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Abstract

We prove Pach-Sharir type incidence theorems for a class of curves
in Rn and surfaces in R3, which we call pseudoflats. In particular, our
results apply to a wide class of generic irreducible real algebraic sets
of bounded degree.

1 Introduction

One of the most intriguing, and most actively studied, problems in combi-
natorial geometry is finding upper bounds on the number of point-curve and
point-surface incidences. The best known such result, which has since be-
come an indispensable tool with a wide variety of applications in discrete and
combinatorial geometry, is the Szemerédi-Trotter theorem [18] on point-line
incidences in the plane.

There are now many extensions and generalizations of the Szemerédi-
Trotter theorem. In one direction, Pach and Sharir [14] have obtained an
analogous incidence bound for pseudolines, i.e. planar curves which are
uniquely determined by a certain fixed number r of points (for lines, we
have r = 2). Another line of work concerns point-surface, especially point-
hyperplane, incidences in higher dimensions; see [15] for an excellent sur-
vey. Recently, Elekes and Tóth [10] obtained a sharp Szemerédi-Trotter
type bound for point-hyperplane incidences in Rn, assuming a certain non-
degeneracy condition; this bound was refined further by Solymosi and Tóth
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[16] under the additional assumption that the point set in question is homo-
geneous (see below).

The purpose of this paper is to propose a common generalization of the
results of [14] and [10], [16], for homogeneous point sets in R3. Specifically,
we first obtain Pach-Sharir type bounds for a class of curves (which we will
also call pseudolines) in Rn, recovering a special case of the bound of [14]
for n = 2. We then use it to prove the main result of our paper, namely
an analogous incidence theorem for a class of 2-dimensional surfaces in R3

(pseudoplanes). For 2-dimensional planes in R3, our bound differs from that
of [10], [16] only by the additional logarithmic factors; on the other hand,
our non-degeneracy assumption is weaker than that of [10], [16].

Definition 1.1. (cf. [17], [16], [11]) A finite point set P ⊂ Rn is called
homogeneous if P lies in the interior of an n-dimensional cube Q = [0, a]n

of volume Θ(|P |)1, and if any unit cube in Rn contains at most O(1) points
of P .

Fix P as above. We will say that a set S ⊂ Rn (usually a curve or surface)
is m-rich if it contains at least m points of P . As in [10], [16], our results
are stated in terms of a bound on the number of m-rich pseudolines and
pseudoplanes for a fixed point set P of cardinality N .

Our first result concerns incidences for one-dimensional pseudolines, which
we now define.

Definition 1.2. (cf. [14]) Let V be a family of subsets in Rn. We say that V
is a type r family of pseudolines if the following two conditions are satisfied:

(i) (rectifiability) Let t ∈ N. If the enclosing cube Q is subdivided into tn

congruent and disjoint (except for boundary) subcubes, then each V ∈ V has
nonempty intersection with at most O(t) subcubes.

(ii) (type r) For any distinct r points in Rn, there is at most one V ∈ V
which contains them all.

In Section 2, we verify that the conditions of Definition 1.2 hold if V is a
family of irreducible one-dimensional algebraic varieties defined by polyno-
mial equations of degree at most d (with an explicit value of r, depending
on n and d). It is useful to think of the elements of V as curves, since this
description applies to the main cases of interest (such as the algebraic vari-
eties just mentioned). Note that the rectifiability condition (ii) implies that

1Here and below, all constants depend only on n and r.
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each V ∈ V has Hausdorff dimension at most 1. However, no continuity or
smoothness assumptions are actually required.

Theorem 1.3. Let V be a type r family of pseudolines in Rn, and let P be
a homogeneous set of N points. Then:

(i) if k ≥ CN1/n for large enough C, then there are no k-rich pseudolines
in V;

(ii) if k ≤ CN1/n, then the number of k-rich pseudolines in V is bounded
by O(N r/kn(r−1)+1).

For n = 2, we recover a special case (for homogeneous point sets) of the
Pach-Sharir theorem on incidences for pseudolines [14]. For n ≥ 3, Theorem
1.3 extends a result of Solymosi and Vu [17] on incidences for lines in Rn.
Our proof is in fact very similar to that of [17].

Our main result concerns 2-dimensional surfaces in R3. (Again, the recti-
fiability assumption (i) implies Hausdorff dimension at most 2, but otherwise
our “surfaces” could be quite arbitrary.)

Definition 1.4. Let S be a family of subsets of R3. We say that S is a type
r family of pseudoplanes if the following holds:

(i) (rectifiability) Let t ∈ N. If the enclosing cube Q is subdivided into t3

congruent and disjoint (except for boundary) subcubes, then each S ∈ S has
nonempty intersection with at most O(t2) subcubes.

(ii) (pairwise intersections are pseudolines) Let

V = {S ∩ S ′ : S, S ′ ∈ S, S 6= S ′}.

Then V is a type r family of pseudolines.

Theorem 1.5. Let P be a homogeneous point set in a cube Q, |P | = N .
Let S be a type r family of pseudoplanes in R3. Assume that each S ∈ S
contains a defining r + 1-tuple, i.e. r + 1 distinct points x1, . . . , xr+1 such
that no pseudoplane in S, other than S itself, contains them all. Then:

(i) if k ≥ CN2/3 for large enough C, then there are no k-rich pseudoplanes
in S;

(ii) if k ≤ CN2/3, then the number of k-rich pseudoplanes in S is bounded
by O(N r+1(log N log k)3r/2+2/k3r/2+1).
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Remark. It is well known (cf. [10], Section 2) that bounds on the number
of k-rich curves or surfaces are equivalent to the more standard formulation in
terms of a bound on the total number of incidences between the point set and
the objects in question. Essentially (i.e. modulo the endpoints), we obtain

bounds O(M
n(r−1)

n(r−1)+1 N
r

n(r−1)+1 ) on the number of incidences between M type r

pseudolines and a homogeneous set of N points in Rn, and O(M
3r

3r+2 N
2r+2
3r+2 ) on

the number of incidences between M type r pseudoplanes and a homogeneous
set of N points in R3.

We briefly explain how our results fit in with the existing literature on
point-plane incidences. It is clear that if m points of P lie on one line,
then any plane containing this line will be m-rich, and there is no bound
on the number of such planes. Therefore any non-trivial Szemerédi-Trotter
type results for higher-dimensional surfaces must make some non-degeneracy
assumption on the plane-point configuration. The special cases considered in
the literature include configurations where there are no three collinear points
[7], the incidence graph does not contain a Kr,r [5], and when all hyperplanes
are spanned by the point set [1] (see also [9]).

Our result is closest to those of [10] and [16]. Elekes and Tóth [10] give
a sharp bound O( Nn

kn+1 + Nn−1

kn−1 ) on the number of k-rich n − 1-dimensional
hyperplanes in Rn, with respect to a point set P of cardinality N , provided
that the hyperplanes are not-too-degenerate in the following sense: there is
an α < 1 such that for each hyperplane S, no more than α|P ∩ S| points of
P ∩S lie in a lower-dimensional flat. This estimate was strengthened by Soly-
mosi and Tóth [16] to O( Nn

kn+1 ), under the same non-degeneracy assumption
and with the additional condition that the point set P is homogeneous; the
homogeneity assumption is necessary here, as Elekes and Tóth observe that
for certain ranges of N, k the second term in the bound of [10] is dominant
and sharp.

The bound in Theorem 1.5 with r = 2 matches that of [16] for n = 3,
modulo the extra logarithmic factors. On the other hand, the nondegeneracy
condition of [10], [16] is stronger than that of Theorem 1.5, where it suffices
for each plane to contain just one defining triple (i.e. non-trivial triangle)
of points in P . We do not know whether the logarithmic factors can be
dropped without additional assumptions (such as those in [10], [16]) on the
distribution of all points in each plane.

If we only assume that each n − 1-dimensional hyperplane contains n
affinely independent points of P , but no further conditions are imposed on
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the hyperplane-point configuration, the bounds of [10], [16] are known to be
false. In this case, an optimal incidence bound is due to Agarwal and Aronov
[1], namely there are at most O(Nn

k3 + Nn−1

k
) k-rich hyperplanes spanned by P .

Examples of [6], [8] show that this estimate is sharp. This also shows that our
theorem would already fail for r = 2 without the homogeneity assumption
on P .

Incidence bounds for curves and surfaces, other than lines and planes,
in dimensions 3 and higher, are in general not well understood. Non-trivial
bounds have been obtained only in certain special cases, e.g. circles, spheres,
convex plane curves lying in distinct planes. See [15] for an overview.

A very rough outline of the proof of Theorem 1.5 is as follows. Consider
a sequence of nested cell decompositions of the enclosing cube Q. In a coarse
decomposition (e.g. when the entire Q is a single cell), there are many same-
cell defining r + 1-tuples of points of P . In a very fine decomposition, e.g.
if each cell contains only one point of P , there are no such r + 1-tuples. We
find an intermediate scale at which the transition takes place for most points
and surfaces. At that scale, if each cell contains few points of P ∩S for most
S, we simply double-count the number of defining same-cell r + 1-tuples. If
on the other hand each cell contains many points of P ∩S, then these points
must in fact live on the intersection pseudolines in V . Our bound is now
obtained by applying Theorem 1.3 to V and to the points of P in each cell.

Our argument does not seem to extend easily to hypersurfaces in higher
dimensions, and in fact it is not clear how one should define higher-dimensional
pseudoflats. For example, our proof relies heavily on the assumption that
pairwise intersections of surfaces are pseudolines defined uniquely by r points;
this condition fails for generic higher-dimensional hypersurfaces where pair-
wise intersections may have dimension 2 or more. There seems to be no easy
way to circumvent this by considering multiple intersections.

The plan of the paper is as follows. In Section 2, we discuss the appli-
cability of Theorems 1.3 and 1.5 to algebraic sets. We then prove Theorems
1.3 and 1.5 in Sections 3 and 4, respectively.

We use Roman letters to denote Cartesian coordinates of points in Rn,
eg. x = (x1, . . . , xn) ∈ Rn.
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2 Algebraic varieties as pseudoflats

In this section we state conditions on families of algebraic varieties under
which the assumptions of Definitions 1.2 and 1.4 are satisfied.

We briefly recall a few basic definitions from algebraic geometry, restrict-
ing our attention to real algebraic sets. The reader is cautioned that the
terminology and features of real algebraic geometry are sometimes quite dif-
ferent from the complex case; see e.g. [4] for more details.

For the purposes of this paper, a real algebraic set or real algebraic variety
(we will usually omit the qualifier “real” in what follows) is the zero set in
Rn of a finite family of polynomials F1(x), . . . , Fs(x) with real coefficients2.
We will say that an algebraic set S is reducible if there are two algebraic sets
S ′, S ′′, neither equal to S, such that S = S ′ ∪ S ′′; otherwise, we will say that
S is irreducible.

There are several equivalent ways of defining the dimension of an algebraic
set. The easiest one for us to use is the following: the dimension k of an
algebraic set S is the length of the longest chain of irreducible varieties Sj

such that
∅ 6= S1 ( S2 ( · · · ( Sk ⊂ S.

In particular, an irreducible variety does not contain any proper subvariety
of the same dimension.

If an algebraic set S is a C∞ k-dimensional submanifold of Rn, then
its algebraic dimension is k. Note, however, that there are irreducible real
algebraic sets which consist of several components of different topological
dimensions (see e.g. the examples in [4], pp. 60–61). In such cases, the
algebraic dimension of the set will be the largest of the dimensions of its
components.

Proposition 2.1. Let V be a family of irreducible one-dimensional varieties
in Rn, defined by a polynomial equations of degree at most d. Then V is a type
r family of pseudolines, with r = d2+1 if n = 2, and with r = d(2d−1)n−1+1
if n ≥ 3.

Proposition 2.2. Let S be a family of 2-dimensional algebraic varieties in
R3, each given by a polynomial equation of degree no more than d. Assume

2In real algebraic geometry, one also considers algebraic sets over real closed fields.
Furthermore, it is useful to distinguish between an algebraic set and an algebraic variety,
the latter being an algebraic set equipped with a sheaf of regular functions. However, we
do not need to make this distinction here.
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that the intersection V = S ∩ S ′ of any two varieties S, S ′ ∈ S, S 6= S ′, is
an irreducible one-dimensional variety. Then S is a type r family of pseudo-
planes, with r = d(2d− 1)2 + 1.

The proofs of both propositions will rely on the following result from real
algebraic geometry [2], [3]. Let V ⊂ Rn be a k-dimensional variety defined
by polynomials of degree at most d. Let also P1, . . . , Ps be polynomials in n
variables of degree at most d. A sign condition for the set P = {P1, . . . , Ps}
is a vector σ ∈ {−1, 0, 1}s. We write

σP,V = {x : x ∈ V, (sign(P1(x)), . . . , sign(Pn(x))) = σ},

and call its non-empty semi-algebraically connected components cells of the
sign condition σ for P over V . Let |σP,V | be the number of such cells, then

C(P , V ) =
∑

σ

|σP,V |

is the number of all cells defined by all possible sign conditions. Let f(d, n, k, s)
be the maximum of C(P , V ) over all varieties V ⊂ Rd and sets of polynomials
P as described above. Then the main result of [2] (see also [3]) is that

f(d, n, k, s) =

(
s

k

)
(O(d))n. (1)

Proof of Proposition 2.1. If V is a family of one-dimensional irreducible
varieties in R2, each defined by a polynomial equation of degree at most d, it
follows from Bezout’s theorem that any two distinct varieties in V intersect
in no more than d2 points, hence V is type r for r = d2 + 1.

Suppose now that V is a family of one-dimensional irreducible varieties
in Rn, n ≥ 3, each one defined by a system of polynomial equations in n
variables of degree at most d. The classic results on the sum of Betti numbers
of algebraic sets [13], [12], [19] imply in particular that the intersection of two
such distinct varieties has no more than d(2d−1)n−1 connected components;
since the varieties are irreducible, the intersection is a variety of dimension
0, hence each connected component is a single point. Thus we may take
r = d(2d− 1)n−1 + 1.

It remains to verify rectifiability. Let t ∈ N. We subdivide the enclosing
cube Q into tn congruent open subcubes Qj = {(ji − 1)a/t < xi < jia/t, i =
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1, . . . , n}, indexed by j = (j1, . . . , jn) ∈ {1, . . . , t}n. Fix a V ∈ V , and
consider the sets Vj = V ∩Qj. We have P ∩V ⊂

⋃
j(P ∩Vj). Each nonempty

Vj contains a cell of V associated with a suitable sign condition for the system
of polynomials Pi,s(x) = xi − sa/t, i = 1, . . . , n, s = 1, . . . , t. By (1), the
number of such cells is bounded by ntO(d)n, as required.

Proof of Proposition 2.2. Let V = {S∩S ′ : S, S ′ ∈ S, S 6= S ′}, then V is
a type r family of pseudolines by Proposition 2.1. The proof of rectifiability
is the same as in the proof of Proposition 2.1, except that this time (1) yields
the bound

(
nt
2

)
O(d)n on the number of non-empty cells.

3 Proof of Theorem 1.3

We assume that the enclosing cube for P is Q = [0, a]n for some positive
integer a, and that all points in P have irrational coordinates. We always let
N be sufficiently large. Without loss of generality, we assume that all V ∈ V
are k-rich.

We first prove (i). Let t be an integer to be fixed later. We subdivide
the enclosing cube Q into tn congruent open subcubes Qj = {(ji − 1)a/t <
xi < jia/t, i = 1, . . . , n}, indexed by j = (j1, . . . , jn) ∈ {1, . . . , t}n. By the
assumption from the last paragraph, no points in P lie on the boundary of
any Qj. For each V ∈ V , we let Vj = V ∩Qj. We have P ∩ V ⊂

⋃
j(P ∩ Vj).

By the rectifiability assumption, the number of non-empty Vj’s is at most
O(t).

We now choose t so that tn = Θ(N). Since P is homogeneous, each Qj

contains no more than O(1) points of P . Hence the cardinality of P ∩ V is
bounded by O(t) = O(N1/n), as claimed.

It remains to prove (ii). We divide Q into tn subcubes Qj as in the proof
of (i), except that this time we will choose

t = Θ(k), (2)

with the implicit constants small enough (depending on n, r). In particular,
by (i) we may assume that tn ≤ N , since otherwise there is nothing left to
prove.

A r-tuple of distinct points x1, . . . , xr ∈ P is good if all xi belong to the
same subcube Qj. We count the number M of good r-tuples in two ways. On
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one hand, since P is homogeneous, each Qj contains no more than O(N/tn)
points of P . Thus

M = O((N/tn)r · tn) = O(N r/tn(r−1)).

On the other hand, let Vj = V ∩ Qj as in the proof of (i). Each r-tuple
of points in P ∩ V contained in one P ∩ Vj is good. By rectifiability, the
number K of distinct and non-empty Vj’s is bounded by k/r (provided that
the constants in (2) were chosen appropriately small). Thus the number of
good r-tuples in P ∩ V is Ω((k/K)r ·K) = Ω(kr/Kr−1) = Ω(k).

Summing over all V ∈ V and remembering that any r-tuple can belong
to only one V (since V is type r), we see that

M = Ω(|V|k).

Comparing the upper and lower bounds for M , and using (2), we see that

|V| = O(
N r

ktn(r−1)
) = O(

N r

kn(r−1)+1
)

as claimed.

4 Proof of Theorem 1.5

The proof of (i) is identical to that of Theorem 1.3(i), except that the 2-
dimensional rectifiability condition with n = 3 yields the exponent 2/3 as
indicated in the theorem. We omit the details.

We now prove (ii). Let |S| = X. We assume that Q = [0, a]3 for some
positive integer a, and that all points in P have irrational coordinates.

For i = 0, 1, 2, . . . , I, we define the i-th cutting of Q to be the subdivision
of Q into 23i congruent open subcubes Qi,j of sidelength a/2i. We let I =
Θ(log N) so that each subcube in the I-th cutting contains at most 1 point
of P . Note that no points in P lie on the boundary of any Qi,j.

For each i and each S ∈ S, the i-th cutting divides S into subsets Si,j =
S ∩Qi,j. By the rectifiability assumption, we have

|{j : Si,j 6= ∅}| = O(22i), (3)

with constants uniform in i.
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Let S ∈ S. We will say that a r+1-tuple of points x1, . . . , xr+1 is defining
for S at level i if x1, . . . , xr+1 are distinct points in P ∩ S which all belong
to the same subcube of the i-th cutting, and if moreover there is no other
surface S ′ ∈ S, S ′ 6= S, such that x1, . . . , xr+1 ∈ S ′. Thus a defining r + 1-
tuple at level 0 is simply a defining r + 1-tuple for S as in the statement of
the theorem.

We define the index i(x, S) of a pair (x, S), where S ∈ S, x ∈ P ∩ S, to
be the least value of i such that x does not belong to a defining r + 1-tuple
for S at level i.

Lemma 4.1. For all S ∈ S, x ∈ P ∩ S, we have 1 ≤ i(x, S) ≤ I.

Proof. Clearly there are no defining r+1-tuples at level I, hence i(x, S) ≤
I. It remains to prove that i(x, S) ≥ 1 for all x ∈ P ∩ S, S ∈ S. Indeed,
fix S ∈ S and x0 ∈ P ∩ S. We need to prove that x0 belongs to a defining
r + 1-tuple for S. By the non-degeneracy assumption, S contains a defining
r + 1-tuple T = {x1, . . . , xr+1}. If x0 ∈ T , we are done. Otherwise, let
Tj = (T \ {xj}) ∪ {x0}, and suppose that T1, . . . , Tr+1 are all non-defining.
This means that for each j = 1, . . . , r + 1 there is a Sj ∈ S, Sj 6= S, such
that Tj ⊂ Vj := S ∩ Sj. In particular, if j ≥ 2, then V1 and Vj share the r
points xm, m ∈ {0, 1, . . . , r + 1} \ {1, j}. By the r-type assumption, V1 = Vj,
j = 2, . . . , r + 1. But then all the points x1, . . . , xr+1 belong to V1 = S ∩ S1,
hence T is not defining, contradicting our assumption. It follows that at
least one of T1, . . . , Tr+1 is a defining r + 1-tuple for S containing x0, as
required.

For each S, we choose i(S) to be the least value of i such that

|{x : x ∈ P ∩ S, i(x, S) = i(S)}| ≥ k/I.

We then choose an i ∈ {1, . . . , I} and a subset S1 ⊂ S such that

|S1| ≥ |S|/I, i(S) = i for all S ∈ S1.

Case 1: k ≤ C02
2i log N log k. We count the number M of all defining

r + 1-tuples for all S ∈ S1 at level i − 1. Each S ∈ S1 contains at least
k/I points x ∈ P with index i(x, S) = i. Each such point must belong to a
defining r + 1-tuple for S at level i− 1, and each r + 1-tuple can be defining
for only one S. Thus

M ≥ X

I
· k

I
· 1

r + 1
.
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On the other hand, M is trivially bounded from above by the total number
of the r + 1-tuples that belong to the same cube of the i− 1-th cutting,

M = O
(

(
N

23i−3
)r+1 · 23i−3

)
= O(N r+1/23ir).

Comparing the upper and lower bounds, and using the assumption on k for
Case 1, we get

X = O
(N r+1I2

k · 23ir

)
= O

(N r+1(log N log k)3r/2(log N)2

k3r/2+1

)
as required.

Case 2: k ≥ C02
2i log N log k. In this case, points of P tend to be aligned

along the one-dimensional intersection curves; we will therefore use our one-
dimensional incidence bound. We first do some pigeonholing to fix the values
of certain parameters. For each S ∈ S1, we let

P (S) = {x ∈ P ∩ S : i(x, S) = i},

then |P (S)| ≥ k/I. We then choose a subset P0(S) ⊂ P (S) such that
|P0(S)| ∈ [k

I
, k

I
+ 1). Let L ≥ 1 be an integer such that 2L−1 ≤ k < 2L (hence

L = Θ(log k)). Note that for each j,

|P0(S) ∩ S ∩Qi,j| ≤ |P0(S)| ≤ k

I
+ 1 ≤ k + 1 ≤ 2L+1.

Thus if we let

m(l, S) = |{j : |P0(S) ∩ S ∩Qi,j| ∈ [2l, 2l+1]}|, l = 0, 1, . . . , L− 1,

then for each S ∈ S1,

L−1∑
l=0

m(l, S) · 2l+1 ≥ |P0(S)| ≥ k/I,

hence we may choose l(S) such that

m(l(S), S) · 2l(S)+1 ≥ k(IL)−1.

Pigeonholing again, we find a value of l ∈ {0, . . . , L − 1} and a set S2 ⊂ S1

such that
|S2| ≥ |S1|/L, l(S) = l for all S ∈ S2.
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Let S ∈ S2, and let Sj = S ∩Qi,j. Relabelling the subcubes if necessary,
we may assume that

|P0(S) ∩ Sj| ≥ 2l, j = 1, . . . ,m,

where
m · 2l+1 ≥ k(IL)−1. (4)

By rectifiability, we have m ≤ C · 22i. Thus it follows that

2l ≥ k(2ILm)−1 ≥ r + 1, (5)

provided that the constant C0 in the assumption of Case 2 was chosen large
enough.

We now claim that for each j = 1, . . . ,m, there is a unique Vj ∈ V
such that P0(S) ∩ Sj ⊂ Vj. Indeed, let x1, . . . , xr, xr+1 ∈ P0(S) ∩ Sj. By the
definition of P0(S) and i, x1, . . . , xr+1 is not a defining r+1-tuple for S, hence
there is a S ′ ∈ S, S ′ 6= S such that x1, . . . , xr+1 ∈ S ′. Thus x1, . . . , xr1 ∈
Vj := S ∩ S ′. Let now x ∈ P0(S) ∩ Sj, x 6= x1, . . . , xr+1. Then x1, . . . , xr, x
is another non-defining r-tuple, hence x1, . . . , xr, x ∈ V ′

j := S ∩ S ′′ for some
S ′′ ∈ S. But then V ′

j intersects Vj in r distinct points x1, . . . , xr, hence
V ′

j = Vj since V is type r. It follows that x ∈ Vj for all x ∈ P0(S) ∩ Sj, as
claimed.

Thus for each S ∈ S2, there are at least m subcubes Qi,j with the following
property: there is a Vj = Vj(S) ∈ V which contains at least 22l points of
S ∩Qi,j with index i(x, S) = i. Moreover, we have (4) and (5).

Now for the main argument. We count the number M ′ of “admissible”
triples (S, V, j) such that:

• S ∈ S, V ∈ V , V = S ∩ S ′ for some S ′ ∈ S;

• |V ∩ P ∩Qi,j| ≥ 2l.

Lower bound: From the above construction, for each S ∈ S2 there are at
least m values of j such that

|V ∩ P ∩Qi,j| ≥ |P0(S) ∩ Sj| ≥ 2l

for some V ∈ V (depending on j). Hence

M ′ ≥ |S2| ·m = Ω(X · k/IL).

Upper bound: There are three ingredients.
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• First, there are at most 23i values of j.

• For each j, we estimate the number of eligible V ’s by applying Theorem
1.3 to V and to point sets Pj := P ∩ Qi,j, homogeneous in Qi,j and of
cardinality Θ(N/23i). Thus the number of V ∈ V containing at least
2l points of Pj is bounded by

O
((N/23i)r

(2l)3r−2

)
.

• Finally, we claim that for each such fixed j and V , there are at most
O(N/23i) surfaces S ∈ S such that (S, V, j) is admissible. Indeed,
define the parent cube of Qi,j to be the unique cube in the i − 1-th
cutting which contains Qi,j. Suppose that (S, V, j) is admissible. Then
V ∩Qi,j contains at least 2l points x ∈ P with i(x, S) = i. Fix such an
x, then by the definition of index, x belongs to a defining r + 1-tuple
for S at level i− 1, i.e. contained in the parent cube. This r + 1-tuple
must contain at least one point, say x0, which is not in V . It remains
to prove that V and x0 define S uniquely; this implies the claim, since
the parent cube contains at most O(N/23i) points of P .

By (5), there are at least r + 1 distinct points x1, . . . , xr+1 in V ∩Pj. It
suffices to prove that x0, x1, . . . , xr is a defining r+1-tuple for S at level
i− 1. Indeed, suppose to the contrary that there is a S ′′ ∈ S, S ′′ 6= S,
such that x0, x1, . . . , xr ∈ V ′ := S ∩ S ′′. But then x1, . . . , xr ∈ V ∩ V ′.
Since V is type r, it follows that V ′ = V , and in particular that x0 ∈ V ,
contrary to our choice of x0.

Combining the three estimates, we obtain the upper bound

M ′ = O
((N/23i)r

(2l)3r−2
· N

23i
· 23i

)
= O

(N r+12−3ir

(2l)3r−2

)
.

Conclusion: Comparing the upper and lower bounds on M ′, we get that

X = O
(N r+12−3ir log N log k

(2l)3r−2m

)
.

By (4), we have 2l ≥ k(m log N log k)−1. Hence

X = O
( N r+12−3ir log N log k

(k/m log N log k)3r−2m

)
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= O
(N r+12−3irm3r−3

k3r−2
(log N log k)3r−1

)
.

By rectifiability, we have m = O(22i), so that

X = O
(N r+12(3r−6)i

k3r−2
(log N log k)3r−1

)
.

Finally, the assumption of Case 2 is that 22i = O(k/ log N log k). Thus

X = O
(
C

N r+1(k/ log N log k)3r/2−3

k3r−2
(log N log k)3r−1

)
= O

( N r+1

k3r/2+1
(log N log k)3r/2+2

)
.

This completes the proof of the theorem.
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