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Abstract. We prove that a well-distributed subset of R2 can have a distance set ∆ with

#(∆ ∩ [0, N ]) ≤ CN3/2−ε only if the distance is induced by a polygon K. Furthermore, if the
above estimate holds with ε = 1/2, then K can have only finitely many sides.

Introduction

Distance sets play an important role in combinatorics and its applications to analysis and
other areas. See, for example, [PA95] and the references contained therein. Perhaps the
most celebrated classical example is the Erdős Distance Problem, which asks for the smallest

possible cardinality of ∆B2(A) =
{√

(a1 − a′1)
2 + (a2 − a′2)

2 : a, a′ ∈ A
}

if A ⊂ R2 has

cardinality N <∞ and B2 is the Euclidean unit disc. Erdős conjectured that #∆B2(A) =
Ω(N/

√
log(N)). The best known result to date in two dimensions is due to Tardos, who

proves in [Tardos02] that #∆B2(A) = Ω(N .864), improving an earlier breakthrough by
Solymosi and Tóth ([ST01]). For a survey of higher dimensional results see [PA95] and the
references contained therein. For applications of distance sets in analysis see e.g. [IKP99],
where distance sets are used to study the question of existence of orthogonal exponential
bases.

The situation changes drastically if the Euclidean disc B2 is replaced by a convex planar
set with a “flat” boundary. For example, let Q2 = [−1, 1]2 and define ∆Q2(A) = {|a1 −
a′1| + |a2 − a′2| : a, a′ ∈ A}. Let A = {m ∈ Z2 : 0 ≤ mi ≤ N

1
2 }. Then #A ≈ N , and it

is easy to see that #∆K(A) ≈ N
1
2 , which is much less than what is known to be true for

the Euclidean distance. In fact, it follows from an argument due to Erdős ([Erd46]; see also
[I01]) that the estimate #∆K(A) = Ω(N

1
2 ) holds for any K.
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The example in the previous paragraph shows that the properties of the distance set very
much depend on the underlying distance. One way of bringing this idea into sharper focus
is the following. Let S be a separated subset of R2, α-dimensional in the sense that

(0.1) #(S ∩ [−N,N ]2) ≈ Nα.

If Erdős’ conjecture holds, then #∆B2(S ∩ [−N,N ]2) = Ω(Nα/
√

logN); in particular, if
α > 1 then ∆B2(S) cannot be separated. This formulation expresses the Erdős Distance
Conjecture in the language of the Falconer Distance Conjecture (see e.g. [Wolff02]) which
says that if a compact set E ⊂ R2 has Hausdorff dimension α > 1, then ∆B2(E) has positive
Lebesgue measure. On the other hand, we have seen above that ∆Q2(S) can be separated
for a 2-dimensional set S (e.g. S = Z2).

The purpose of this paper is to show that the example of ∆Q2(Z2) is extremal in the
sense that the distance set of a sufficiently “thick” discrete set can be separated only if
the distance is measured with respect to a polygon. We shall also give quantitative results
that hold under weaker assumptions. Our notion of thickness is well-distributivity. More
precisely:

Well-distributed sets. We say that S ⊂ R2 is well-distributed if there exists a C > 0
such that every cube of side-length C contains at least one element of S.

K-well-distributed sets. We say that S ⊂ R2 is K-well-distributed if there is a constant
CK such that every translate of CKK contains at least one element of S.

Note that well-distributivity and K-well-distributivity are equivalent modulo the choice
of constants. We now formally define the distance set with respect to a bounded convex set
K:

K-distance. Let K be a bounded convex set, symmetric with respect to the origin. Given
x, y ∈ R2, define the K-distance, ||x− y||K = inf{t : x− y ∈ tK}.
K-distance sets. Let A ⊂ R2. Define ∆K(A) = {||x− y||K : x, y ∈ A}, the K-distance
set of A.

Our main result is the following.

Theorem 0.1. Let S be well-distributed subset of R2, and let ∆K,N(S) = ∆K(S) ∩ [0, N ].
(i) Assume that limN→∞#∆K,N (S) · N−3/2 = 0. Then K is a polygon (possibly with

infinitely many sides).
(ii) If moreover #∆K,N(S) = O(N1+α) for some 0 < α < 1/2, then the number of sides

of K whose length is greater than δ is bounded1 by Cδ−2α.
(iii) If #∆K,N (S) = O(N) (in particular, this holds if ∆K(S) is separated), then K is a

polygon with finitely many sides. Furthermore, if ∂K contains a line segment parallel to a
line L, then S ⊂

⋃
t∈T t+ L for some T ⊂ R2 satisfying #(T ∩ [−N,N ]2) = O(N).

1The trivial estimate would be Cδ−1.
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The assumptions of Theorem 0.1 can be weakened slightly in a technical way, see Lemmas
1.1–1.2 below; this, however, does not improve the values of the exponents in the theorem.

We do not know if the conclusion of our main result still holds if the well-distributivity
assumption is weakened. However, it is clear that some sort of a “thickness” assumption is
needed. For example, if S = {(m, 0) : m ∈ Z}, then the distance set with respect to any
convex set is separated. Consider also the set

S = {1, 2, . . . , N} × {100N, 200N, . . . , 100N2},

and let K be any convex set whose boundary contains the line segments [−1/2, 1/2]×{±1}
and {±1} × [−1/2, 1/2]. Then #S = N2, but the corresponding distance set ∆K(S) =
{0, 1, 2, . . . , N − 1} ∪ {100N, 200N, . . . , 100N(N − 1)} has cardinality 2N − 1. Essentially,
we need some conditions on S to guarantee that the set of slopes of the lines joining pairs
of points in S is dense: if there are no such pairs with slopes in some angular sector (θ1, θ2),
then the corresponding sector of K could be modified arbitrarily without affecting ∆K(S).

It is interesting to contrast our point of view with a classical result, due to Erdős ([Erd45]),
which says that if S is an infinite subset of the plane such that ∆B2(S) ⊂ Z+, then S is
a subset of a line. An asymptotic version of this result and an extension to more general
distance sets can be found in [IosRud02]. In short, these results say that if the distance set
with respect to a “well-curved” metric is separated and very regular, then the set cannot be
very thick. On the other hand, Theorem 0.1 below says that if the distance set of a “thick”
set is separated, then the metric cannot be “well-curved” and must, in fact, be given by a
polygon.

Another interesting question is to characterize the polygons K and point sets S for which
the assumption #∆K,N (S) = O(N) of Theorem 0.1 (iii) holds. For example, if S ⊂ Z2,
then K can be any symmetric polygon with finitely many sides whose vertices have rational
coordinates. Must S always have a lattice-like structure? For what convex polygons K can
we find a well-distributed set S for which the above estimate holds? Suppose that suchK and
S are given; applying a linear transformation if necessary, we may assume that K contains
line segments I1, I2 parallel to the x1, x2-axes respectively (where (x1, x2) are Cartesian
coordinates in R2). The last conclusion of the theorem implies that S ⊂ A1 × A2, where
Ai ⊂ R, Ai ∩ [−N,N ] = O(N). Our assumption on the density of ∆K(S) implies, roughly
speaking, that a large part of each set {a− a′ : a, a′ ∈ Ai ∩ [−N,N ]}, i = 1, 2, is contained
in a set of cardinality O(N). If ∂K also contains another line segment, say parallel to the
line αx1 + βx2 = 0, we obtain similar density estimates for the set {αa+ βb : (a, b) ∈ S}.
Thus there appears to be a link between polygonal distance sets and certain deep questions
in additive number theory (such as Freiman’s theorem and the Balog-Szemerédi theorem).
We hope to pursue this connection further in a future paper.

Acknowledgement. We thank Jozsef Solymosi for helpful discussions and in particular
for prompting us to consider the cases (i)-(ii) of Theorem 0.1, and the anonymous referee
for many valuable comments.
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Proof of Theorem 0.1

Let S ⊂ R2 be a well-distributed set. Rescaling if necessary, we may assume that S is
K-well-distributed with CK < 1/2. We denote by Cθ1,θ2 the cone {(r, θ) : θ1 < θ < θ2},
where (r, θ) are the polar coordinates in R2. We also write Γ = ∂K. A line segment will
always be assumed to have non-zero length.

Theorem 0.1 is an immediate consequence of Lemmas 1.1–1.3: it suffices to observe that
the assumptions of Theorem 0.1 (i), (ii), (iii) imply those of Lemma 1.1, Lemma 1.2(ii) and
(i), respectively. Let λ(N) = #(∆K(S)∩ (N − 2, N + 2)), and let L(N) = min{λ(n) : N ≤
n ≤ kN} for some k > 1 which will be fixed throughout the rest of the paper.

Lemma 1.1. Let S be a K-well-distributed set in the plane with CK < 1/2. Assume that
limN→∞L(N)N−1/2 = 0. Then for any θ1 < θ2 the curve Γ∩Cθ1,θ2 contains a line segment.

Lemma 1.2. Let S be a K-well-distributed set in the plane with CK < 1/2.
(i) If L(N) = O(1), then Γ may contain only a finite number of line segments such that

no two of them are collinear.
(ii) If L(N) = O(Nα) for some 0 < α < 1/2, then the number of sides of K whose length

is greater than δ is bounded by Cδ−2α.

Lemma 1.3. Suppose that K and S satisfy the assumptions of Theorem 0.1(iii). Fix a
Cartesian coordinate system (x1, x2) in R2 so that Γ contains a line segment parallel to the
x1 axis. Then

#{b : S ∩ [−N,N ]2 ∩ (R× {b}) 6= ∅} = O(N).

We now prove Lemmas 1.1–1.3. The main geometrical observation is contained in the
next lemma.

Lemma 1.4. Let Γ = ∂B, where B ⊂ R2 is convex. Let α > 0, x ∈ R2, x 6= 0.
(i) If Γ ∩ (αΓ + x) contains three distinct points, at least one of these points must lie on

a line segment contained in Γ.
(ii) Γ∩ (αΓ + x) cannot contain more than 2 line segments such that no two of them are

collinear.

We will first prove Lemmas 1.1 and 1.2, assuming Lemma 1.4; the proof uses a variation
on an argument of Moser [Mo]. The proof of Lemma 1.4 will be given later in this section.

Let

(1.1) AN = {x ∈ R2 : ‖x‖K ∈ (N − 1, N + 1)}.

We will often use the following simple observation. Fix θ1, θ2 with 0 < θ2− θ1 ≤ π/2. Then
for all N large enough (depending on θ1, θ2) we have

#(S ∩ AN ∩ Cθ1,θ2) = Ω(N(θ2 − θ1)).
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To see this, we first observe that there is a constant c0 > 0 such that c0‖x − y‖B2 ≤
‖x − y‖K for all x, y ∈ R2, where B2 is the Euclidean unit disc. Let θ′1 = (2θ1 + θ2)/3,
θ′2 = (θ1 + 2θ2)/3, C = Cθ′1,θ′2 . The Euclidean distance between the endpoints of the curve
NΓ ∩ C is Ω(N(θ2 − θ1)). Hence we may pick Ω(N(θ2 − θ1)) points P1, . . . , Pm ∈ NΓ ∩ C
with ‖Pi − Pj‖B2 ≥ 2c−1

0 for all i 6= j. The sets Ki = Pi + 1
2K, i = 1, . . . , m, are mutually

disjoint, since ‖Pi − Pj‖K ≥ 2 for i 6= j. By the triangle inequality, they are all contained
in AN . To see that they are also contained in Cθ1,θ2 , we fix j ∈ {1, . . . , m} and observe that
the Euclidean distance from Pj to the lines θ = θ1, θ = θ2 is at least cN(θ2 − θ1), where c
depends only on K. Thus the K-distance from Pj to the complement of Cθ1,θ2 is at least
cc0N(θ2 − θ1), which is greater than 1/2 as required if N is sufficiently large.

Fix 2 points P,Q ∈ S; translating S if necessary, we may assume that P = −Q and that
‖P‖K < 1. Let Observe that all of the distances

(1.2) ‖s− P‖K , ‖s−Q‖K : s ∈ S ∩ AN

lie in (N − 2, N + 2), hence the number of distinct distances in (1.2) is bounded by λ(N).

Proof of Lemma 1.1. We may assume that 0 < θ2 − θ1 < π/2. Fix θ′1, θ
′
2 so that

θ1 < θ′1 < θ′2 < θ2, and let C = Cθ1,θ2 , C
′ = Cθ′1,θ′2 . Then for all N large enough we have

(1.3) C′ ∩ AN ⊂ (C + P ) ∩ (C +Q)

and

(1.4) #(S ∩ C′ ∩AN ) ≥ cN(θ′2 − θ′1).

Let

(1.5) {d1, . . . , dl} = {‖s− P‖K : s ∈ S ∩AN}, {d′1, . . . , d′l′} = {‖s−Q‖K : s ∈ S ∩AN}.

Then l, l′ ≤ λ(N) (see (1.2)). We have

(1.6) S ∩ C′ ∩ AN ⊂ S ∩ C′ ∩
⋃
i,j

Γi ∩ Γ′j ,

where Γi = diΓ + P , Γ′j = d′jΓ + Q. By our assumption, we may choose N so that
N ≥ 10λ2(N)c−1(θ′2 − θ′1)−1. Then there are i, j such that #(S ∩ C′ ∩ Γi ∩ Γ′j) ≥ 10. It
follows from Lemma 1.4(i) that at least one of the points in S∩C′∩Γi lies on a line segment
I contained in C′ ∩ Γi. By (1.3), I is contained in diΓ ∩ C, hence Γ ∩ C contains the line
segment d−1

i I.
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Proof of Lemma 1.2. Suppose that L(N) = O(Nα) for some 0 ≤ α < 1/2, and that Γ
contains line segments I1, . . . , IM of length at least δ > 0, all pointing in different directions.

We will essentially continue to use the notation of the proof of Lemma 1.1. Choose P,Q
as above, and let Cm denote cones Cm = Cθm,θ′m such that θm < θ′m, Γ ∩ Cm ⊂ Im, and
θ′m − θm ≥ cδ. Let also C′m ⊂ Cm be slightly smaller cones. Our assumption on L(N)
implies that we may choose N ≈ δ−1 so that λ(N) ≤ cNα, each sector C′m ∩ AN contains
at least 10 points of S, and

(1.7) AN ∩ C′m ⊂ (Cm + P ) ∩ (Cm +Q).

Let also di, d′j,Γi,Γ
′
j be as above. Then for each m

(1.8) S ∩ AN ∩ C′m ⊂
⋃
i,j

Γi ∩ Γ′j ∩ C′m.

If N is large enough, Γi ∩ C′m ⊂ Cm and Γ′j ∩ C′m ⊂ Cm, hence the set on the right is a
union of line segments parallel to Im. It must contain at least one such segment, since the
set on the left is assumed to be non-empty. Therefore the set

(1.9)
⋃
i,j

Γi ∩ Γ′j

contains at least M line segments pointing in different directions, one for each m. But on
the other hand, by Lemma 1.4(ii) any Γi ∩ Γ′j can contain at most two line segments that
do not lie on one line. It follows that the set in (1.9) contains at most 2λ2(N) ≤ c2N2α

line segments in different directions, hence M ≤ 2c2N2α. Since Γ can contain at most two
parallel line segments that do not lie on one line, the number of line segments along Γ is
bounded by 4c2N2α as claimed.

Proof of Lemma 1.4. We first prove part (i) of the lemma. Suppose that P1, P2, P3 are
three distinct points in Γ ∩ (αΓ + x). We may assume that they are not collinear, since
otherwise the conclusion of the lemma is obvious. We have P1, P2, P3 ∈ Γ and P ′1, P

′
2, P

′
3 ∈ Γ,

where P ′j = α−1(Pj − x). Let T and T ′ denote the triangles P1P2P3 and P ′1P
′
2P
′
3, and let

K ′ be the convex hull of T ∪ T ′. Since K ′ ⊂ K and the points P1, P2, P3, P
′
1, P

′
2, P

′
3 lie on

Γ = ∂K, they must also lie on ∂K ′.
Observe that ∂K ′ consists of some number of the edges of the triangles T, T ′ and at

most 2 additional line segments. Furthermore, the set of vertices of K ′ is a subset of
{P1, P2, P3, P

′
1, P

′
2, P

′
3}. If for each i 6= j ∂K ′ contains at most one of the line segments

PiPj and P ′iP
′
j , K

′ is a polygon with at most 5 edges, hence at most 5 vertices. Thus if
all 6 points Pj , P ′j, j = 1, 2, 3, lie on ∂K ′, at least three of them must be collinear, and
one of them must be Pj for some j (otherwise P ′1, P

′
2, P

′
3 would be collinear). If these three

points are distinct, then Γ contains the line segment joining all of them, and we are done.
Suppose therefore that they are not distinct. It suffices to consider the cases when P1 = P ′1
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or P1 = P ′2. If P1 = P ′1, then we must have α 6= 1 and P1, P2, P
′
2 are distinct and collinear; if

P1 = P ′2, then P ′1, P1, P2 are distinct and collinear. Thus at least three of the points Pj , P ′j
are distinct and collinear, and we argue as above.

It remains to consider the case when ∂K ′ contains both PiPj and P ′iP
′
j for some i 6= j. The

outward unit normal vector to PiPj and P ′iP
′
j is the same, hence all four points Pi, Pj, P ′i , P

′
j

are collinear, at least three of them are distinct, and Γ contains a line segment joining all
of them.

Part (ii) of the lemma is an immediate consequence of the following. Let (x1, x2) denote
the Cartesian coordinates in the plane.

Lemma 1.5. Let I be a line segment contained in Γ ∩ (αΓ + u), where u = (c, 0). Assume
that the interiors of K and αK + u are not disjoint.

(i) If α = 1, then I is parallel to the x1-axis.
(ii) If α 6= 1, then the point ( c

1−α , 0) lies on the straight line containing I.

Proof of Lemma 1.5. Part (i) is obvious; we prove (ii). If I lies on the line x2 = ax1 + b,
then so does αI + u. But on the other hand αI + u lies on the line

(1.10) x2 = α

(
a
x1 − c
α

+ b

)
= ax1 − ac+ αb.

It follows that b = αb− ca, hence − b
a

= c
1−α . But −b/a is the x1-intercept of the line in

question.
Similarly, if I lies on the line x1 = b, then αI+u lies on the lines x1 = b and x1 = αb+ c,

hence b = c
1−α .

To finish the proof of Lemma 1.4 (ii), it suffices to observe that in both of the cases (i),
(ii) of Lemma 1.5 the boundary of a convex body cannot contain three such line segments
if no two of them lie on one line, and that if the interiors of K and αK +x are disjoint then
Γ ∩ (αΓ + x) is either a single point or a line segment.

Proof of Lemma 1.3. Suppose that Γ contains a line segment I ⊂ {x2 = b}, parallel
to the x1 axis, and let P be the center of I. Let Cθ1,θ2 be a cone such that P ∈ Cθ1,θ2
and that Γ ∩ Cθ1,θ2 ⊂ I. Let c1 be a constant such that [−1, 1]2 ⊂ c1K. Denote also
SN = S ∩ [−N,N ]2.

Fix M � N so that #(∆K(S) ∩ [M − 1 − c1N,M + 1 + c1N ]) = O(N). The K-well-
distributivity of S implies that the polygon K+MP contains a point Q = (q1, q2) ∈ S. If M
was chosen sufficiently large, we have [−N,N ]2 ⊂ Q−Cθ1,θ2 , hence for any s = (s1, s2) ∈ SN
we have ‖Q− s‖K = |(q2 − s2)/b|. On the other hand, for any s ∈ SN we have

‖Q− s‖K − ‖MP‖K ≤ ‖Q−MP‖K + ‖s‖K ≤ 1 +Nc1,

hence ‖Q− s‖K ∈ [M −1−Nc1,M +1+Nc1]. It follows that there are only O(N) possible
values of s2 as claimed.
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