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Abstract

We prove that if a measurable domain tiles R or R? by translations,
and if it is “close enough” to a line segment or a square respectively,
then it admits a lattice tiling. We also prove a similar result for
spectral sets in dimension 1, and give an example showing that there
is no analogue of the tiling result in dimensions 3 and higher.

Mathematics Subject Classification: 52C20, 42A99.

1 Introduction

Let E be a measurable set in R™ such that 0 < |E| < co. We will say that
E tiles R™ by translations if there is a set T" C R™ such that, up to sets of
measure 0, the sets £+t : t € T are mutually disjoint and | J,.(E+t) = R™.
We call any such T" a translation set for E, and write £+ T = R". A tiling
E +T = R" is called periodic if it admits a period lattice of rank n; it is a
lattice tiling if T itself is a lattice. Here and below, a lattice in R™ will always
be a set of the form T7Z", where T is a linear transformation of rank n.

It is known [19], [18] that if a convex set E tiles R™ by translations, it
also admits a lattice tiling. A natural question is whether a similar result
holds if F is “sufficiently close” to being convex, e.g. if it is close enough (in
an appropriate sense) to a n-dimensional cube. In this paper we prove that
this is indeed so in dimensions 1 and 2; we also construct a counterexample
in dimensions n > 3.



A major unresolved problem in the mathematical theory of tilings is the
pertodic tiling conjecture, which asserts that any E which tiles R" by trans-
lations must also admit a periodic tiling. (See [3] for an overview of this and
other related questions.) The conjecture has been proved for all bounded
measurable subsets of R [16], [12] and for topological discs in R? [2], [§]. Our
Theorem 2 and Corollary 1 prove the conjecture for near-square domains in
R2. We emphasize that no assumptions on the topology of E are needed; in
particular, E is not required to be connected and may have infinitely many
connected components.

Our work was also motivated in part by a conjecture of Fuglede [1]. We
call a set E spectral if there is a discrete set A C R"™, which we call a spectrum
for E, such that {e2™% : X\ € A} is an orthogonal basis for L?(E). Fuglede
conjectured that E is spectral if and only if it tiles R” by translations, and
proved it under the assumption that either the translation set 7" or the spec-
trum A is a lattice. This problem was addressed in many recent papers (see
e.g. [4], [7], [10], [13], [14], [15], [16], [17]), and in particular the conjecture
has been proved for convex regions in R? [9], [5], [6].

It follows from our Theorem 1 and from Fuglede’s theorem that the con-
jecture is true for £ C R such that E is contained in an interval of length
strictly less than 3|E|/2. (This was proved in [15] in the special case when
E is a union of finitely many intervals of equal length.) In dimension 2, we
obtain the “tiling = spectrum” part of the conjecture for near-square do-
mains. Namely, if £ C R? tiles R? and satisfies the assumptions of Theorem
2 or Corollary 1, it also admits a lattice tiling, hence it is a spectral set by
Fuglede’s theorem on the lattice case of his conjecture. We do not know how
to prove the converse implication.

Our main results are the following.

Theorem 1 Suppose E C [0, L] is measurable with measure 1 and L =
3/2 — € for some e > 0. Let A C R be a discrete set containing 0. Then

(a) if E+ A =R is a tiling, it follows that A = 7.

(b) if A is a spectrum of E, it follows that A = Z.

The upper bound L < 3/2 in Theorem 1 is optimal: the set [0,1/2] U
[1,3/2] is contained in an interval of length 3/2, tiles Z with the translation
set {0,1/2} + 2Z, and has the spectrum {0,1/2} + 27Z, but does not have



either a lattice translation set or a lattice spectrum. This example has been
known to many authors; an explicit calculation of the spectrum is given e.g.
in [14].

Theorem 2 Let E C R? be a measurable set such that [0,1)> C E C [—¢, 1+
€]? for e > 0 small enough. Assume that E tiles R? by translations. Then E
also admits a tiling with a lattice A C R? as the translation set.

Our proof works for € < €3 ~ 0.05496; we do not know what is the optimal
upper bound for e.

Figure 1: Examples of near-square regions which tile R%. Note that the
second region also admits aperiodic (hence non-lattice) tilings.

Corollary 1 Let E C R? be a measurable set such that |E| = 1 and E is
contained in a square of sidelength 1 + € for € > 0 small enough. If E tiles
R? by translations, then it also admits a lattice tiling.

Theorem 3 Let n > 3. Then for any € > 0 there is a set E C R"™ with
0,1 C E C [—€,1 + €|™ such that E tiles R™ by translations, but does not
admit a lattice tiling.

2 The one-dimensional case

In this section we prove Theorem 1. We shall need the following crucial
lemma.



Lemma 1 Suppose that E C [0, L] is measurable with measure 1 and that
L =3/2—¢ for some e >0. Then

|[EN(E+x)| >0 whenever 0 <z < 1. (1)
Proof of Lemma 1. We distinguish the cases (i) 0 < =z < 1/2, (ii)
1/2 <z < 3/4 and (iii) 3/4 < 2 < L.
() 0<z<1/2

This is the easy case as EU (E +z) C [0,L +1/2] = [0,2 — ¢]. Since
this interval has length less than 2, the sets £/ and E + x must intersect in
positive measure.

(i) 1/2 <z < 3/4

Let x = 1/24 «a, 0 < a < 1/4. Suppose that |EN (E + )| = 0. Then
1+ 2a <3/2 and

(EN[0,z]) U (EN][zx,22])| <z,

as the second set does not intersect the first when shifted back by x. This
implies that

|E|<z+3/2—€e—22)=3/2—e—ax=1—-€c—a<],
a contradiction as |E| = 1.
(ili) 3/4 <z < 1
Let z = 3/4+ a, 0 < o < 1/4. Suppose that |EN (E + )| = 0. Then
(EN0,3/4—a—€e)U(EN[3/44+ a,3/2 —¢€])| <3/4—a —c¢,

for the second set translated to the left by x does not intersect the first. This
implies that

IE|<(3/4—a—¢€)+2a+e=3/4+a <1,

a contradiction.
O

We need to introduce some terminology. If f is a nonnegative integrable
function on R? and A is a subset of R?, we say that f + A is a packing if,
almost everywhere,

d fla—-N <1 2)

AEA



We say that f + A is a tiling if equality holds almost everywhere. When
f = xg is the indicator function of a measurable set, this definition coincides
with the classical geometric notions of packing and tiling.

We shall need the following theorem from [10].

Theorem 4 If f,.g >0, [ f(z)dx = [ g(x)dx =1 and both f+ A and g+ A
are packings of R, then f + A is a tiling if and only if g + A is a tiling.

Proof of Theorem 1. (a) Suppose F + A is a tiling. From Lemma 1 it
follows that any two elements of A differ by at least 1. This implies that
X[o,1) + A is a packing, hence it is also a tiling by Theorem 4. Since 0 € A,
we have A = Z.

(b) Suppose that A is a spectrum of E. Write
on =Y 0
AEA

for the measure of one unit mass at each point of A. Our assumption that A
is a spectrum for E implies that

X" +A=R

is a tiling (see, for example, [10]). This, in turn, implies that A had density
1. Here and below, we say that a set A C R has density p if
#(AN[=N,N])

li =

Notation. The definition of the Fourier Transform we use is
fie) = [ e siw) do.
R

for an L' function f. If T is a tempered distribution (a bounded linear
functional on the Schwarz space S) then its Fourier Transform is defined by
duality as the tempered distribution 7" given by

T(¢)=T(), ¢€s.
We now use the following result from [10]:
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Theorem 5 Suppose that f > 0 is not identically 0, that f € L*(R?), ]?2 0
has compact support and A C R If f + A is a tiling then

supp o5 C {f: 0} u{0}. (3)

Let us emphasize here that the object 5/\\, the Fourier Transform of the
tempered measure d,, is in general a tempered distribution and need not be
a measure.

For f = |xz|* Theorem 5 implies
supp & € {0} U {xm * X = 0}, (4)
since x g * xz is the Fourier transform of |xz|* (where §(x) = g(—z)). But
{xe*xe=0}={z: |[EN(E+2)| =0}
This and Lemma 1 imply that

supp o5 N (—1,1) = {0}.

Let
Ks(z) = max {0, 1 — (14 d)[|} = (1 + 0)xu; * x5 (%),
where I5 = [0, Flé], be a Fejér kernel (we will later take 6 — 0). Then
— 2 140 ., w2
K5 - (1+5)|XLS| = 202 sin 146

is a non-negative continuous function and it follows that

1

Ro0) = 175

and

{o: Ks@) =0} = (1+0)@\ {0}). (5)

Next, we use the following result from [11] (proved there in a more general
setting):



Theorem 6 Suppose that A € R is a set with density p, oy = D \cp Or, and
that 6 is a measure in a neighborhood of 0. Then d5({0}) = p.

Remark. The proof of Theorem 6 shows that the assumption of oA being
a measure in a neighborhood of zero is superfluous, if one knows a priori
that o5 is supported only at zero, in a neighborhood of zero. Indeed, what
is shown in that proof is that, as ¢ — oo, the quantity dx(¢(tz)) remains

bounded, for any C2° test function ¢. If 5;\ were not a measure near 0 but
had support only at 0, locally, this quantity would grow like a polynomial in
t of degree equal to the degree of the distribution at 0.

Applying Theorem 6 and the remark following it we obtain that (SAA is
equal to dy in a neighborhood of 0, since A has density 1.

Next, we claim that

S Ks(w—A) =1, forallz€R.
AEA

Indeed, take 1), to be an even, smooth, positive-definite approximate iden-
tity, supported in (—e¢,¢€), and take € = €(d) to be small enough so that
supp ¥, * K5 C (—1,1). We have then, for fixed z,

> Ks(w—X) = lmY (x— \Ks(x =)

AeA AeA
= llir(l] oA <(QZ€I/(\5)(ZE - )) (by definition of d,)
= 11_1%(57\ (e*™ (e * K5)(t))  (by the definition of the FT of d,)
= lim o (e*™ " (e % K5)(t))  (for € small enough)
= lim(ge x K5)(0)
= K;5(0)
= 1,

which establishes the claim. Applying this for x = 0 and isolating the term
A =0 we get

1 —_~
1=—— Ks(—\).
T + ) Ks(-N)



Letting 6 — 0 we obtain that [/(\5(—)\) — 0 for each A € A\ {0}, which
implies that each such X is an integer, as Z \ {0} is the limiting set of the
zeros of Kj.

To get that A = Z notice that xjo1j+A is a packing. By Theorem 4 again
we get that x(o,1) + A is in fact a tiling, hence A = Z.
O

3 Planar regions

Proof of Theorem 2. We denote the coordinates in R? by (z,x5). For
0<a<b<1we will denote

Ei(a,b)=(En{a<z <b, 29 <0})U{a <z <b, 25 >0},

Ey(a,b) = (En{a <z <b, 29 >0})U{a <z <b, x5 <0},
Fi(a,b) = (En{a<zy<b, 1 <0})U{a <zy<b, x1 >0},
Fy(a,b) = (ENn{a<zy<b, 21 >0})U{a <zy<b, x; <0}

We will also use S, to denote the vertical strip [a,b] x R. Let v = (v, v9) €
R2. We will say that Ey(a,b) complements Ey(a’,b') + v if Ei(a’,0) + v is
positioned above Es(a,b) so that (up to sets of measure 0) the two sets are
disjoint and their union is S, 4. In particular, we must have o’ + v; = a and
b+ v, = b. We will also say that Fy(a,b) complements Fy(a',b') + v if the
obvious analogue of the above statement holds. We will write El(a, b) =
Sap \ E1(a,b), and similarly for Ey. Finally, we write A ~ B if the sets A
and B are equal up to sets of measure 0.

Lemma 2 Let 0 < s < & < s < 2¢". Suppose that Ei(a,a + s) + v,
Ei(a,a+§")+ v, Ei(a,a+ ") +v" complement Es(b — s,b), Eo(b— s',b),
Ey(b—s",b) respectively. Then the pointsv,v',v" are collinear. Moreover, the
absolute value of the slope of the line through v,v" is bounded by e(2s" — ).

Applying the lemma to the symmetric reflection of £ about the line x5 =
1/2, we find that the conclusions of the lemma also hold if we assume that



Es(a,a+s)+v, Ex(a,a+ ")+, Ey(a,a+s")+v"” complement Fy(b— s,b),
Ey(b—¢',b), E1(b—s",b) respectively. Furthermore, we may interchange the
x1 and z9 coordinates and obtain the analogue of the lemma with Ey, Fs
replaced by FY, Fs.

Proof of Lemma 2. Let v = (vy,v), v/ = (v],v}), v" = (v}, v)). We
first observe that if v; = v}, it follows from the assumptions that v = v" and
there is nothing to prove. We may therefore assume that v; # v{. We do,
however, allow v = v or v/ = 0",

It follows from the assumptions that Ey(b — s”,b) complements each of
Ei(a,a+$")+0", Ei(a+s —s",a+ )+, E1(a+s—s",a+s)+v. Hence

Ei(a+s -5 a+s)~E(a,a+s")+ (" =),
Ei(a+s—3s"a+s) ~ Ei(a,a+s")+ (v —v).

Let n be the unit vector perpendicular to v — v” and such that ny > 0.
Forte R, let P,={z: x-n <t}. Wedefine for 0 <ec < <1:

e =inf{t € R: |Ei(c, )N P > 0},

Bee =sup{t € R: |Ey(c,d)\ Py| > 0}.

We will say that = is a low point of Ey(c,c) if x € Ser, ©-n = o, and for
any open disc D centered at x we have

|D N Ei(e,d)| >0. (6)

Similarly, we call y a high point of El(c, d)ifye See, y-n=p., and for
any open disc D centered at y we have

|D N Ey(e,d)| > 0. (7)

It is easy to see that such points x,y actually exist. Indeed, by the
definition of . and an obvious covering argument, for any o > a. there
are points x’ such that 2’ - n < « and that (6) holds for any disc D centered
at 2’. Thus the set of such points 2’ has at least one accumulation point z
on the line x - n = a, . It follows that any such z is a low point of E)(c, ).
The same argument works for y.



The low and high points need not be unique; however, all low points x of
Ei(c,d) lie on the same line = - n = a, parallel to the vector v —v”, and
similarly for high points. Furthermore, the low and high points of E;(c, ()
do not change if E(c, ') is modified by a set of measure 0.

Let now A = Ej(a,a+ s”), and let x be a low point of A. Since s < 25",
we have

B:=FEi(a,a+s)=E(a,a+s")UFE (a+s—5s",a+s) ~AU(A+1" —v),
hence x is also a low point of B with respect to v — v”. Now note that
Ei(a+s —s"a+s)~A+ (0" =)

intersects any open neighbourhood of z + (v” — ') in positive measure. But
on the other hand, Fi(a + ¢ — s",a+ s') C B. By the extremality of x in
B, x+ (v" — ') lies on or above the line segment joining = and = + (v — v),
hence v — v’ lies on or above the line segment joining 0 and v” — v.

Repeating the argument in the last paragraph with x replaced by a high
point y of Ej(a,a + s”), we obtain that v” — v lies on or below the line
segment joining 0 and v” — v. Hence v, v’,v” are collinear.

Finally, we estimate the slope of the line through v, v”. We have to prove

that o
" —s
W\“QI—W’ <€ (8)
(recall that v{ — v, = s — §”). Define x as above, and let k € Z. Iterating
translations by v — v” (in both directions), we find that = + k(v —0”) is a

low point of B as long as it belongs to B, i.e. as long as
a<z+k(s—5§")<a+s.

The number of such k’s is at least 7 —1. On the other hand, all low points
of B lie in the rectangle a < z1 < a+ s, —e < 29 < 0. Hence

(

S

= —wl <

which is (8).
O
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We return to the proof of Theorem 2. Since E is almost a square, we
know roughly how the translates of E can fit together. Locally, any tiling by
E is essentially a tiling by a “solid” 1 x 1 square with “margins” of width
between 0 and 2¢ (see Fig. 2).

We first locate a “corner”. Namely, we may assume that the tiling con-
tains F and its translates £ + u, E 4 v, where

1 <up <1426 —2e<uy <2 9)

1
O§01S§+€,1SU2S1+2€. (10)

This can always be achieved by translating the tiled plane and taking sym-
metric reflections of it if necessary.

Let 4+ w be the translate of E which fits into this corner:
U1+1§’LU1§’U1+1—|—2€, UQ+1§?U2§U2+1+26 (11)

We will prove that w = u + v (without the e-errors).

Et+v E+w

E E+u

Figure 2: A “corner” and a fourth near-square.
From (11), (9), (10) we have
3
1<w < 5—}-36, —4e < wg — V9 < 4e.

Observe also that any points (z1, z5) between E + u and F + w that belong
to tiles other than ' + u or E 4+ w must have r1 < w +eor x1 > u+ 1 — €,
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since otherwise the solid square belonging to the same tile would overlap
with at least one of the solid squares belonging to £ +u or £ 4+ w. A similar
statement holds for F+v and F4+w. Hence w satisfies both of the following.

(A) Ei(e,1 — (wy — uy) — €) complements Fy(w; —uy +€,1 —¢€) + (u — w),
and 3 |
1—(w; —uy) — 2> 1+1—(§+3€)—2€:§—5€,

lwy — v — 1] < 2e.

(B) —de < wy—wvy < 4de, us+1 < wy < ug+ 1+ 26, and Fy(r, t) complements

Fi(7,t) + (w — v), where
r = max(0, wy — va) + €, 7 = max(0, vy — wy) + €,

t=1-—max(0,v; —wy) — ¢, t =1 — max(0,wy — vq) — €.

If w=u+ v, we have w — u = v, w — v = u, hence by considering the
“corner” E, E + u, E + v we see that both (A) and (B) hold. Assuming that
€ is small enough, we shall prove that:

1. All points w satisfying (A) lie on a fixed straight line l; with slope my,
where |m;| < e(3 — 9¢) 7.

2. All points w satisfying (B) lie on a fixed straight line I, with slope ma,
where |my| > e 1(1 — &¢).

If € < (13 —34/3) /142 ~ 0.05496 (the smaller root of the equation 71¢? —
13¢+ 3 = 0), the upper bound for |m] is less than the lower bound for |[mo|.
It follows that there can be at most one w which satisfies both (A) and (B),
since [; and [y intersect only at one point. Consequently, if E + w is the
translate of E chosen as above, we must have w = u + v. Now it is easy to
see that E 4+ A is a tiling, where A is the lattice {ku +mv : k,m € Z}.

We first prove 1. Suppose that w,w’,w”, ... (not necessarily all distinct)
satisfy (A). By the assumptions in (A), we may apply Lemma 2 with E;
and Ey interchanged and with a = 0, b =1, s =1 — (w; —w),s =1 —
(W} —w),... > 5 — 5e. From the second inequality in (A) and the triangle
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inequality we also have |s — s”| < 4e. We find that all w satisfying (A) lie on
a line [; with slope bounded by

€ - € o€
|28 —s| = 8" —|s" —s| T 1/2—9¢

To prove 2., we let w,w’,w” be three (not necessarily distinct) points
satisfying (B) and such that wy < wl < wj. Observe that r < ' < r” and
t > t' > t" (the notation is self-explanatory). We then apply the obvious
analogue of Lemma 2 with E;, Ey replaced by Fi, F5 and with a = r", s =
t—1r" s =t —7r" s" =t"—7r" b=1". From the estimates in (B) we have

s — 8| = |t — 1] < Jws —w}] < 2,

s" =" —r" =1 —max(0, vy — wy) — max(0, wy — ve) — 2¢ > 1 — Ge,

hence |2s" — s| > s — |s — §"| > 1 — 8. We conclude that all w satisfying
(B) lie on a line [y such that the inverse of the absolute value of its slope is
bounded by 5.
|

Proof of Corollary 1. Let @ = [0, 1] x [0, 1]. By rescaling, it suffices to
prove that for any € > 0 there is a § > 0 such that if £ C Q, E tiles R? by
translations, and |E| > 1 — §, then F contains the square

Qc=1[e,1—¢] x[e,1—¢]

(up to sets of measure 0). The result then follows from Theorem 2.

Let E be as above, and suppose that Q). \ E has positive measure. Since F
tiles R?, there is a v € R? such that |[EN(E+v)| =0 and |Q.N(E+v)| > 0.
We then have

|[EU(E+v)|=|E|+|E+v| >2— 20,

but also
[EU(E+0)] <|QU(Q+v)] <2—¢,

since E C Q, E+v C Q+v, and Q.N(Q +v) # 0 so that [QN(Q+v)| > €%
This is a contradiction if § is small enough.
O

13



4 A counterexample in higher dimensions

In this section we prove Theorem 3. It suffices to construct E for n = 3,
since then E x [0,1]"73 is a subset of R™ with the required properties.

Let (1, 29, 3) denote the Cartesian coordinates in R®. Tt will be conve-
nient to rescale F so that [¢,1]> C £ C [0,1 + €.

Q
D C
S R
A B
P

Figure 3: The construction of F.

We construct F as follows. We let E be bounded from below and above
by the planes z3 = 0 and x3 = 1 respectively. The planes 1 = €, 21 = 1,25 =
€, 7y = 1 divide the cube [0,1 + €® into 9 parts (Figure 3). The middle part
is entirely contained in E. We label by A, B,C, D, P,Q, R, S the remaining
8 segments as shown in Figure 3. We then let

1 1 5
EmP:Pm{nggggor§§x3§§},
1 1 5
EﬂR:Rﬂ{nggg—or—gxgg—},
8 2 8
1 3 3 7
EﬂQ:Qﬂ{ngggzorggxggzorggxggl},
1 3 3 7
EﬂS:Sﬂ{ngggzorggxggzorggxggl,
and
EmA—Am{0< <1}EﬂC—Aﬂ{1< <9}
- =T =960 - 9 =" =960
5 3 1 13
= — < < — = < < — — < <
ENB Bﬂ{16_:1:3_4},EﬂD Dm{o 23 401"16_3:3_1}



We also denote K = J;c,(E + (0,0, ).

Let E +T be a tiling of R3, and assume that 0 € 7. Suppose that E +v
and F+w are neighbours in this tiling so that the vertical sides of (ENP)+wv
and (F'N Q)+ w meet in a set of non-zero two-dimensional measure. Then
we must have v —w = (0,1, (v—w)3), where (v —w); € {£1,£3}. A similar
statement holds with P, Q) replaced by R,S and with the x1, s coordinates
interchanged. We deduce that the tiling consists of copies of E stacked into
identical vertical “columns” K;; = K + (i,J,%;;), arranged in a rectangular
grid in the x125 plane and shifted vertically so that t;,1; —t;; and ¢; j 11 — ;5
are always j:i. We will use matrices (¢;;) to encode such a tiling or portions
thereof.

It is easy to see that (;;), where ¢;; = 0if 145 is even and i if 1+ 7 is odd,
is indeed a tiling. It remains to show that E does not admit a lattice tiling.
Indeed, the four possible choices of the generating vectors in any lattice (¢;;)
with ¢;; = j:i produce the configurations

(a) (o) (50) ()

But it is easy to see that the corners A, B, C, D do not match if so translated.
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