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The purpose of this note is to showcase a certain line of research that
connects harmonic analysis, specifically restriction theory, to other areas of
mathematics such as PDE, geometric measure theory, combinatorics, and
number theory. There are many excellent in-depth presentations of the vari-
ous areas of research that we will discuss, see e.g. the references below. The
emphasis here will be on highlighting the connections between these areas.

Our starting point will be restriction theory in harmonic analysis on Eu-
clidean spaces. The main theme of restriction theory, in this context, is the
connection between the decay at infinity of the Fourier transforms of singu-
lar measures and the geometric properties of their support, including (but
not necessarily limited to) curvature and dimensionality. For example, the
Fourier transform of a measure supported on a hypersurface in Rd need not,
in general, belong to any Lp with p < ∞, but there are positive results if
the hypersurface in question is curved. A classic example is the restriction
theory for the sphere, where a conjecture due to E.M. Stein asserts that the
Fourier transform maps L∞(Sd−1) to Lq(Rd) for all q > 2d/(d− 1). This has
been proved in dimension 2 (Fefferman-Stein, 1970), but remains open oth-
erwise, despite the impressive and often groundbreaking work of Bourgain,
Wolff, Tao, Christ, and others. We recommend [8] for a thorough survey of
restriction theory for the sphere and other curved hypersurfaces.

Restriction-type estimates have been immensely useful in PDE theory
– in fact much of the interest in the subject stems from PDE applications.
Harmonic analysis techniques are used to prove spacetime Lp

x,t or mixed norm
Lq

tL
p
x estimates for solutions to linear PDE, and these in turn have become
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basic tools in proving existence and regularity results for wide classes of
nonlinear equations. In the simplest cases, solutions to linear equations can
be rewritten as oscillatory integrals where the main contribution comes from
a hypersurface in the Fourier space. A restriction estimate applied to this
hypersurface yields an Lp PDE estimate. Many more such estimates rely
on direct applications of restriction-type arguments (as opposed to using a
restriction estimate as a black box), usually in combination with additional
analytic tools. This is an extremely rich and active area of research, going
back to the early 1970s (Strichartz estimates) and including for example work
by Bourgain, Colliander, Keel, Kenig, Klainerman, Machedon, Smith, Sogge,
Stafillani, Takaoka, Tao, Wolff, and many others. Gigliola Stafillani’s survey
will say more about this.

What is particularly striking about restriction and related PDE estimates
is the sophisticated interplay between a wide variety of techniques from anal-
ysis, combinatorics, and geometry. The analytic methods range from the
traditional, such as L2 orthogonality or stationary phase, to the more recent
additions: Lp orthogonality, local restriction estimates, bilinear estimates,
induction on scales. However, the best restriction estimates available today
involve also advanced geometrical and combinatorial input. The search for
the latter inspired many harmonic analysts to explore such areas as graph
theory, combinatorial geometry, and additive number theory. It has to be
said that, for the most part, we are still searching. Nonetheless, the ensuing
exchange of knowledge and ideas between experts in different fields has led
to breathtaking progress in other directions, to be discussed shortly.

The restriction conjecture for the sphere, which we mentioned earlier,
turns out to depend on the geometry of Kakeya sets. The latter, also known
as Besicovitch sets, are subsets of Rd which contain a unit line segment in
each direction in Sd−1. A classic construction from the 1920s, due to Besi-
covitch, shows that such sets may have d-dimensional Lebesgue measure 0;
The Kakeya conjecture asserts that Kakeya sets must nonetheless be “large”
in that they cannot have Hausdorff dimension lower than d. This has been
proved in dimension 2 in the 1970s (Davies, Cordoba), but remains open in
higher dimensions, although hard-won partial results are available (Bourgain,
Wolff, Katz,  Laba, Tao) See [1] for a glimpse of the fascinating history of the
Kakeya problem, and [12] for a modern exposition and a review of the work
on the subject up to 2000.

It is known, mostly from the work of Fefferman and Cordoba in the
1970s, that the restriction conjecture implies the Kakeya conjecture. Very
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roughly speaking, the line segments in a Besicovitch set E are identified with
“wave packets” in a suitable decomposition of the Fourier transform of a
sphere-supported measure; the small size of E forces the relevant Lp norms
to be large. Conversely, Bourgain’s discovery in the early 1990s that this
implications can be partially reversed (i.e. partial results on Kakeya can be
used to make progress on restriction) led to renewed interest in the area, with
significant results due to Tao, Wolff, Vargas, S. Lee, and others.

It has since become a recurring theme in this area that harmonic-analytic
and PDE estimates can be partially reduced, via a wave packet decompo-
sition, to geometrical problems involving packing a large number of thin
objects (circles, thin annuli, plates) into sets of small size. For example, a
circle-packing problem played a major role in Wolff’s deep work (2000) on the
local smoothing conjecture of Sogge, an outstanding open problem concerning
the spacetime regularity of solutions to the wave equation. However, it seems
unlikely that restriction or similar problems will be resolved by geometrical
arguments alone. The best current methods involve a fusion of analytic and
geometric techniques, for instance combining oscillatory estimates on fine
scales with Kakeya-type information on coarse scales.

Turning to the question of obtaining the requisite Kakeya-type geometric
information, we enter rather different areas of mathematics, notably combi-
natorial geometry and additive number theory.

Incidence geometry is a part of combinatorial geometry which deals with
counting incidences between objects, typically points and curves or sur-
faces. (A curve is incident to a point if the point lies on the curve.) A
classic result of this type is the Szemerédi-Trotter theorem giving a bound
O(n + m + n2/3m2/3) on the number of incidences between n lines and m
points in R2; there are also similar results involving other curves (such as
circles) and higher-dimensional configurations. The use of incidence geom-
etry in harmonic analysis, specifically treating the “wave packets”’ as thin
geometric objects and applying combinatorial methods to deduce informa-
tion about their possible arrangements, was pioneered by Wolff in the 1990s.
While the Kakeya problem resisted this approach, Wolff was much more suc-
cessful with other questions, for example the local smoothing problem just
mentioned. Just as importantly, ongoing communication was gradually es-
tablished between discrete geometers and harmonic analysts. Many more
intriguing connections between the two areas have since been uncovered and
continue to be pursued. See e.g. [7] for a review of some of the recent work
in incidence geometry, and [5] for a discussion of some of the connections to
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analysis.
Additive number theory is a mixture of combinatorics, number theory,

and often incredible ingenuity and insight. The questions of interest are of-
ten stated in the language of first-grade arithmetic – addition, multiplication,
and counting of integers – yet, starting with those most basic ingredients,
one weaves a surprisingly rich tapestry of techniques and results. Two results
that are central to, and representative of, the field are Freiman’s theorem and
Szemerédi’s theorem. The former describes the structure of sets with small
sumset, i.e. sets A such that the set of pairwise sums {a + b : a, b ∈ A}
has size comparable to that of A. The latter asserts (in one formulation)
that a set of integers which has positive relative density must contain arbi-
trarily long arithmetic progressions. The statements of both theorems are
elementary; the proofs are hard and deep, drawing on several different areas
of mathematics. Szemerédi’s theorem, by far the more difficult of the two,
has in fact four remarkably distinct proofs, each of which was a milestone
in combinatorics in its own right: the original combinatorial proof by Sze-
merédi (1974), Furstenberg’s ergodic-theoretic proof (1975), Gowers’s proof
based on harmonic analysis (1998), and the most recent hypergraph proof,
due independently to Gowers and Nagle-R̈’odl-Schacht-Skokan (2004). We
cannot do justice to any of this work here, referring the reader to e.g. [10]
instead for an overview, but we emphasize the wide diversity of techniques
and ideas involved. For a broader perspective on this area, see for example
[2] or [11].

A new generation of harmonic analysts was introduced to all this when
Bourgain, in a brilliant leap of thought, applied additive number-theoretic
techniques to the Kakeya problem. Roughly speaking, a hypothetical Kakeya
set of low dimension was made to generate a set with a small (partial) sumset.
A variant of Freiman’s theorem developed by Gowers in the course of his work
on Szemerédi’s theorem - just off the press at the time - could then be applied
to obtain a contradiction if the Kakeya set was too small. This led to further
work on the Kakeya problem (Katz,  Laba, Tao), but also, more importantly
in hindsight, attracted many of us to additive number theory and inspired
us to work on its problems.

It may have been no surprise that increased interest in the subject led
to progress on a variety of questions. But Green and Tao exceeded all ex-
pectations by proving, in a stunning breakthrough, that the primes contain
arbitrarily long arithmetic progressions (2004). This work later became a
starting point for an even more ambitious research program, addressing a
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very general conjecture of Hardy and Littlewood with far-reaching implica-
tions in analytic number theory. There are now many expositions and reviews
of various aspect of this work, see e.g. [3], [4], [6], [9], [10]. The focus of this
note will remain on connections to harmonic analysis, and so we return to
restriction theory.

Restriction estimates for finite exponential sums, as opposed to continu-
ous Fourier transforms, were first derived by Bourgain (1993) in the context
of proving Strichartz estimates for solutions of evolution PDEs (Schrödinger,
KdV) on the torus Td. They were then revisited by Green in his proof of
existence of 3-term arithmetic progressions in dense subsets of primes (2003).
Roughly, all proofs of Szemerédi’s theorem rely on a certain dichotomy be-
tween “randomness”’ and “structure”. A random set contains many arith-
metic progressions; if on the other hand the set is not random, one identifies a
“structured” part of it and then proceeds by induction. Restriction estimates
are used to show that the set of primes is sufficiently random.

Although this type of Fourier analysis is not directly applicable to Sze-
merédi-type problems for progressions of length 4 and more, it was reportedly
a major source of ideas for Green and Tao, as well as Gowers before them.
Green and Tao are currently working to develop a “quadratic Fourier analy-
sis” that could be applied to finding 4-term progressions, or more generally
solutions to systems of 2 linear equations, in suitable sets such as the primes
or their dense subsets. This is a rapidly developing area and many more
exciting developments are sure to follow.

It would be impossible to even attempt a complete survey of this extensive
and complex body of work in a few pages. Each of the many areas of research
that we mentioned can easily be the subject of a much longer article. Many
fascinating problems and issues were not mentioned at all. For example,
the Bochner-Riesz problem in harmonic analysis which is closely related to
restriction theory, or the intriguing questions in geometric measure theory
concerning projections and distance sets, with connections to both restriction
theory and discrete geometry, or the applications of incidence geometry to
additive number theory – the list could go on. We hope that we have at
least aroused the reader’s interest and inspired her to learn more about this
fascinating area.
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