Subsection 8.2

In this subsection we describe the construction of the function g used in the
proof of Proposition 8.1.

Lemma 9.3. Given any sequence Nj → ∞, there exist positive constants
{γj} such that∑

j

γj < ∞, and
∑

j

γj+kNj = ∞ for all k ≥ 0.

Proof. We pick a fast-growing subsequence {nj} of the integers such that
n0 = 0, ∑

j

N−1
nj

< ∞, and nj+1 − nj ↗∞ as j →∞. (9.3)

Any positive integer can be written uniquely in the form nj + ` for some
0 ≤ ` < nj+1 − nj, and we set γnj+` = 2−`N−1

nj
. Then

∑
j

γj =
∑

j

∑
`<nj+1−nj

γnj+` <

∞∑
j=1

1

Nnj

∞∑
l=0

2−` ≤ 2
∞∑

j=1

N−1
nj

< ∞,

where the last step follows from the first condition in (9.3). On the other
hand, given any k ≥ 0 there exists by the second condition in (9.3) an integer
j0 such that k < nj+1 − nj for all j ≥ j0. This implies that∑

j

γj+kNj ≥
∑
j≥j0

γnj+kNnj
= 2−k

∑
j≥j0

1

Nnj

Nnj
= ∞.
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Thus both claims are proved.

Lemma 9.4. Let η : (0,∞) → [0,∞) be a continuous function such that

η ≡ 0 on [ρ0,∞), η strictly decreasing on (0, ρ0], and η(r) →∞ as r ↘ 0

for some ρ0 > 0. Then there exists a continuous, non-negative and strictly
decreasing function g ∈ L1(0,∞) such that∫ ∞

0

g(y)η(λg(y)) dy = ∞ for any λ > 0.

Proof. Set β0 = 0. For a sequence of positive numbers {βj : j ≥ 1} soon to
be specified, we will define g as follows:

g(β0) = ρ0, g(β1) = ρ02
−1, g(β1 +β2) = ρ02

−2, · · · , g(β1 + · · ·+βj) = ρ02
−j,

and g is linear in the interval [β0 + · · · + βj, β0 + · · · + βj + βj+1] subject to
the above constraints. Thus g is a piecewise linear, continuous, non-negative
and strictly decreasing function, for which∫ ∞

0

g(y) dy =
∞∑

j=0

∫
g(y)1[ρ02−(j+1),ρ02−j)(g(y)) dy

≤
∞∑

j=0

ρ02
−j
∣∣{y : ρ02

−(j+1) ≤ g(y) < ρ02
−j
}∣∣

= ρ0

∞∑
j=0

2−jβj+1 = 2ρ0

∞∑
j=0

2−(j+1)βj+1.

(9.4)

Also, set Nj = η(ρ02
−j), so that Nj ↗∞ as j →∞. Then given any λ > 0,

there is an integer k ≥ 0 such that λ ≤ 2k, and a similar calculation yields∫ ∞

0

g(y)η(λg(y)) dy =
∑
j≥0

∫
g(y)η(λg(y))1[ρ02−(j+1),ρ02−j)(g(y)) dy

≥ ρ0

∑
j≥0

2−(j+1)η(ρ02
k−j)βj+1

= ρ0

∞∑
j=k

2−(j+1)βj+1Nj−k

= ρ0

∞∑
j=0

2−(j+k+1)βj+k+1Nj.

(9.5)
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Here we used the monotonicity of η at the second step. Now choose the
numbers βj such that 2−jβj = γj, where the constants γj are as specified by
Lemma 9.3. Then the infinite sum on the rightmost side of (9.4) converges,
while the one on the rightmost side of (9.5) diverges for all k ≥ 0. This
completes the proof.
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