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Abstract

We prove that if a measurable domain tiles R or R2 by translations,
and if it is “close enough” to a line segment or a square respectively,
then it admits a lattice tiling. We also prove a similar result for
spectral sets in dimension 1, and give an example showing that there
is no analogue of the tiling result in dimensions 3 and higher.

Mathematics Subject Classification: 52C20, 42A99.

1 Introduction

Let E be a measurable set in Rn such that 0 < |E| < ∞. We will say that
E tiles Rn by translations if there is a set T ⊂ Rn such that, up to sets of
measure 0, the sets E+t : t ∈ T are mutually disjoint and

⋃
t∈T (E+t) = Rn.

We call any such T a translation set for E, and write E + T = Rn. A tiling
E + T = Rn is called periodic if it admits a period lattice of rank n; it is a
lattice tiling if T itself is a lattice. Here and below, a lattice in Rn will always
be a set of the form TZn, where T is a linear transformation of rank n.

It is known [19], [18] that if a convex set E tiles Rn by translations, it
also admits a lattice tiling. A natural question is whether a similar result
holds if E is “sufficiently close” to being convex, e.g. if it is close enough (in
an appropriate sense) to a n-dimensional cube. In this paper we prove that
this is indeed so in dimensions 1 and 2; we also construct a counterexample
in dimensions n ≥ 3.
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A major unresolved problem in the mathematical theory of tilings is the
periodic tiling conjecture, which asserts that any E which tiles Rn by trans-
lations must also admit a periodic tiling. (See [3] for an overview of this and
other related questions.) The conjecture has been proved for all bounded
measurable subsets of R [16], [12] and for topological discs in R2 [2], [8]. Our
Theorem 2 and Corollary 1 prove the conjecture for near-square domains in
R2. We emphasize that no assumptions on the topology of E are needed; in
particular, E is not required to be connected and may have infinitely many
connected components.

Our work was also motivated in part by a conjecture of Fuglede [1]. We
call a set E spectral if there is a discrete set Λ ⊂ Rn, which we call a spectrum
for E, such that {e2πiλ·x : λ ∈ Λ} is an orthogonal basis for L2(E). Fuglede
conjectured that E is spectral if and only if it tiles Rn by translations, and
proved it under the assumption that either the translation set T or the spec-
trum Λ is a lattice. This problem was addressed in many recent papers (see
e.g. [4], [7], [10], [13], [14], [15], [16], [17]), and in particular the conjecture
has been proved for convex regions in R2 [9], [5], [6].

It follows from our Theorem 1 and from Fuglede’s theorem that the con-
jecture is true for E ⊂ R such that E is contained in an interval of length
strictly less than 3|E|/2. (This was proved in [15] in the special case when
E is a union of finitely many intervals of equal length.) In dimension 2, we
obtain the “tiling ⇒ spectrum” part of the conjecture for near-square do-
mains. Namely, if E ⊂ R2 tiles R2 and satisfies the assumptions of Theorem
2 or Corollary 1, it also admits a lattice tiling, hence it is a spectral set by
Fuglede’s theorem on the lattice case of his conjecture. We do not know how
to prove the converse implication.

Our main results are the following.

Theorem 1 Suppose E ⊆ [0, L] is measurable with measure 1 and L =
3/2− ε for some ε > 0. Let Λ ⊂ R be a discrete set containing 0. Then
(a) if E + Λ = R is a tiling, it follows that Λ = Z.
(b) if Λ is a spectrum of E, it follows that Λ = Z.

The upper bound L < 3/2 in Theorem 1 is optimal: the set [0, 1/2] ∪
[1, 3/2] is contained in an interval of length 3/2, tiles Z with the translation
set {0, 1/2} + 2Z, and has the spectrum {0, 1/2} + 2Z, but does not have
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either a lattice translation set or a lattice spectrum. This example has been
known to many authors; an explicit calculation of the spectrum is given e.g.
in [14].

Theorem 2 Let E ⊂ R2 be a measurable set such that [0, 1]2 ⊂ E ⊂ [−ε, 1+
ε]2 for ε > 0 small enough. Assume that E tiles R2 by translations. Then E
also admits a tiling with a lattice Λ ⊂ R2 as the translation set.

Our proof works for ε < ε0 ≈ 0.05496; we do not know what is the optimal
upper bound for ε.

Figure 1: Examples of near-square regions which tile R2. Note that the
second region also admits aperiodic (hence non-lattice) tilings.

Corollary 1 Let E ⊂ R2 be a measurable set such that |E| = 1 and E is
contained in a square of sidelength 1 + ε for ε > 0 small enough. If E tiles
R2 by translations, then it also admits a lattice tiling.

Theorem 3 Let n ≥ 3. Then for any ε > 0 there is a set E ⊂ Rn with
[0, 1]n ⊂ E ⊂ [−ε, 1 + ε]n such that E tiles Rn by translations, but does not
admit a lattice tiling.

2 The one-dimensional case

In this section we prove Theorem 1. We shall need the following crucial
lemma.
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Lemma 1 Suppose that E ⊆ [0, L] is measurable with measure 1 and that
L = 3/2− ε for some ε > 0. Then

|E ∩ (E + x)| > 0 whenever 0 ≤ x < 1. (1)

Proof of Lemma 1. We distinguish the cases (i) 0 ≤ x ≤ 1/2, (ii)
1/2 < x ≤ 3/4 and (iii) 3/4 < x < 1.

(i) 0 ≤ x ≤ 1/2

This is the easy case as E ∪ (E + x) ⊆ [0, L + 1/2] = [0, 2 − ε]. Since
this interval has length less than 2, the sets E and E + x must intersect in
positive measure.

(ii) 1/2 < x ≤ 3/4

Let x = 1/2 + α, 0 < α ≤ 1/4. Suppose that |E ∩ (E + x)| = 0. Then
1 + 2α ≤ 3/2 and

|(E ∩ [0, x]) ∪ (E ∩ [x, 2x])| ≤ x,

as the second set does not intersect the first when shifted back by x. This
implies that

|E| ≤ x+ (3/2− ε− 2x) = 3/2− ε− x = 1− ε− α < 1,

a contradiction as |E| = 1.

(iii) 3/4 < x < 1

Let x = 3/4 + α, 0 < α < 1/4. Suppose that |E ∩ (E + x)| = 0. Then

|(E ∩ [0, 3/4− α− ε]) ∪ (E ∩ [3/4 + α, 3/2− ε])| ≤ 3/4− α− ε,

for the second set translated to the left by x does not intersect the first. This
implies that

|E| ≤ (3/4− α− ε) + 2α+ ε = 3/4 + α < 1,

a contradiction.
2

We need to introduce some terminology. If f is a nonnegative integrable
function on Rd and Λ is a subset of Rd, we say that f + Λ is a packing if,
almost everywhere, ∑

λ∈Λ

f(x− λ) ≤ 1. (2)
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We say that f + Λ is a tiling if equality holds almost everywhere. When
f = χE is the indicator function of a measurable set, this definition coincides
with the classical geometric notions of packing and tiling.

We shall need the following theorem from [10].

Theorem 4 If f, g ≥ 0,
∫
f(x)dx =

∫
g(x)dx = 1 and both f + Λ and g+ Λ

are packings of Rd, then f + Λ is a tiling if and only if g + Λ is a tiling.

Proof of Theorem 1. (a) Suppose E + Λ is a tiling. From Lemma 1 it
follows that any two elements of Λ differ by at least 1. This implies that
χ[0,1] + Λ is a packing, hence it is also a tiling by Theorem 4. Since 0 ∈ Λ,
we have Λ = Z.

(b) Suppose that Λ is a spectrum of E. Write

δΛ =
∑
λ∈Λ

δλ

for the measure of one unit mass at each point of Λ. Our assumption that Λ
is a spectrum for E implies that

|χ̂E|2 + Λ = R

is a tiling (see, for example, [10]). This, in turn, implies that Λ had density
1. Here and below, we say that a set A ⊂ R has density ρ if

lim
N→∞

#(A ∩ [−N,N ])

2N
= ρ.

Notation. The definition of the Fourier Transform we use is

f̂(ξ) =

∫
R
e−2πiξ·xf(x) dx,

for an L1 function f . If T is a tempered distribution (a bounded linear
functional on the Schwarz space S) then its Fourier Transform is defined by

duality as the tempered distribution T̂ given by

T̂ (φ) = T (φ̂), φ ∈ S.

We now use the following result from [10]:
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Theorem 5 Suppose that f ≥ 0 is not identically 0, that f ∈ L1(Rd), f̂ ≥ 0
has compact support and Λ ⊂ Rd. If f + Λ is a tiling then

supp δ̂Λ ⊆
{
f̂ = 0

}
∪ {0}. (3)

Let us emphasize here that the object δ̂Λ, the Fourier Transform of the
tempered measure δΛ, is in general a tempered distribution and need not be
a measure.

For f = |χ̂E|2 Theorem 5 implies

supp δ̂Λ ⊆ {0} ∪ {χE ∗ χ̃E = 0}, (4)

since χE ∗ χ̃E is the Fourier transform of |χ̂E|2 (where g̃(x) = g(−x)). But

{χE ∗ χ̃E = 0} = {x : |E ∩ (E + x)| = 0}.

This and Lemma 1 imply that

supp δ̂Λ ∩ (−1, 1) = {0}.

Let

Kδ(x) = max {0, 1− (1 + δ)|x|} = (1 + δ)χIδ ∗ χ̃Iδ(x),

where Iδ = [0, 1
1+δ

], be a Fejér kernel (we will later take δ → 0). Then

K̂δ = (1 + δ)|χ̂Iδ |
2 =

1 + δ

π2x2
sin2 πx

1 + δ

is a non-negative continuous function and it follows that

K̂δ(0) =
1

1 + δ

and {
x : K̂δ(x) = 0

}
= (1 + δ)(Z \ {0}). (5)

Next, we use the following result from [11] (proved there in a more general
setting):
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Theorem 6 Suppose that Λ ∈ R is a set with density ρ, δΛ =
∑

λ∈Λ δλ, and

that δ̂Λ is a measure in a neighborhood of 0. Then δ̂Λ({0}) = ρ.

Remark. The proof of Theorem 6 shows that the assumption of δ̂Λ being
a measure in a neighborhood of zero is superfluous, if one knows a priori
that δ̂Λ is supported only at zero, in a neighborhood of zero. Indeed, what
is shown in that proof is that, as t → ∞, the quantity δ̂Λ(φ(tx)) remains

bounded, for any C∞c test function φ. If δ̂Λ were not a measure near 0 but
had support only at 0, locally, this quantity would grow like a polynomial in
t of degree equal to the degree of the distribution at 0.

Applying Theorem 6 and the remark following it we obtain that δ̂Λ is
equal to δ0 in a neighborhood of 0, since Λ has density 1.

Next, we claim that∑
λ∈Λ

K̂δ(x− λ) = 1, for all x ∈ R.

Indeed, take ψε to be an even, smooth, positive-definite approximate iden-
tity, supported in (−ε, ε), and take ε = ε(δ) to be small enough so that
suppψε ∗Kδ ⊂ (−1, 1). We have then, for fixed x,∑
λ∈Λ

K̂δ(x− λ) = lim
ε→0

∑
λ∈Λ

ψ̂ε(x− λ)K̂δ(x− λ)

= lim
ε→0

δΛ

(
(ψ̂εK̂δ)(x− ·)

)
(by definition of δΛ)

= lim
ε→0

δ̂Λ

(
e2πixt(ψε ∗Kδ)(t)

)
(by the definition of the FT of δΛ)

= lim
ε→0

δ0

(
e2πixt(ψε ∗Kδ)(t)

)
(for ε small enough)

= lim
ε→0

(ψε ∗Kδ)(0)

= Kδ(0)

= 1,

which establishes the claim. Applying this for x = 0 and isolating the term
λ = 0 we get

1 =
1

1 + δ
+
∑

06=λ∈Λ

K̂δ(−λ).
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Letting δ → 0 we obtain that K̂δ(−λ) → 0 for each λ ∈ Λ \ {0}, which
implies that each such λ is an integer, as Z \ {0} is the limiting set of the

zeros of K̂δ.

To get that Λ = Z notice that χ[0,1] +Λ is a packing. By Theorem 4 again
we get that χ[0,1] + Λ is in fact a tiling, hence Λ = Z.
2

3 Planar regions

Proof of Theorem 2. We denote the coordinates in R2 by (x1, x2). For
0 ≤ a ≤ b ≤ 1 we will denote

E1(a, b) = (E ∩ {a ≤ x1 ≤ b, x2 ≤ 0}) ∪ {a ≤ x1 ≤ b, x2 ≥ 0},

E2(a, b) = (E ∩ {a ≤ x1 ≤ b, x2 ≥ 0}) ∪ {a ≤ x1 ≤ b, x2 ≤ 0},
F1(a, b) = (E ∩ {a ≤ x2 ≤ b, x1 ≤ 0}) ∪ {a ≤ x2 ≤ b, x1 ≥ 0},
F2(a, b) = (E ∩ {a ≤ x2 ≤ b, x1 ≥ 0}) ∪ {a ≤ x2 ≤ b, x1 ≤ 0}.

We will also use Sa,b to denote the vertical strip [a, b]×R. Let v = (v1, v2) ∈
R2. We will say that E2(a, b) complements E1(a′, b′) + v if E1(a′, b′) + v is
positioned above E2(a, b) so that (up to sets of measure 0) the two sets are
disjoint and their union is Sa,b. In particular, we must have a′ + v1 = a and
b′ + v1 = b. We will also say that F2(a, b) complements F1(a′, b′) + v if the

obvious analogue of the above statement holds. We will write Ẽ1(a, b) =
Sa,b \ E1(a, b), and similarly for E2. Finally, we write A ∼ B if the sets A
and B are equal up to sets of measure 0.

Lemma 2 Let 0 < s′′ < s′ < s < 2s′′. Suppose that E1(a, a + s) + v,
E1(a, a + s′) + v′, E1(a, a + s′′) + v′′ complement E2(b − s, b), E2(b − s′, b),
E2(b−s′′, b) respectively. Then the points v, v′, v′′ are collinear. Moreover, the
absolute value of the slope of the line through v, v′′ is bounded by ε(2s′′−s)−1.

Applying the lemma to the symmetric reflection of E about the line x2 =
1/2, we find that the conclusions of the lemma also hold if we assume that
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E2(a, a+ s) + v, E2(a, a+ s′) + v′, E2(a, a+ s′′) + v′′ complement E1(b− s, b),
E1(b− s′, b), E1(b− s′′, b) respectively. Furthermore, we may interchange the
x1 and x2 coordinates and obtain the analogue of the lemma with E1, E2

replaced by F1, F2.

Proof of Lemma 2. Let v = (v1, v2), v′ = (v′1, v
′
2), v′′ = (v′′1 , v

′′
2). We

first observe that if v1 = v′′1 , it follows from the assumptions that v = v′′ and
there is nothing to prove. We may therefore assume that v1 6= v′′1 . We do,
however, allow v′ = v or v′ = v′′.

It follows from the assumptions that E2(b − s′′, b) complements each of
E1(a, a+ s′′) + v′′, E1(a+ s′− s′′, a+ s′) + v′, E1(a+ s− s′′, a+ s) + v. Hence

E1(a+ s′ − s′′, a+ s′) ∼ E1(a, a+ s′′) + (v′′ − v′),

E1(a + s− s′′, a+ s) ∼ E1(a, a+ s′′) + (v′′ − v).

Let n be the unit vector perpendicular to v − v′′ and such that n2 > 0.
For t ∈ R, let Pt = {x : x · n ≤ t}. We define for 0 ≤ c ≤ c′ ≤ 1:

αc,c′ = inf{t ∈ R : |E1(c, c′) ∩ Pt| > 0},

βc,c′ = sup{t ∈ R : |Ẽ1(c, c′) \ Pt| > 0}.
We will say that x is a low point of E1(c, c′) if x ∈ Sc,c′, x · n = αc,c′, and for
any open disc D centered at x we have

|D ∩E1(c, c′)| > 0. (6)

Similarly, we call y a high point of Ẽ1(c, c′) if y ∈ Sc,c′, y · n = βc,c′, and for
any open disc D centered at y we have

|D ∩ Ẽ1(c, c′)| > 0. (7)

It is easy to see that such points x, y actually exist. Indeed, by the
definition of αc,c′ and an obvious covering argument, for any α > αc,c′ there
are points x′ such that x′ · n ≤ α and that (6) holds for any disc D centered
at x′. Thus the set of such points x′ has at least one accumulation point x
on the line x · n = αc,c′. It follows that any such x is a low point of E1(c, c′).
The same argument works for y.
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The low and high points need not be unique; however, all low points x of
E1(c, c′) lie on the same line x · n = αc,c′ parallel to the vector v − v′′, and
similarly for high points. Furthermore, the low and high points of E1(c, c′)
do not change if E1(c, c′) is modified by a set of measure 0.

Let now A = E1(a, a+ s′′), and let x be a low point of A. Since s < 2s′′,
we have

B := E1(a, a+ s) = E1(a, a+ s′′) ∪E1(a+ s− s′′, a+ s) ∼ A∪ (A+ v′′ − v),

hence x is also a low point of B with respect to v − v′′. Now note that

E1(a+ s′ − s′′, a+ s′) ∼ A + (v′′ − v′)

intersects any open neighbourhood of x+ (v′′ − v′) in positive measure. But
on the other hand, E1(a + s′ − s′′, a + s′) ⊂ B. By the extremality of x in
B, x+ (v′′− v′) lies on or above the line segment joining x and x+ (v′′− v),
hence v′′ − v′ lies on or above the line segment joining 0 and v′′ − v.

Repeating the argument in the last paragraph with x replaced by a high
point y of Ẽ1(a, a + s′′), we obtain that v′′ − v′ lies on or below the line
segment joining 0 and v′′ − v. Hence v, v′, v′′ are collinear.

Finally, we estimate the slope of the line through v, v′′. We have to prove
that

2s′′ − s
s− s′′ |v

′′
2 − v2| ≤ ε (8)

(recall that v′′1 − v1 = s − s′′). Define x as above, and let k ∈ Z. Iterating
translations by v − v′′ (in both directions), we find that x + k(v − v′′) is a
low point of B as long as it belongs to B, i.e. as long as

a ≤ x1 + k(s− s′′) ≤ a + s.

The number of such k’s is at least s
s−s′′ −1. On the other hand, all low points

of B lie in the rectangle a ≤ x1 ≤ a + s,−ε ≤ x2 ≤ 0. Hence

(
s

s− s′′ − 2)|v′′2 − v2| ≤ ε,

which is (8).
2
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We return to the proof of Theorem 2. Since E is almost a square, we
know roughly how the translates of E can fit together. Locally, any tiling by
E is essentially a tiling by a “solid” 1 × 1 square with “margins” of width
between 0 and 2ε (see Fig. 2).

We first locate a “corner”. Namely, we may assume that the tiling con-
tains E and its translates E + u, E + v, where

1 ≤ u1 ≤ 1 + 2ε, −2ε ≤ u2 ≤ 2ε, (9)

0 ≤ v1 ≤
1

2
+ ε, 1 ≤ v2 ≤ 1 + 2ε. (10)

This can always be achieved by translating the tiled plane and taking sym-
metric reflections of it if necessary.

Let E + w be the translate of E which fits into this corner:

v1 + 1 ≤ w1 ≤ v1 + 1 + 2ε, u2 + 1 ≤ w2 ≤ u2 + 1 + 2ε. (11)

We will prove that w = u+ v (without the ε-errors).

E+u

E+v E+w

E

Figure 2: A “corner” and a fourth near-square.

From (11), (9), (10) we have

1 ≤ w1 ≤
3

2
+ 3ε, −4ε ≤ w2 − v2 ≤ 4ε.

Observe also that any points (x1, x2) between E + u and E + w that belong
to tiles other than E + u or E + w must have x1 ≤ w + ε or x1 ≥ u+ 1− ε,
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since otherwise the solid square belonging to the same tile would overlap
with at least one of the solid squares belonging to E+u or E+w. A similar
statement holds for E+v and E+w. Hence w satisfies both of the following.

(A) E1(ε, 1− (w1 − u1) − ε) complements E2(w1 − u1 + ε, 1 − ε) + (u − w),
and

1− (w1 − u1)− 2ε ≥ 1 + 1− (
3

2
+ 3ε)− 2ε =

1

2
− 5ε,

|w1 − v1 − 1| ≤ 2ε.

(B) −4ε ≤ w2− v2 ≤ 4ε, u2 + 1 ≤ w2 ≤ u2 + 1 + 2ε, and F2(r, t) complements
F1(r̃, t̃) + (w − v), where

r = max(0, w2 − v2) + ε, r̃ = max(0, v2 − w2) + ε,

t = 1−max(0, v2 − w2)− ε, t̃ = 1−max(0, w2 − v2)− ε.

If w = u + v, we have w − u = v, w − v = u, hence by considering the
“corner” E,E + u,E + v we see that both (A) and (B) hold. Assuming that
ε is small enough, we shall prove that:

1. All points w satisfying (A) lie on a fixed straight line l1 with slope m1,
where |m1| ≤ ε(1

2
− 9ε)−1.

2. All points w satisfying (B) lie on a fixed straight line l2 with slope m2,
where |m2| ≥ ε−1(1− 8ε).

If ε < (13− 3
√

3)/142 ≈ 0.05496 (the smaller root of the equation 71ε2−
13ε+ 1

2
= 0), the upper bound for |m1| is less than the lower bound for |m2|.

It follows that there can be at most one w which satisfies both (A) and (B),
since l1 and l2 intersect only at one point. Consequently, if E + w is the
translate of E chosen as above, we must have w = u + v. Now it is easy to
see that E + Λ is a tiling, where Λ is the lattice {ku+mv : k,m ∈ Z}.

We first prove 1. Suppose that w,w′, w′′, . . . (not necessarily all distinct)
satisfy (A). By the assumptions in (A), we may apply Lemma 2 with E1

and E2 interchanged and with a = 0, b = 1, s = 1 − (w1 − u1), s′ = 1 −
(w′1 − u1), . . . ≥ 1

2
− 5ε. From the second inequality in (A) and the triangle
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inequality we also have |s− s′′| ≤ 4ε. We find that all w satisfying (A) lie on
a line l1 with slope bounded by

ε

|2s′′ − s| ≤
ε

s′′ − |s′′ − s| ≤
ε

1/2− 9ε
.

To prove 2., we let w,w′, w′′ be three (not necessarily distinct) points
satisfying (B) and such that w2 ≤ w′2 ≤ w′′2 . Observe that r ≤ r′ ≤ r′′ and
t ≥ t′ ≥ t′′ (the notation is self-explanatory). We then apply the obvious
analogue of Lemma 2 with E1, E2 replaced by F1, F2 and with a = r′′, s =
t− r′′, s′ = t′ − r′′, s′′ = t′′ − r′′, b = t̃′′. From the estimates in (B) we have

|s− s′′| = |t− t′′| ≤ |w2 − w′′2 | ≤ 2ε,

s′′ = t′′ − r′′ = 1−max(0, v2 − w′′2)−max(0, w′′2 − v2)− 2ε ≥ 1− 6ε,

hence |2s′′ − s| ≥ s′′ − |s− s′′| ≥ 1 − 8ε. We conclude that all w satisfying
(B) lie on a line l2 such that the inverse of the absolute value of its slope is
bounded by ε

1−8ε
.

2

Proof of Corollary 1. Let Q = [0, 1]× [0, 1]. By rescaling, it suffices to
prove that for any ε > 0 there is a δ > 0 such that if E ⊂ Q, E tiles R2 by
translations, and |E| ≥ 1− δ, then E contains the square

Qε = [ε, 1− ε]× [ε, 1− ε]

(up to sets of measure 0). The result then follows from Theorem 2.

Let E be as above, and suppose that Qε\E has positive measure. Since E
tiles R2, there is a v ∈ R2 such that |E ∩ (E+ v)| = 0 and |Qε∩ (E+ v)| > 0.
We then have

|E ∪ (E + v)| = |E|+ |E + v| ≥ 2− 2δ,

but also
|E ∪ (E + v)| ≤ |Q ∪ (Q+ v)| ≤ 2− ε2,

since E ⊂ Q, E+v ⊂ Q+v, and Qε∩ (Q+v) 6= ∅ so that |Q∩ (Q+v)| ≥ ε2.
This is a contradiction if δ is small enough.
2
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4 A counterexample in higher dimensions

In this section we prove Theorem 3. It suffices to construct E for n = 3,
since then E × [0, 1]n−3 is a subset of Rn with the required properties.

Let (x1, x2, x3) denote the Cartesian coordinates in R3. It will be conve-
nient to rescale E so that [ε, 1]3 ⊂ E ⊂ [0, 1 + ε]3.

D

A B

C

P

Q

RS

Figure 3: The construction of E.

We construct E as follows. We let E be bounded from below and above
by the planes x3 = 0 and x3 = 1 respectively. The planes x1 = ε, x1 = 1, x2 =
ε, x2 = 1 divide the cube [0, 1 + ε]3 into 9 parts (Figure 3). The middle part
is entirely contained in E. We label by A,B,C,D, P,Q,R, S the remaining
8 segments as shown in Figure 3. We then let

E ∩ P = P ∩
{

0 ≤ x3 ≤
1

8
or

1

2
≤ x3 ≤

5

8

}
,

E ∩R = R ∩
{

0 ≤ x3 ≤
1

8
or

1

2
≤ x3 ≤

5

8

}
,

E ∩Q = Q ∩
{

0 ≤ x3 ≤
1

4
or

3

8
≤ x3 ≤

3

4
or

7

8
≤ x3 ≤ 1

}
,

E ∩ S = S ∩
{

0 ≤ x3 ≤
1

4
or

3

8
≤ x3 ≤

3

4
or

7

8
≤ x3 ≤ 1

}
,

and

E ∩A = A ∩
{

0 ≤ x3 ≤
1

16

}
, E ∩ C = A ∩

{1

2
≤ x3 ≤

9

16

}
,

E ∩B = B ∩
{ 5

16
≤ x3 ≤

3

4

}
, E ∩D = D ∩

{
0 ≤ x3 ≤

1

4
or

13

16
≤ x3 ≤ 1

}
.
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We also denote K =
⋃
j∈Z(E + (0, 0, j)).

Let E + T be a tiling of R3, and assume that 0 ∈ T . Suppose that E + v
and E+w are neighbours in this tiling so that the vertical sides of (E∩P )+v
and (E ∩ Q) + w meet in a set of non-zero two-dimensional measure. Then
we must have v−w = (0, 1, (v−w)3), where (v−w)3 ∈ {±1

4
,±3

4
}. A similar

statement holds with P,Q replaced by R, S and with the x1, x2 coordinates
interchanged. We deduce that the tiling consists of copies of E stacked into
identical vertical “columns” Kij = K + (i, j, tij), arranged in a rectangular
grid in the x1x2 plane and shifted vertically so that ti+1,j − tij and ti,j+1− tij
are always ±1

4
. We will use matrices (tij) to encode such a tiling or portions

thereof.

It is easy to see that (tij), where tij = 0 if i+j is even and 1
4

if i+j is odd,
is indeed a tiling. It remains to show that E does not admit a lattice tiling.
Indeed, the four possible choices of the generating vectors in any lattice (tij)
with tij = ±1

4
produce the configurations(

0 t
t 2t

)
,

(
2t t
t 0

)
,

(
0 t
−t 0

)
,

(
0 −t
t 0

)
.

But it is easy to see that the corners A,B,C,D do not match if so translated.
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