DISTANCE SETS OF WELL-DISTRIBUTED
PLANAR SETS FOR POLYGONAL NORMS

SERGEI KONYAGIN AND IZABELLA LABA

ABSTRACT. Let X be a 2-dimensional normed space, and let BX be the unit ball
in X. We discuss the question of how large the set of extremal points of BX may
be if X contains a well-distributed set whose distance set A satisfies the estimate
|AN[0,N]| < CN3/2=¢. We also give a necessary and sufficient condition for the
existence of a well-distributed set with |A N[0, N]| < CN.

§0. INTRODUCTION

The classical Erdds Distance Problem asks for the smallest possible cardinality
of

A(A) = Ap(A) = {||a —d'|lz s a,d € A}

if A C R? has cardinality N < oo and

llliz = /2% + 23

is the Euclidean distance between the points a and a’. Erdés conjectured that
|A(A)] > N/y/log N for N > 2. (We write U < V, or V > U, if the functions
U,V satisfy the inequality |U| < CV, where C is a constant which may depend on
some specified parameters). The best known result to date in two dimensions is
due to Katz and Tardos who prove in [KT04] that |A(A)| > N-364 improving an
earlier breakthrough by Solymosi and Té6th [STO1].

More generally, one can examine an arbitrary two-dimensional space X with the
unit ball

BX ={z cR*: |z|]x <1}

and define the distance set
Ax(A)={|la—dl|x :a,ad € A}.
For example, let
zlliz, = max(|z1], [22])

then for N > 1, A={m € Z>:0<m; < NY20 < my < Nl/g} we have
Al > N, [Apz (4)] < N'/2. This simple example shows that the Erdés Distance
Conjecture can not be directly extended for arbitrary two-dimensional spaces. We
note, however, that the estimate |Ax(A)| > N2, proved by Erdés [E46] for
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Euclidean norms, extends (with the same proof) to arbitrary 2-dimensional spaces
X; see also [101], [G04].
Also, for a positive integer N we denote

Axn(A)={lla—dllx < N:a,a € A}.

We say that a set S C X is well-distributed if there is a constant K such that
every closed ball of radius K in X contains a point from S. In other words, for
every point x € X there is a point y € S such that ||z — y||x < K. Sometimes it is
said that S is a K-net for X. Clearly, for any well-distributed set S and N > 2K
we have

(1) Hzx € S:|z|lx < N/2}| > N?

where the constant in > depends only on K. Therefore, for any well-distributed
set S € 12 we have, by [T02],

|Az v (S)] > N1,
and the Erdos Distance Conjecture implies for large N

[ Az N (S)] > N?//log N.
On the other hand, for a well-distributed set S = Z? C I2 we have

Tosevich and the second author [IL03] have recently established that a slow
growth of |Ax n(S5)| for a well-distributed set S C X is possible only in the case
if BX is a polygon with finitely or infinitely many sides. Let us discuss possible
definitions of polygons with infinitely many sides. For a convex set A C X by
Ext(A) we denote the set of extremal points of A. Namely, z € Ext(A) if and only
if z € A and for any segment [y, z] the conditions x € [y, 2] C A imply x = y or
x = z. Clearly, Ext(BX) is a closed subset of the unit circle

OBX ={z e X : |z|lx =1}.

Also, it is easy to see that Fat(BX) is finite if and only if BX is a polygon with
finitely many sides, and it is natural to consider BX as a polygon with infinitely
many sides if Fzt(BX) is small. There are different ways to define smallness of
Ext(BX) and, thus, polygons with infinitely many sides:
1) in category: Ext(BX) is nowhere dense in 0BX;
2) in measure: Fxt(BX) has a zero linear measure (or a small Hausdorff dimension);
3) in cardinality: Fxt(BX) is at most countable.
Clearly, 3) implies 2) and 2) implies 1).

It has been proved in [ILO03] that the condition

(0.1) limy o |Ax n(S)N"3/2 =0

for a well-distributed set S implies that BX is a polygon in a category sense.
Following [TL03], we prove that, moreover, BX is a polygon in a measure sense.
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Theorem 1. Let S be a well-distributed set.

(i) Assume that (0.1) holds. Then the one-dimensional Hausdorff measure of
Ext(BX) is 0;

(i) If moreover

(0.2) [Ax N (S)] = O(N'H)
for some a € (0,1/2) then the Hausdorff dimension of Ext(BX) is at most 2a.

If |Ax n(S5)| has an extremally slow rate of growth for some well-distributed set
S, namely,

(0.3) |Ax.n(5)] = O(N)

then, as it has been proved in [IL03], BX is a polygon with finitely many sides.
However, if we weaken (0.3) we cannot claim that BX is a polygon in a cardinality
sense.

Theorem 2. Let ¢(u) be a function (0,00) — (0,00) such that lim, o, ¥ (u) = co.
Then there exists a 2-dimensional space X and a well-distributed set S C X such
that

(0.4) [Ax n(9)] = o(NY(N)) (N — o0)
but Ext(BX) is a perfect set (and therefore is uncountable).

Also, we find a necessary and sufficient condition for a space X to make (0.3)
possible for some well-distributed set S C X. Take two non-collinear vectors eq, es
in X. They determine coordinates for any z € X, namely, © = z1e; + x2es.
Then, for any non-degenerate segment I C X, we can define its slope Si(I): if
the line containing I is given by an equation uixi + usxs + ug = 0, then we set
SUI) = —uy/uz. We write SI(I) = oo if ug = 0; it will be convenient for us to
consider co as an algebraic number.

Theorem 3. The following conditions on X are equivalent:

(i) BX is a polygon with finitely many sides, and there is a coordinate system in
X such that the slopes of all sides of BX are algebraic;

(ii) there is a well-distributed set S C X such that (0.3) holds.

Corollary 1. If a norm ||-||x on R? is so that BX is a polygon with finitely many
sides and all angles between its sides are rational multiples of m then there is a
well-distributed set S C X such that (0.3) holds.

Corollary 2. If a norm |- ||x on R? is defined by a regular polygon BX then there
is a well-distributed set S C X such that (0.3) holds.

We remark that a similar algebraicity condition arose in the work of Laczkovich-
Ruzsa [LR96] on counting the number of similar copies of a fixed pattern embedded
in a point set. (See also [EE94].)

The Falconer conjecture (for the plane) says that if the Hausdorff dimension of
a compact A C R? is greater than 1 then A(A) has positive Lebesgue measure.
The best known result is due to Wolff who proved in [W99] that the distance set
has positive Lebesgue measure if the Hausdorff dimension of A is greater than 4/3.
One can ask a similar question for an arbitrary two-dimensional normed space X.
It turns out that this question is related to distance sets for well-distributed and
separated sets. By Theorem 4 from [IL04], Theorem 3 and Proposition 1 we get
the following.
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Corollary 3. If a norm ||-||x on R? is defined by a polygon BX with finitely many
sides all of which have algebraic slopes then there is a compact A C X such that
the Hausdorff dimension of A is 2 and Lebesque measure of Ax(A) is 0.

After this paper was completed, K. Falconer [Fa04] proved (using different meth-
ods) that the same result is in fact true without the supposition on the slopes of
the sides.

Recall that, by [IL03], it is enough to prove the implication (i7) — (7) in Theorem
3 assuming that BX is a polygon. In that case we prove a stronger result.

Theorem 4. Let BX be a polygon with finitely many sides which does not satisfy
the condition (i) of Theorem 8. Then for any well-distributed set S we have

(0.5) [Ax n(S)] > Nlog N/loglog N (N > 3).

Comparison of Theorem 4 with Theorem 2 shows that the growth of |Ax n(5)|
for well-distributed sets and N — oo does not distinguish the spaces X with small
and big cardinality of Ext(BX).

As remarked in [IL03], the well-distribution assumption on the point set S is
essential for results such as Theorems 1-4, as it ensures that the set of directions
between pairs of points in S is dense. If this fails, then K can be modified arbitrarily
in the “missing” directions without affecting the distance set of S. (See [G04] for
further discussion of the general case.) We also note that Solymosi and Vu [SV04]
obtain good bounds for Euclidean distance sets of well-distributed sets in 3 or
more dimensions, and that their method may extend to other metrics. As noted in
[SV04], known examples of sets with small distance sets tend to be lattice-like and
therefore well-distributed.

§1. PROOF OF THEOREMS 1 AND 2

Proof of (i). Without loss of generality we may assume that BX C Bl3 and the set
S is well-distributed in X with the constant K = 1/2. Also, choose § > 0 so that

(1.1) 6Bl C BX.
By (0.1), for any € > 0 there are arbitrary large Ny such that
|Ax o ()] < eNg/?.
If Ny > 8 then the number of integers 7 > 0 with Ny/2 4+ 4j < No — 2 is
> (No/2—2)/4 > Ny/8.
Thus, there is at least one j such that N = Ny/2 + 45 satisfies the condition
(1.2) (Ax(S)| N (N —2,N +2)) < 8NZ?/Ny < 12eN'/2.

So, (1.2) holds for arbitrary large N.

We take any N satisfying (1.2) and an arbitrary P € S. Let Q be the closest
point to P in the space X (observe that it exists since S is closed due to (0.1)).
Then, by well-distribution of S (recall that K = 1/2) we have

(13) IP-Qlx < 1.
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Without loss of generality, P = 0. Denote M = [2N{] and consider the rays
Lj = {(7’,9) 10 = Gj = 27T]/M},

where (r,6) are the polar coordinates in 3. Consider a point R;, 1 <j <M, with
the polar coordinates (r;, (#;—1 + 0;)/2) such that ||R;|[x = N. By (1.1) we have

Tj 2 ON.
Therefore, the Euclidean distance from R; to the rays L;_; and L; is
(1.4) rjsin(m/M) > Nésin(m/(2N0d)) > 1.

provided that N is large enough. Therefore, the distance from R; to these rays in
X is also greater than 1. Also, the distance from R; to the circles

Iy ={R:|R|lx =N-1}, To={R:||R|x=N+1}

in X is equal to 1. Thus, the X-disc of radius 1/2 with the center at R; is contained
in the open region U; bounded by L;_q, Lj, I'1, and I's. By the supposition on S
there is a point P; € U; N S.

Observe that for any j we have

N-1<||P-Pjlx <N+1, N-2<|Q-Pjl|x <N +2.
Let U = {(|IP = BjlIx, |Q = Pjllx)} By (1.2),
(1.5) |U| < 144 N.
For any (ni,n2) € U we denote
Iy ={ 1P = Pillx =n1, Q= Bjllx = na}.

By [IL03, Lemma 1.4, (i)], if j1, j2, s € Jn,.n, then one of the points P;,, P;,, P,
must lie on the segment connecting two other points and contained in the circle
{R :||P — R||x = n1}. This implies that for all j € Jy, », but at most two indices
the intersection of 0BX with the sector S; bounded by L;_; and L; is inside some
line segment contained in 9BX. Therefore, by (1.5), the number of sectors S;
containing an extremal point of BX is at most 288¢2N. For R € O0BX with the
polar coordinates (r,0) denote ©(R) = §. Define the measure on 0BX in such a
way that for any Borel set V' C 9BX the measure pup (V') is defined as the Lebesgue
measure of O(V). In particular,

2w
pp(OBX NS;) = U

Clearly, p, is equivalent to the standard Lebesgue measure on dBX. We have
proved that

2
1 (Ext(BX)) < 28852NM7T.
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But 1/M < 1/(N¢). Hence,
pp(Ext(BX)) < 271 x 288¢%/6.

As € can be chosen arbitrarily small, we get u,(Ext(BX)) = 0, and this completes
the proof of (i).
Proof of (ii) follows the same scheme. Inequality (1.2) should be replaced by

IAx(S)N (N —2,N +2)| < AN,

where A may depend only on X, S, and a. We define the distance d, on 0BX
as the distance between the polar coordinates. This metric is equivalent to the X-
metric. The set Ext(BX) can be covered by at most 2A2N2* arcs 0BX N S; each
of them has the d,-diameter at most 27/(Nd). This implies the required estimate
for the Hausdorff dimension of Fzt(BX).

Proof of Theorem 2. We select an increasing sequence {N;} of positive integers
such that

(1.6) $(N) > 5 (N > Nj).

By A, we denote the set of numbers a/q with a € Z, ¢ € N, ¢ < N;. We will
construct a ball BX on the Euclidean plane. Moreover, it will be symmetric with
respect to the lines 1 = x5 and z1 = —x2, and thus it suffices to construct BX in
the quadrant Q = {x : z2 > |21|}.

Let Dy be the square

Do={x:0<as4+21 <1,0< 25— 27 <1}

We will construct a decreasing sequence of polygons Dj;; each one will be defined as
a result of cutting some angles from the previous one. The sides Vi, Vs of Dy with
an endpoint at the origin will not be changed. The intersection of the sequence
D; will define the part of our BX in Q. In particular, the points (+1/2,1/2) will
be vertices of all polygons D;. Therefore, these points as well as the symmetrical
points (£1/2,—1/2) will be in 0BX.

First, we construct D; as a result of cutting Dy by a line x5 = u for some
u € (1/2,1). We choose u such that for intersection points #! and 2 of this line
with the boundary of Dy the ratios z /z (j = 1,2) differs from all numbers A € A;.
Moreover, we take neighborhoods U; of the points 27 (j = 1,2) such that

VyeUjyo/n €M1 (5 =1,2).

In the sequel we shall make other cuts only inside the sets U; and Us. This means
that all points & on the boundary of D; with x;/x2 € A; not belonging to the
sides V1, V5 as well as their neighborhoods in the boundary of D; will remain in all
polygons Do, D3, ..., and eventually they will be interior points of some segments
in the boundary of BX with a slope —1, 0, or 1,

On the second step, we construct Dy as a result of cutting Dy by lines with slopes
—1/2 and 1/2 such that for any new vertex x of a polygon D2 we have xo/x1 & As.
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Moreover, we take neighborhoods U(x) of all these points = (each is contained in
U; or in Us) such that

Vy e U(x) y2/y1 & Ao

Again, we shall make other cuts only inside the sets U(x). This means that all
points x on the boundary of Dy with 21 /x5 € As not belonging to the sides Vi, V5
as well as their neighborhoods in the boundary of Do will remain in all polygons
D3, Dy, ..., and eventually they will be interior points of some segments in the
boundary of BX with a slope a/2, a € Z, |a] < 2.

Proceeding in the same way, we shall get a ball BX with the following property:
ife € 0BX and x1/x2 € Aj41 for some j then x is an interior point of some segment
contained in OBX with a slope a/27, a € Z, |a| < 27. This segment is a part of
a line 27wy — ax; = b(a, j) or a symmetrical line 2725 — ax; = —b(a,j). Also, by
symmetry, if x € BX and xa/x1 € Aj1 for some j then 27z — azy = b(a, j)
or 2z — axy = —b(a,j). In terms of the norm | - ||x we conclude that if z € X
and z1/x2 € Ajyq or xa/x1 € Aji; then ||zf/x is equal to one of the numbers
12721 — axa|/|b(a, j)| or 2722 — ax1|/|b(a,j)|, a € Z, |a| < 27. Also, observe that,
by our construction, BX is contained in the square [—1,1]?. Therefore,

(L.7) ]l x = max(|a], [z2])-

Now let us take the lattice S = Z? and estimate |[Ax y(9)| for N; < N < Njq.
If v,y € S and ||z —y||x < N, then we have ||z —y||x = |(21, 22)|x where 21,20 € Z
and, by (1.7), max(|z1], |22]) < N. Hence, (21,22) = (0,0), or x1/x2 € Ajyq, or
x2/x1 € Aj1. Therefore, ||z —y||x = 0 or ||z —y|/x is equal to one of the numbers
12721 — aza|/|b(a, j)| or |2722 — az1|/|b(a,j)|, a € Z, |a| < 27. For every a we have

12021 — axa| < 22 |zy| + |a| x |zo| < 29TIN.
Taking the sum over all a we get
(1.8) [Ax n(S)] < (27T 4 12N 41 < 223N,
On the other hand, by (1.6),
(1.9) W(N) > 5.

Comparing (1.8) and (1.9), we get (0.4) and thus complete the proof of the theorem.

§2. PROOF OF THEOREM 3, PART I

In this section we prove that the condition (i) of Theorem 3 implies (ii).
Assume that 0BX consists of a finite number of line segments with slopes
51, B2, .., 0, all real and algebraic. Let Fg[fi,...,3,] be the field extension of
Q generated by (1,..., 0., and let ag be its primitive element, i.e. an algebraic
number such that Fg[G1,. .., 8] = Fglag]. We may assume that aq is an algebraic
integer: indeed, if ag is a root of P(x) = agz? + - -- + ag, then o = aqayg is a root
of ag_lP(:r/ad) =2+ a4 127N + ag_oaqgr? 2+ + aoag_l, hence an algebraic
integer, and generates the same extension.
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It suffices to prove that there is a well-distributed set S C R? such that
(2.1) {z+By: (z,y) €S-8, |z|+]yl < R} <R,

for each 3 € Fgla].
Since Fg[f,...,58:] C R, we have ag € R. Let ay,...,aq4—1 be the algebraic
conjugates of ap in C (of course they need not belong to Fglay]). Define for C' > 0

d—1 d—1
T(C) ={> ajod: a; €Z,|> ajal| <C, k=1,...,d— 1},

=0 §j=0
and
S=T(C)xT(C),

where C' will be fixed later.
We first claim that T'(C) is well distributed in R (with the implicit constant
dependent on C), and that

(2.2) |T(C)N[-R,R]| € R.

Indeed, let z = (29, 21,...,24-1)" solve
d—1
J o
E agz; =1,
Jj=0

-1
ZaiszO, k—1,...,d—1.
=0

Since the Vandermonde matrix A = (ai) is nonsingular, x is unique. In particular,
it follows that z is real-valued; this may be seen by taking complex conjugates and
observing that «y is an algebraic conjugate of o if and only if so is ay, hence T
solves the same system of equations.

To prove the first part of the claim, it suffices to show that there is a constant
K, such that for any y € R there is a v € T(C) with |y — v| < K;. Fix y, then we
have

Y= ayz;.

-1 =
ly = ol =1)_aglyz; —vj)l < 5 ) lagl = K,
=0 =0
and, for k=1,...,d—1,
-1 -1 -1 =
> ad v <D o, (yay — o) +yl > adag) < §Z\ai|~
J=0 =0 j=0 =0
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The claim follows if we let C' > 1 Z?;S lad].

We now prove (2.2). It suffices to verify that there is a constant K5 such that
for any y € R there are at most Ko elements of T(C) in [y — C,y + C]. Let
a= Z?;é o aj, then the conditions that a € T(C) and |y — a| < C imply that

Aa—gy e CQ,

where @ = (ag,...,aq-1)", 7 = (y,0,...,0)T, and Q = [~1,1]%. In other words,
@ € A7'j+ CA~1Q. But it is clear that the number of integer lattice points
contained in any translate of CA~1Q is bounded by a constant.

It remains to prove (2.1). Observe first that if z,2" € T(C), then z—z’ € T'(2C).
Thus, in view of (2.2), it is enough to prove that for any two algebraic integers 3,y €
Zgla] there is a C; = C1(8,7) such that if z,y € T(2C), then z8 + yy € T(Ch).

By the triangle inequality, it suffices to prove this with y = 0. Let 2 € T(C), then

T = Z?;S oz for some x; € Z. We also write § = Z?;& ol by, with b; € Z.

Then py = Z‘Z;O ozéﬂ x;b;. We thus need to verify that

d—1 o
‘ Z Oé?rj J)ibj| S Ol
4,7=0

for k=1,...,d — 1. But the left side is equal to
d—1 d-1
1D akwil 1Y agbl,
i=0 §=0

which is bounded by C1(8) = C maxy, | Z?;é ol bl

Example. Let BX be a symmetric convex octagon whose sides have slopes
0,—1,00,v2. Let also T(C) = {i +jv2: |i —jV2| < C}, and S = T(10) x T(10).
It is easy to see that T'(C) is well distributed and that (2.2) holds. Let z,y € S,
then © —y = (i + jV/2, k + 1v/2), where i + jv/2,k + [v/2 € T(20). Depending on
where x —y is located, the distance from x to y will be one of the following numbers:

ali+ V2,
colk + V2],
esl(i+ k) + (7 + V2],
cal (i 4+ jV2)V2 — (k +1V2)] = cal (25 — k) + (i — )V2|.
Clearly, the first three belong to T'(20 max(cy, ¢2,c3)). For the fourth one, we have
cal(2) — k) = (i = DV2 = s = (i = jV2)V2 — (k — 1V2)]

< 20¢4(1 + V2).

Hence all distances between points in S belong to T(C) for some C large enough,
and in particular satisfy the cardinality estimate (2.2).
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§3. ADDITIVE PROPERTIES OF MULTIDIMENSIONAL SETS
AND SETS WITH SPECIFIC ADDITIVE RESTRICTIONS

Let Y be a linear space over R or over Q. For A,B C Y and a € R or Q we
denote
A+B={a+b:ac Abe B}, aA={aa: a € A}

We say that a set A C Y is a d-dimensional if A is contained in some d-dimensional
affine subspace of Y, but in no d — 1-dimensional affine subspace of Y. We will
denote the dimension of a set A by d4.

The following result is due to Ruzsa [Ru94, Corollary 1.1].

Lemma 3.1. Let A,B C R, |A| < |B|, and assume that A+ B is d-dimensional.
Then

(3.1) |A+ B| > |B| + d|A| — d(d + 1)/2.

The special case of Lemma 3.1 with A = B was proved earlier by Freiman [F73,
p. 24]). In this case we also have the following corollary.

Corollary 3.1. Let A C R, and assume that |A + A| < K|A|, K <|A|Y2. Then
the dimension of A does not exceed K.

Proof. Let |A] = N > 1, then d4 < N — 1. Suppose that d4 > K. The function
f(z) = (x+1)N —xz(x+1)/2 is increasing for < N —1/2, hence by (3.1) we have

K(K+1
KN > f(d) > f(K) = (K + )y - ZEFL,
i.e. K(K + 1) > 2N, which is not possible if K2 < N.

We observe that Lemma 3.1, and hence also Corollary 3.1, extends to the case
when A, B are subsets of a linear space Y over Q. Assume that Y is d-dimensional,
and take a basis {e1,....eq} in Y. Consider the space R? with a basis {e], ... .e/}.
We can arrange a mapping ® : Y — Y’ by

d d
@(Z aje;) = Z el
j=1 j=1

It is easy to see that ® is Freiman’s isomorphism of any order and, in particular,
of order 2: this means that for any y,,ys2, 21, 22 from Y the condition

Y1+ yo £ 21+ 22

implies
D(y1) + D(y2) # D(21) + P(22).
Therefore, if A, B are finite subsets of Y and A’ = ®(A), B’ = ®(B), then |A+B| =
|A” + B’|, and we get the required inequality for |A + B|.
The following is a special case of [N96, Theorem 7.8].
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Lemma 3.2. If NeN, K>1, ACY, and B CY satisfy
(3.2) win(AL,|B)) > N, |A+ B| < KN,

we have

|A+ A < K?|A.

Corollary 3.2. If Ne N, K > 1, and if A,B CY satisfy (3.2) for some K with
K?(2K%2+1) < N, then dayp < K. In particular, da < K and dg < K.

Proof. By Lemma 3.2, we have |A + A| < K2N, hence Corollary 3.1 implies that
dA < Kza
and similarly for B. Hence dy1p < dg +dp < 2K?. By Lemma 3.1, we have

darp(dayp+1)

KN >|A+B|>(1+day)N — 5

>daypN+ N — K?(2K% 4+ 1) > day N,

which proves the first inequality. To complete the proof, observe that dayp >
max(da,dpg).

Lemma 3.3. Let K > 0, A and B be finite nonempty subsets of R, o € R\ {0}.
Also, suppose that the following conditions are satisfied

(3.3) |A — aB| < K|B|.
Then there is a set B’ C B such that

(3.4) |A—aB'| < K|B|,

(3.5) |B'| > |A|/K,
and for any by, by € B’ the number a(by —bs) is a linear combination of differences
a1 — az, ay,as € A, with integer coefficients.

Proof. Let us construct a graph H on B. We join by, by € B (not necessary distinct)
by an edge if there are a1, as € A such that a; —ab; = as —abs. Let By, ..., Bs be
the components of connectedness of the graph H. Thus, for any j = 1,...,s and
for any by,bs € By there is a path connecting b; and b, and consisting of edges of
H (a one-point path for by = by is allowed). This implies that a(by — b2) is a sum
of differences a; — as for some pairs (a1,a2) € A x A. Also, denoting

S:A—OéB, SJ':A—O(BJ',
we see that, by the choice of By, ..., B, the sets S; (j =1,...,s) are disjoint.

Since . .
1BI=Y_"1B;l, [5]=>_15;l,
j=1 j=1
11



there is some j such that
1551/1B51 < [S1/1BI,

and, by (3.3),
1S;| < K|By|.

On the other hand,
1951 = [A — aBj| = |A].

Hence,
|Bj| = [S;1/K = |A]/K.

So, the set B’ = B, satisfies (3.4) and (3.5), and Lemma 3.3 follows.

Lemma 3.4. Let K > 0, A and B be finite nonempty subsets of R, a1, s € R\{0}.
Also, suppose that the conditions

(3.6) |A—a,B| < K|B|,

(3.7) 1A — a,B| < K|A|,

are satisfied. Then there are nonempty sets A’ C A and B’ C B such that

(3.8) |A—a,B'| < K|B/|,
(3.9) 1A' — auB'| < K|A'],
(3.10) A’ > |Al/K?,

and for any ay,al, € A’ the difference o — a, is a linear combination of numbers
g—?(al —az), a1,a9 € A, with integer coefficients.

Proof. By (3.6), we can use Lemma 3.3 for a = a3, and we get (3.8) and (3.5).
Further, we use Lemma 3.3 again for B’, A (thus, in the reverse order), and we get
(3.9) and also

A" = |B|/K.

Combining the last inequality with (3.5) we obtain (3.10). The proof of the lemma
is complete.

Replacing (3.8) by a weaker inequality
|A" — a1 B'| < K|B'|

and iterating Lemma 3.4, we get the following.
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Lemma 3.5. Let K > 0, A and B be finite nonempty subsets of R, a1, an € R\{0}.
Also, suppose that the conditions (5.6) and (5.7) are satisfied. Then there are
nonempty sets A; C A and B; C B (j = 0,1,...,) such that Ay = A, By = B,
Aj C Aj_l, B; C Bj_1 forj>1,

|4; — Bl < K|4;] (j > 1),
|4;] > Al/E*,
and for any ai,as € A; the difference a1 — az is a linear combination of numbers
Z—%(a’l —ah), ay,ah € A, with integer coefficients.
Now we are in position to come to the main object of our constructions: to show
that under the assumptions of Lemma 3.5, providing that the number o;/aq is

transcendental, we can conclude that the dimension of the set A over Q cannot be
too small.

Corollary 3.6. Let K > 0, A and B be finite nonempty subsets of R, a1, an €
R\ {0} such that aq/aq is transcendental. Also, suppose that the conditions (3.6)
and (8.7) are satisfied. Then, if for some d € N the inequality

(3.11) |A| > K2

holds, then the dimension of A over Q is greater than d.

Proof. By Lemma 3.5 and (3.11), we have | 44| > 2. Take distinct a;,as € Ag. Then
also a1,as € A; for 5 =0,1,... ,d7 and, by Lemma 3.6, the difference a; — as is

a linear combination of numbers —(aj — a3), a},a; € A, with integer coefficients.
1

Therefore, all numbers b; = Z—j:(al — ag) belong to the linear span of aj — aj,
a’,ah € A, over Q. But, since o1 /s is transcendental, the numbers b; (j = 0,...,d)
are linearly independent over Q. Therefore, the dimension of the linear span of
ay —ab, ay,ah € A, over Q is at least d + 1, as required.

Corollary 3.7. If A is a subset of R, 2 < |A| < o0, « is a transcendental real

number, then
|A — aAl > |A|log|A|/loglog|A|.

Proof. Suppose that the conclusion fails, then for any ¢ > 0 we may find arbitrarily
large N and A C R with |A| = N such that
log N

A—aA|< KN, K=e—F———.
| adl < ’ 6loglogN

By Corollary 3.2, we have d4 < K. On the other hand, (3.6) holds with B = A,
a1 = a, and, since A —a"'A = —a7(A — aA), (3.7) holds with B = A and
as = a~ 1. Corollary 3.7 then implies that

N < K*K,
Taking logarithms of both sides, and assuming that 2¢ < 1, we obtain

log N
log N < QEL(IOg(QG) + loglog N — logloglog N) < 2¢log N,
loglog N

13



which is not possible if N was chosen large enough.

Remark 1. On the other hand, if @ € R is an algebraic number, then one can
use our construction from §2 to show that for any N € N there is a set A C R,
|A| = N, such that

|A—ad| < C|A],
where C' depends only on «.

Remark 2. We do not know whether the bound in Corollary 3.7 is optimal.
However, for any transcendental number o we can construct a set A such that

|A — aA| < C.|A| T

for any € > 0'. Namely, let
A= {Z aia': a;=1,..,n},
i=1

then |A| = n™ and

m+1
A+ aAC {Z a; ' : a; =1,...,2n},

i=1

which has cardinality < (2n)™*1. Let us take n = 2™, N = n™ = 2’"2, in which
case (2n)™ 1 = 20m+)* « Nexp(Cy/Iog N), less than C.N'*¢ for any e > 0, as
claimed.

Finally, we state a lemma due to J. Bourgain[B99, Lemma 2.1]. For our purposes,
we need a slightly more precise formulation than that given in [B99]; the required
modifications are described below.

Lemma 3.8. Let N > 2, A, B be finite subsets of R and G C A x B such that

(3.12) |Al,|B] < N,
(3.13) |S| <N where S={a+b:(ab)eG},
(3.14) |G| > N2

Then there exist A’ C A, B’ C B satisfying the conditions

(3.15) (A" x B')N G| > > N*(log N)~,

(3.16) |A" — B'| < N7 (log N)“26713|(A’ x B')NG|.

IWe thank Ben Green for pointing out this example.
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In [B], the bounds (3.15) and (3.16) involved factors of the form N7 and N7~
where N7* (N77) means < C(g)N7*¢ for all € > 0 and some C(g) > 0 (resp.,
>c(e)N7=¢ for alle > 0, ¢(¢) > 0). We need a slightly stronger statement, namely
that the same bounds hold with the factors in question obeying the inequalities
< N7(log N)¢ or > N7(log N)~¢, respectively, for some appropriate choice of a
constant C'. A careful examination of the proof in [B99] shows that it remains valid
with this new meaning of the notation N7* and N7~ and that one may in fact
take C7 = 5, Cy = 10. We further note that although Bourgain states his lemma
for A, B C Z%, the same proof works for A, B C R if the exponential sum inequality
[B99,(2.7)] is replaced by

61:< [ xasxm ISPl xal
we then observe that
lxa*xzl3={(a,a’,b,b)) € Ax Ax BxB:a+b=ad +b}

= {(a,d',b,b)) € Ax Ax BxB:a—b =d —b}| =|xa*x_5l3

and proceed further as in [B99]. A similar modification should be made in
[B99,(2.36)].

§4. PROOF OF THEOREM 4

In this section we prove Theorem 4; note that this also proves the implication
(ii)=(i) of Theorem 3.

Suppose that BX is a polygon with finitely many sides for which the conclusion
of the theorem fails, i.e. that there is a well distributed set S such that for any

€ > 0 there is an increasing sequence of positive integers Ny, Na, -+ — oo with
(4.1) |Ax,n; (S)] < eNjih(Nj),
where

Y(N) =log N/loglog N.

Without loss of generality we may assume that 0 BX contains a vertical line segment
and a horizontal line segment, and that ¢; Bl3 C BX C Bl3. Let also 3 € (0,1/10)
be a small constant such that all sides of BX have length at least 8cs.

Let M be a sufficiently large number which may depend on €; all other constants
in the proof will be independent of €. Let T" = N;, for some jy large enough so
that T'> M, and let N = ¢oT. Suppose that one of the two vertical sides of BX
is the line segment {(x1,z2) : 21 = vy, |xa — v2| < r}, where v; > 0. Let also
Q =1Int(N-BX), v=(v1,v2), and

A={z1: (x1,22) € SNQ for some x5},

Q' =Q+ (T —2N)v.
Observe that both @ and @’ have Euclidean diameter < 2N, and that

QI - {(1'1,1'2) : (T—3N)'U1 <zr < (T— N)’Ul},
15



so that
|z —2'||lx > (1 —4ex)T >T/2, z€Q,2" € Q.

By our choice of ¢g we have ¢y < r/4, so that
T/2-r>2N.

Hence all X-distances between points in @ and @’ are measured using the vertical
segments of 0BX, i.e.

lz —2'||x = |21 — 21]/v1, @ = (z1,22) € Q, 2" = (21, 33) € Qs

Next, we claim that
(4.2) Hllz—2'||x: z€SNQ,2" € SNQ'} < KoeNy(N),
where K is a constant depending only on c,. Indeed, we have

{lz —2'||x: v€Q,2’ €Q"} C0,T],
hence the failure of (4.2) would imply that

|Ax,7(S)] = KoeNY(N) > eTy(T),
if Ko is large enough (at the last step we used that ¥(N) > ¢(c; 'N) = %(T)).
But this contradicts (4.1).
It follows that if we define
A = {2« (27,25) € SN Q' for some x4},

then we can estimate the cardinality of the difference set A — A’ using (4.2):
(4.3) |A— A"l < KoeNy(N).
On the other hand, since S is well distributed, we must have
(4.4) |A],]A"] > N.
Hence by Corollary 3.2 we have
(4.5) dga < ep(N).

We may now repeat the same argument with the vertical side of 9BX replaced
by its other sides. In particular, using the horizontal segment in 0BX instead, we
obtain the following. Let

B ={zy: (x1,22) € SNQ for some z1},
then there is a set B’ C R such that

(4.6) |BI,1B'| > N,
16



(4.7) |B — B'| < KoeNy(N),

(4.8) dp < eh(N).
Furthermore, assume that 0BX contains a segment of a line x1 + axo = 3, then
(49) |{l‘1 —+ axg : (1'171‘2) esSn Q}| < K()ENw(N),

this estimate is an easier analogue of (4.3) obtained by counting distances between
points in @ and just one point in the appropriate analogue of Q.

Suppose that 9BX contains segments of lines x1 + a1xs = C1, o + asxe = Cy
(i.e. with slopes —1/a;, —1/as), where oy, a9 are neither 0 nor oo, and that the
ratio o /as is transcendental. Let G = (A x B)N S, then |G| > ¢, N? since S is well
distributed. By (4.4), (4.6), and (4.9) with o = a1, the assumptions of Lemma 3.8
are satisfied with NV replaced by Koe N (N) and 6 = c4(Koer)(N))~2. We conclude
that there are subsets A; C A and B; C B such that

(4.10) |(A1 x B1) NG| > N?“(log N) ™,

(4.11) |A; — oy By| < N7t ¢(log N)¢|(A; x B1)NG).

Here and below, ¢ denotes a constant which may change from line to line but is
always independent of N. We also simplified the right sides of (4.10) and (4.11) by
noting that ¢¥(N) < log N.

Similarly, applying Lemma 3.8 with G replaced by (A; x B1)NG and «; replaced
by s, we find subsets Ay C A1 and By C Bj such that

(4.12) (A2 x B2) NG| > N?e“(log N) ¢,

(4.13) |As — o Bs| < N7t ¢(log N)¢|(Ay x B2) NG].

Clearly, (4.11) also holds with Ay, By replaced by Ay, Bs.
Thus As, By satisfy the assumptions (3.14), (3.15) of Corollary 3.7, with K =
e “(log N)¢. By (4.4), (4.5) and Corollary 3.7, we must have for some constants
¢, K27
eN < |A2| < (671logN)KQCIOgN/IOglOgN’

hence

Kselog N
log ¢+ log N < -2608°%

< Toglog N (loglog N —loge) < 2Kselog N,

a contradiction if € was chosen small enough. This proves that if (0.5) fails, then
the ratio between any two slopes, other than 0 or oo, of sides of BX is algebraic.

To conclude the proof of the theorem, we first observe that if BX is a rectangle,
then there is nothing to prove. If BX is a hexagon with slopes 0,00, @, we may
always find a coordinate system as in Theorem 3 (i); namely, if we let

(4.14) ) =11, TH = axa,
17



then the slopes 0 and oo remain unchanged, and lines ax; — xo2 = C with slope «
are mapped to lines 2] — 2, = C/a with slope 1. Finally, suppose that BX is a
polygon with slopes 0, 00, 1, va, . . ., aq, and apply the linear transformation (4.14)
with @ = ay. Then the sides of 0BX with slope «; is mapped to line segments
with slope 1; moreover, since the ratios o/, j = 2,3,...,[, remain unchanged in
the new coordinates, and since we have proved that these ratios are algebraic, all
remaining sides of BX are mapped to line segments with algebraic slopes.
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