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Abstract

Let E ⊂ R be a closed set of Hausdorff dimension α. We prove that
if α is sufficiently close to 1, and if E supports a probability measure
obeying appropriate dimensionality and Fourier decay conditions, then
E contains non-trivial 3-term arithmetic progressions.
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11B25.

1 Introduction

Definition 1.1. Let A ⊂ R be a set. We will say that A is universal1 for a
class E of subsets of R if any set E ∈ E must contain an affine (i.e. translated
and rescaled) copy of A.

If E is the class of all subsets of R of positive Lebesgue measure, then it
follows from Lebesgue’s theorem on density points that every finite set A is
universal for E . Namely, let E have positive Lebesgue measure, then E has
density 1 at almost every x ∈ E. In particular, given any δ > 0, we may
choose an interval I = (x− ε, x+ ε) such that |E ∩ I| ≥ (1− δ)|I|. If δ was
chosen small enough depending on A, the set E ∩ I will contain an affine
copy of A.

An old question due to Erdős [8] is whether any infinite set A ⊂ R can
be universal for all sets of positive Lebesgue measure. It is known that

1We are using the terminology of [20].
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not all infinite sets are universal: for instance, if A = {an}∞n=1 is a slowly
decaying sequence such that an → 0 and an−1

an
→ 1, then one can construct

explicit Cantor-type sets of positive Lebesgue measure which do not contain
an affine copy of A [9]. Other classes of counterexamples are given in [4], [20];
see also [15], [21] for further related work. There are no known examples of
infinite sets A which are universal for the class of sets of positive measure.
In particular, the question remains open for A = {2−n}∞n=1.

The purpose of this paper is to address a related question, suggested to
the first author by Alex Iosevich: if A ⊂ R is a finite set and E ⊂ [0, 1] is a
set of Hausdorff dimension α ∈ [0, 1], must E contain an affine copy of A?
In other words, are finite sets universal for the class of all sets of Hausdorff
dimension α? This more general statement already fails if A = {0, 1, 2}
and E is a set of Hausdorff dimension 1 but Lebesgue measure 0. This is
due to Keleti [18], who actually proved a stronger result: there is a closed
set E ⊂ [0, 1] of Hausdorff dimension 1 such that E does not contain any
“rectangle” {x, x+ r, y, y + r} with x 6= y and r 6= 0.

In light of the above, one may ask if there is a natural subclass of sets of
fractional dimension for which a finite set such as {0, 1, 2} might be universal.
This question is addressed in Theorem 1.2, which is the main result of this
article. We define the Fourier coefficients of a measure µ supported on [0, 1]
as

µ̂(k) =

∫ 1

0

e−2πikxdµ(x).

Theorem 1.2. Assume that E ⊂ [0, 1] is a closed set which supports a
probability measure µ with the following properties:

(A) µ([x, x+ ε]) ≤ C1ε
α for all 0 < ε ≤ 1,

(B) |µ̂(k)| ≤ C2(1− α)−B|k|−β
2 for all k 6= 0,

where 0 < α < 1 and 2/3 < β ≤ 1. If α > 1 − ε0, where ε0 > 0 is a
sufficiently small constant depending only on C1, C2, B, β, then E contains a
non-trivial 3-term arithmetic progression.

We note that if (A) holds with α = 1, then µ is absolutely continuous with
respect to the Lebesgue measure, hence E has positive Lebesgue measure.
This case is already covered by the Lebesgue density argument (see also
Proposition 2.2 for a quantitative version).

In practice, (B) will often be satisfied with β very close to α. It will
be clear from the proof that the dependence on β can be dropped from the
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statement of the theorem if β is bounded from below away from 2/3, e.g.
β > 4/5; in such cases, the ε0 in Theorem 1.2 depends only on C1, C2, B.

The assumptions of Theorem 1.2 are in part suggested by number-theoretic
considerations, which we now describe briefly. A theorem of Roth [24] states
that if A ⊂ N has positive upper density, i.e.

limN→∞
#(A ∩ {1, . . . , N})

N
> 0, (1)

then A must contain a non-trivial 3-term arithmetic progression. Szemerédi’s
theorem extends this to k-term progressions. It is well known that Roth’s
theorem fails without the assumption (1), see [26], [1]. However, there are
certain natural cases when (1) may fail but the conclusion of Roth’s theorem
still holds. For example, there are variants of Roth’s theorem for random
sets [19], [30] and sets such as primes which resemble random sets closely
enough [12], [14]. The key concept turns out to be linear uniformity. It is

not hard to prove that if the Fourier coefficients Â(k) of the characteristic
function of A are sufficiently small, depending on the size of A, then A must
contain 3-term arithmetic progressions even if its asymptotic density is 0.
The Roth-type results mentioned above say that the same conclusion holds
under the weaker assumption that A has an appropriate majorant whose
Fourier coefficients are sufficiently small (this is true for example if A is a
large subset of a random set).

If the universality of A = {0, 1, 2} for sets of positive Lebesgue mea-
sure is viewed as a continuous analogue of Roth’s theorem, then its lower-
dimensional analogue corresponds to Roth’s theorem for integer sets of den-
sity 0 in N. The above considerations suggest that such a result might hold
under appropriately chosen Fourier-analytic conditions on E which could be
interpreted in terms of E being “random.” We propose Assumptions (A)-(B)
of Theorem 1.2 as such conditions.

To explain why Assumptions (A)-(B) are natural in this context, we give a
brief review of the pertinent background. Let dimH(E) denote the Hausdorff
dimension of E. Frostman’s lemma (see e.g. [10], [22], [33]) asserts that if
E ⊂ R is a compact set then

dimH(E) = sup{α ≥ 0 : ∃ a probability measure µ supported on E
such that (A) holds for some C1 = C1(α)}.

We also define the Fourier dimension of E ⊂ R as

dimF (E) = sup{β ∈ [0, 1] : ∃ a probability measure µ supported on E
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such that |µ̂(ξ)| ≤ C(1 + |ξ|)−β/2 for all ξ ∈ R},

where µ̂(ξ) =
∫
e−2πiξxdµ(x). Thus (A) implies that E has Hausdorff dimen-

sion at least α, and (B) says that E has Fourier dimension at least 2/3.
It is known that

dimF (E) ≤ dimH(E) for all E ⊂ R; (2)

in particular, a non-zero measure supported on E cannot obey (B) for any
β > dimH(E) (see (10)). It is quite common for the inequality in (2) to be
sharp: for instance, the middle-thirds Cantor set has Hausdorff dimension
log 2/ log 3, but Fourier dimension 0. Nonetheless, there are large classes of
sets such that

dimF (E) = dimH(E).

Such sets are usually called Salem sets. It is quite difficult to construct
examples of Salem sets with 0 < dimH(E) < 1. Such constructions are due to
Salem [25], Kaufman [17], Bluhm [2], [3]; we give an alternative construction
in Section 6. On the other hand, Kahane [16] showed that Salem sets are
ubiquitous among random sets, in the sense that images of compact sets
under Brownian motion are almost surely Salem sets. This is one reason why
we see Assumption (B) as a “randomness” assumption and a good analogue
of the number-theoretic concept of linear uniformity.

Assumptions (A)-(B) are closely related, but not quite equivalent, to the
statement that E is a Salem set in the sense explained above. On the one
hand, we do not have to assume that the Hausdorff and Fourier dimensions
of E are actually equal. It suffices that (B) holds for some β, not necessarily
equal to α or arbitrarily close to it. On the other hand, we need to control the
constants C1, C2, B, as the range of α for which our theorem holds depends
on these constants. (For example, we could set B = 0, C1 = C2 = 100,
β = 4/5; then our theorem states that if α is close enough to 1 (depending
on the above choice of constants), then {0, 1, 2} is universal for all sets which
support a measure µ obeying (A)-(B) with these values of α, β,B,C1, C2.)

Thus we need to address the question of whether measures obeying these
modified assumptions can actually exist. In Section 6 we prove that given
any C1 > 1, C2 > 0 and 0 < β < α < 1, there are subsets of [0, 1] which
obey (A)-(B) with B = 0 and with the given values of C1, C2, α, β. Our
construction is based on probabilistic ideas similar to those of [25], [2], but
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simpler. Salem’s construction [25] does not produce explicit constants, but we
were able to modify his argument so as to show that, with large probability,
the examples in [25] obey (A)-(B) with B = 1/2 and with C1, C2 independent
of α for α close to 1. Kahane’s examples [16] do not seem to obey (A)-(B)
with uniform constants; instead, they obey a condition similar to (A) but
with an additional logarithmic factor in ε−1, see e.g. [7]. We do not know
whether our proof of Theorem 1.2 (specifically, the argument in Proposition
4.1) extends to this setting. However, we are able to give a more direct proof,
bypassing Proposition 4.1 and appealing directly to Proposition 2.3 instead,
that Brownian image sets do contain 3-term arithmetic progressions with
positive probability bounded from below uniformly in α.

Kaufman’s set [17], unlike those of Salem and Kahane, is completely
deterministic. It is easily seen that if x belongs to Kaufman’s set, then so do
2x, 3x, . . . , in particular the set contains many k-term arithmetic progressions
for any k.

The key feature of our proof is the use of a restriction estimate. Restric-
tion estimates originated in Euclidean harmonic analysis, where they are
known for a variety of curved hypersurfaces (see e.g. [28]). In the paper [23]
that inspired much of our work here, Mockenhaupt proved a restriction-type
result for Salem sets in Rd. Specifically, he proved that if µ obeys (A)-(B),
then there is a restriction estimate of the form[∫

|f |2dµ
] 1

2

≤ C||f̂ ||`p(Z), (3)

for an appropriate range of p, analogous to the Stein-Tomas restriction theo-
rem for the sphere in Rn [27], [28], [31], [32]. For our purposes, we will require
a variant of Mockenhaupt’s estimate with uniform bounds on the constants,
which we derive in Section 4.

While Mockenhaupt’s work was motivated primarily by considerations
from Euclidean harmonic analysis, restriction estimates similar to (3) are
also known in number theory. Originally discovered by Bourgain [5], [6],
they were recently used to prove Roth-type theorems for certain classes of
integer sets of density zero. Green [12] gave a proof of Roth’s theorem in the
primes based on a restriction estimate for the primes. Green’s approach was
refined and extended further by Green-Tao [14], and applied to a random set
setting by Tao-Vu [30].

Our proof of Theorem 1.2 extends the approach of [12], [14], [30] to the
continuous setting of sets of fractional dimension for which a restriction es-
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timate is available. We rely on many of the ideas from [24], [12], and partic-
ularly [14], [30], such as the use of the trilinear form Λ in a Fourier represen-
tation and a decomposition of the measure µ into “random” and “periodic”
parts. However, our actual argument is quite different in its execution from
those of [14] or [30]. For instance, in [12], [14], [30] the restriction estimate
is applied to the “random” term, whereas we use it to handle the “periodic”
part instead.

While Theorem 1.2 can be viewed as the analytic analogue of the number-
theoretic results just mentioned, it seems rather unlikely that our result could
be deduced from them via a simple discretization procedure. For instance,
a δ-neighbourhood of Keleti’s set [18] contains many arithmetic progressions
with common difference much greater than δ; this eliminates immediately
the simplest types of discretization arguments.

Throughout the article, we use #A to denote the cardinality of a finite
set A, and |E| to denote the 1-dimensional Lebesgue measure of a set E ⊂ R.

Acknowledgements. We are grateful to Yuval Peres for bringing Erdős’s
question to our attention and for suggestions regarding Kahane’s examples,
and to Mihalis Kolountzakis for further references including [18]. We also
would like to thank Martin Barlow, Alex Iosevich, Nir Lev, Ed Perkins and
Jim Wright for helpful comments and suggestions.

2 Outline of the proof of Theorem 1.2

Throughout this section we will assume that µ is a probability measure sup-
ported on a closed set E ⊂ [1/3, 2/3]. By scaling and translation, Theorem
1.2 extends to all closed E ⊂ [0, 1]. We will also invoke Assumptions (A)
and (B) of Theorem 1.2 where necessary.

We define the Fourier coefficients of a (possibly signed) measure σ as

σ̂(k) =

∫ 1

0

e−2πikxdσ(x).

Given three signed measures µ1, µ2, µ3 on [0, 1], we define the trilinear form

Λ(µ1, µ2, µ3) =
∞∑

k=−∞

µ̂1(k)µ̂2(k)µ̂3(−2k).

6



This notion is motivated by the Fourier-analytic proof of Roth’s theorem
[24], where a discrete version of Λ is used to count the number of arithmetic
progressions in a set of integers.

We begin by considering the case of a measure µ absolutely continuous
with respect to the Lebesgue measure. Let E ⊂ [1/3, 2/3] be a closed set,

and let µ = df , where f is supported on E, 0 ≤ f ≤ M and
∫ 1

0
f(x)dx = 1.

We will write
Λ(µ, µ, µ) = Λ(f, f, f) if dµ = f.

Lemma 2.1. Let f be a nonnegative bounded function supported on [1/3, 2/3].
Then

Λ(f, f, f) =
∞∑

k=−∞

f̂(k)2f̂(−2k) = 2

∫ 1

0

∫ 1

0

f(x)f(y)f(
x+ y

2
)dxdy. (4)

Proof. This follows from a calculation identical to that in [24]. Specifically,

f̂(k)2 is the Fourier transform of f ∗ f(x) =
∫ 1

0
f(y)f(x − y)dy (note that

since E ⊂ [1/3, 2/3], there is no need to invoke addition modulo 1 in the

definition of f ∗ f) and f̂(2k) is the Fourier transform of 2f(x/2). Hence by
Plancherel’s identity we have

Λ(f, f, f) =

∫
2f(

x

2
)

∫
f(y)f(x− y)dydx

= 2

∫∫
f(
u+ y

2
)

∫
f(y)f(u)dydu,

(5)

where we changed variables u = x− y.

The key result is the following proposition.

Proposition 2.2. Let f : [0, 1] → [0,M ] be a bounded function with∫ 1

0

f(x)dx ≥ δ.

Then there exists c = c(δ,M) such that

Λ(f, f, f) ≥ c(δ,M).
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Proposition 2.2 is analogous to Varnavides’s theorem in number theory,
a quantitative version of Roth’s theorem on 3-term arithmetic progressions.
It can be proved by following exactly the proof of Varnavides’s theorem as
given e.g. in [29].

Proposition 2.2 implies in particular that the set

X = {(x, y) : f(x) > 0, f(y) > 0, f(
x+ y

2
) > 0}

has positive 2-dimensional Lebesgue measure. Since the 2-dimensional mea-
sure of the line x = y is 0, the set X must contain many points (x, y) with
x 6= y. Pick any such (x, y), then the set E contains the non-trivial arithmetic
progression {x, x+y

2
, y}.

We note that while the simple existence of 3-term arithmetic progressions
in sets of positive measure was an easy consequence of Lebesgue’s density
theorem, the quantitative result in Proposition 2.2 is much more difficult
and appears to require highly non-trivial methods from number theory.

If the measure µ is singular, the infinite sum defining Λ(µ, µ, µ) does
not have to converge in the first place. Furthermore, there is no obvious
analogue of (4) and it is no longer clear how to interpret Λ(µ, µ, µ) in terms
of arithmetic progressions. Nonetheless, if we assume that (B) holds for some
β > 2/3, then

∞∑
k=−∞

|µ̂(−2k)µ̂(k)2| ≤ 1 + C2

∑
k 6=0

|k|−3β/2 <∞. (6)

In particular, the sum defining Λ(µ, µ, µ) converges. Moreover, we have the
following.

Proposition 2.3. Let µ be a probability measure supported on a compact
set E ⊂ [1/3, 2/3] such that Assumption (B) holds for some β ∈ (2/3, 1].
Assume furthermore that Λ(µ, µ, µ) > 0. Then there are x, y ∈ E such that
x 6= y and x+y

2
∈ E.

Theorem 1.2 now follows if we prove the next proposition.

Proposition 2.4. Let µ be a probability measure supported on a compact
set E ⊂ [0, 1] such that Assumptions (A) and (B) hold for some α, β with
0 < α < 1, 2/3 < β < 1. Then there are constants 0 < c0, ε0 � 1 (depending
only on C1, C2, B, β) such that if 1− ε0 ≤ α < 1, then

Λ(µ, µ, µ) ≥ c0.
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We prove Proposition 2.3 in Section 3. In Section 4 we prove the key
restriction estimate needed in the proof of Proposition 2.4; the latter follows
in Section 5. In the last three sections we discuss three classes of examples of
Salem sets: Salem’s original construction, Kahane’s Brownian images, and a
new construction due to the authors.

3 Proof of Proposition 2.3

Let µ be as in Proposition 2.3. We will prove the proposition by constructing
a Borel measure ν on [0, 1]2 such that

ν([0, 1]2) > 0, (7)

ν is supported on the set X = {(x, y) : x, y,
x+ y

2
∈ E}, (8)

ν({(x, x) : x ∈ [0, 1]}) = 0. (9)

In this section, it will be convenient to work with the continuous Fourier
transform

µ̂(ξ) =

∫ ∞

−∞
e−2πiξxdµ(x)

instead of the Fourier series. It is well known (see e.g. [33], Lemma 9.A.4)
that under the assumptions of Proposition 2.3 we have

|µ̂(ξ)| ≤ C ′
2(1 + |ξ|)−β/2, (10)

where C ′
2 depends only on C2. In particular, since β > 2/3, we have µ̂ ∈

L3(R). We also note that

Λ(µ, µ, µ) =

∫
µ̂2(ξ)µ̂(−2ξ)dξ. (11)

Indeed, if µ is an absolutely continuous measure with density f , then both
sides of (11) are equal to 2

∫ 1

0

∫ 1

0
f(x)f(y)f(x+y

2
)dxdy, by (4) and the con-

tinuous analogue of the calculation in (5). The general case follows by a
standard limiting argument.

Fix a non-negative Schwartz function ψ on R with
∫
ψ = 1, let ψε =

ε−1ψ(ε−1x), and let φε = µ ∗ ψε. Note that

φ̂ε(ξ) = µ̂(ξ)ψ̂ε(ξ) = µ̂(ξ)ψ̂(εξ). (12)
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Since
∫
ψ = 1, we have ψ̂(0) = 1 and |ψ̂(ξ)| ≤ 1 for all ξ. Moreover, ψ̂ is

continuous since ψ is Schwartz. It follows that ψ̂(εξ) → 1 for all ξ as ε→ 0.
Hence

|φ̂ε(ξ)| ≤ min(|µ̂(ξ)|, |ψ̂ε(ξ)|), (13)

φ̂ε(ξ) → µ̂(ξ) pointwise as ε→ 0. (14)

We define a linear functional ν acting on functions f : [0, 1]2 → R by the
formula

〈ν, f〉 = lim
ε→0

∫∫
f(x, y)φε(

x+ y

2
)dµ(x)dµ(y). (15)

Clearly, 〈ν, f〉 ≥ 0 if f ≥ 0.

Lemma 3.1. The limit in (15) exists for all continuous functions f on [0, 1]2.
Moreover,

|〈ν, f〉| ≤ C‖f‖∞, (16)

where C depends on µ but is independent of f .

Proof. Suppose that f is continuous and bounded by M on [0, 1]2. Then, by
the same calculation as in (5),∫∫ ∣∣∣f(x, y)φε(

x+ y

2
)
∣∣∣dµ(x)dµ(y) ≤M

∫∫
φε(

x+ y

2
)dµ(x)dµ(y)

=
M

2

∫
φ̂ε(−2ξ)µ̂(ξ)2dξ

≤ M

2

∫
|µ̂(−2ξ)µ̂(ξ)|2dξ < CM/2,

(17)

where at the last step we used (13) and (10). This implies that if the limit
in (15) exists, then (16) holds.

It remains to prove the existence of the limit. The Schwartz functions f
with f̂ ∈ C∞

0 (R2) are dense in C([0, 1]2) in the L∞ norm. If we prove that
the limit in (15) exists for such functions, it will follow from (16) that it also
exists for all continuous functions on [0, 1]2.

Let f be a Schwartz function on R2 with supp f̂ ⊂ {(η1, η2) : 0 ≤ |η1| +
|η2| ≤ R}. By Plancherel’s identity, we have

〈ν, f〉 = lim
ε→0

∫∫
f(x, y)φε(

x+ y

2
)dµ(x)dµ(y)

= lim
ε→0

∫∫
Φε(η1, η2)µ̂(η1)µ̂(η2)dη1dη2,
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where

Φε(η1, η2) =

∫∫
f(x, y)φε(

x+ y

2
)e−2πi(xη1+yη2)dxdy

=

∫∫∫
f(x, y)φ̂ε(ξ)e

−2πi(xη1+yη2−x+y
2

ξ)dξdxdy

=

∫
φ̂ε(ξ)

( ∫∫
f(x, y)e−2πi(x(η1−ξ/2)+y(η2−ξ/2)dxdy

)
dξ

=

∫
φ̂ε(ξ)f̂

(
η1 −

ξ

2
, η2 −

ξ

2

)
dξ.

Hence

〈ν, f〉 = lim
ε→0

∫∫∫
φ̂ε(ξ)f̂

(
η1 −

ξ

2
, η2 −

ξ

2

)
µ̂(η1)µ̂(η2)dη1dη2dξ. (18)

By (13), the integrand in (18) is bounded in absolute value by∣∣∣µ̂(ξ)f̂
(
η1 −

ξ

2
, η2 −

ξ

2

)
µ̂(η1)µ̂(η2)

∣∣∣ (19)

for all ε > 0.
We claim that∫∫∫ ∣∣∣µ̂(ξ)f̂

(
η1 −

ξ

2
, η2 −

ξ

2

)
µ̂(η1)µ̂(η2)

∣∣∣dξdη1dη2 <∞. (20)

Assuming (20), it follows from (14) and the dominated convergence theorem
that the limit in (18) exists and is equal to∫∫∫

µ̂(ξ)f̂
(
η1 −

ξ

2
, η2 −

ξ

2

)
µ̂(η1)µ̂(η2)dξdη1dη2,

which proves the lemma.
We now prove the claim (20). Note first that by the support properties

of f̂ , the integral in (20) is in fact taken over the set

Ω =
{

(ξ, η1, η2) :
∣∣∣η1 −

ξ

2

∣∣∣ ≤ R,
∣∣∣η2 −

ξ

2

∣∣∣ ≤ R
}
.

Let 1 < p, p′ <∞ be exponents such that 1
p

+ 1
p′

= 1 and

p′β/2 > 1. (21)
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Then µ̂(ξ) ∈ Lp′(R, dξ) and, by Hölder’s inequality, the left side of (20) is
bounded by

‖µ̂‖Lp′ (dξ) · ‖F (ξ)‖Lp(dξ), (22)

where

F (ξ) =

∫∫
|η1− ξ

2
|≤R, |η2− ξ

2
|≤R

∣∣∣f̂(
η1 −

ξ

2
, η2 −

ξ

2

)
µ̂(η1)µ̂(η2)

∣∣∣dη1dη2. (23)

By Hölder’s inequality, we have

F (ξ) ≤ ‖f̂‖Lq′ (dη1dη2)

( ∫∫
|µ̂(η1)µ̂(η2)|qdη1dη2

)1/q

,

where 1 < q, q′ < ∞ are exponents such that 1
q

+ 1
q′

= 1, and the double

integral is taken over the same region as in (23). On that region we have
|η1 − η2| ≤ 2R and

|µ̂(η1)| ≤ C(1 + |η1|)−β/2 ≤ CR(1 + |ξ|)−β/2 ≤ C2
R(1 + |η2|)−β/2,

and similarly with indices 1 and 2 interchanged. Hence

F (ξ) ≤ C(f, q)
( ∫ ∞

−∞
(1 + |η2|)−2

∫ η2+2R

η2−2R

(1 + |ξ|)2−βqdη1dη2

)1/q

≤ C ′(f, q)(1 + |ξ|)
2
q
−β.

By (22), it suffices to find exponents p, q such that (21) holds and F (ξ) ∈ Lp.
If

βp > 1 (24)

and if q is chosen large enough, then (β − 2
q
)p > 1 and F (ξ) is Lp-integrable

as required. Finally, if

1− β

2
<

1

p
< β,

which is possible whenever β > 2/3, both (24) and (21) hold. This completes
the proof of the lemma.

By Lemma 3.1 and the Riesz representation theorem, (15) defines a mea-
sure on [0, 1]2. We will now prove that ν has the desired properties (7)–(9).
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Proof of (7). We write

〈ν, 1〉 = lim
ε→0

∫∫
φε(

x+ y

2
)dµ(x)dµ(y)

= lim
ε→0

∫
φ̂ε(−2ξ)µ̂(ξ)2dξ

=

∫
µ̂(−2ξ)µ̂(ξ)2dξ,

by (13), (14), (10) and the dominated convergence theorem. By (11), the
last integral is equal to Λ(µ, µ, µ), hence is positive as claimed.

Proof of (8). Since E is closed, X is closed. Let f be a continuous function
with supp f disjoint from X, then dist (supp f,X) > 0. Using a partition of
unity, we write f =

∑
fj, where fj are continuous and for each j at least

one of the following holds:

dist (supp fj, E × [0, 1]) > 0,

dist (supp fj, [0, 1]× E) > 0,

dist
({x+ y

2
: (x, y) ∈ supp fj

}
, E

)
> 0.

It suffices to prove that 〈ν, fj〉 = 0 for all j. In the first two cases, we have
µ×µ(supp fj) = 0, hence the integral in (15) is 0 for each ε. In the last case,
we have φε(

x+y
2

) → 0 pointwise on the support of fj, hence by the dominated
convergence theorem the integral in (15) converges to 0 as ε→ 0, as required.

Proof of (9). It suffices to prove that

ν({(x, y) : |x− y| ≤ δ}) → 0 as δ → 0. (25)

Let χ : R → [0,∞) be a Schwartz function such that χ ≥ 0, χ ≥ 1 on [−1, 1]
and supp χ̂ ⊂ {|ξ| ≤ R}. We will prove that

〈ν, χδ(x− y)〉 → 0 as δ → 0, (26)

where χδ(t) = χ(δ−1t). This will clearly imply (25).
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We write

〈ν, χδ(x− y)〉

= lim
ε→0

∫∫
χδ(x− y)φε(

x+ y

2
)dµ(x)dµ(y)

= lim
ε→0

∫∫ ( ∫
χ̂δ(ξ)e

2πi(x−y)ξdξ
)( ∫

φ̂ε(η)eπi(x+y)ηdη
)
dµ(x)dµ(y)

= lim
ε→0

∫∫
χ̂δ(ξ)φ̂ε(η)µ̂(ξ − η

2
)µ̂(−ξ − η

2
)dξdη.

We claim that ∫∫ ∣∣∣χ̂δ(ξ)µ̂(η)µ̂(ξ − η

2
)µ̂(−ξ − η

2
)
∣∣∣dξdη ≤ Cδs (27)

for some s > 0. Here and throughout the proof, we will use C,C ′, . . . to
denote positive constants which may change from line to line and may depend
on µ, χ and R, but are always uniform in δ. Assuming (27), we have

〈ν, χδ(x− y)〉 =

∫∫
χ̂δ(ξ)µ̂(η)µ̂(ξ − η

2
)µ̂(−ξ − η

2
)dξdη

by (14) and the dominated convergence theorem. By (27) again, the last
integral is bounded by Cδs, hence (26) follows.

It remains to prove (27). Since χ̂δ(ξ) = δχ̂(δξ) is supported on |ξ| ≤ δ−1R,
we can bound the integral in (27) by

Cδ

∫∫
|ξ|≤δ−1R

∣∣∣µ̂(η)µ̂(ξ − η

2
)µ̂(−ξ − η

2
)
∣∣∣dξdη

= Cδ

∫
|µ̂(η)|

( ∫
|ξ|≤δ−1R

∣∣∣µ̂(ξ − η

2
)µ̂(−ξ − η

2
)
∣∣∣dξ)dη

≤ Cδ‖µ̂‖p′‖F (η)‖Lp(dη),

(28)

where 1 < p, p′ <∞ are exponents such that 1
p

+ 1
p′

= 1, and

F (η) =

∫
|ξ|≤δ−1R

∣∣∣µ̂(ξ − η

2
)µ̂(−ξ − η

2
)
∣∣∣dξ.

By (10), ‖µ̂‖p′ is finite whenever

p′β/2 > 1. (29)

14



We now estimate F (η). Let 1 < q, q′ <∞ are exponents such that 1
q
+ 1

q′
= 1,

then by Hölder’s inequality and (10) again we have

F (η) ≤
( ∫

|ξ|≤δ−1R

1dξ
)1/q′( ∫

|ξ|≤δ−1R

∣∣∣µ̂(ξ − η

2
)µ̂(−ξ − η

2
)
∣∣∣qdξ)1/q

≤ Cδ−1/q′ ,

(30)

assuming that
qβ > 1. (31)

Moreover, on the region |η| > C ′δ−1 for sufficiently large C ′ we have∣∣∣ξ ± η

2

∣∣∣ ∼ ∣∣∣η
2

∣∣∣ for all |ξ| ≤ δ−1R,

hence the calculation in (30) yields the stronger estimate

F (η) ≤ Cδ−1/q′
( ∫

|ξ|≤δ−1R

(1 + η)−βqdξ
)1/q

≤ Cδ−1/q′
(
δ−1(1 + η)−βq

)1/q

≤ Cδ−1|η|−β.

(32)

Now we can bound the Lp-norm of F :( ∫
F (η)pdη

)1/p

≤
( ∫

|η|≤C′δ−1

F (η)pdη
)1/p

+
( ∫

|η|≥C′δ−1

F (η)pdη
)1/p

,

( ∫
|η|≤C′δ−1

F (η)pdη
)1/p

≤ C
(
δ−1(δ−1/q′)p

)1/p

= Cδ
− 1

p
− 1

q′ ,

( ∫
|η|≥C′δ−1

F (η)pdη
)1/p

= C
( ∫ ∞

C′δ−1

δ−p|η|−βpdη
)1/p

= Cδ−1
(

(δ−1)−βp+1
)1/p

= Cδ−1+β− 1
p .

Returning now to (28), we see that the integral in (27) is bounded by

C(δ
1− 1

p
− 1

q′ + δβ− 1
p ). (33)
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The exponent of δ in (33) is positive if

1

p
+

1

q′
≤ 1 and β >

1

p
. (34)

A short calculation shows that we can find p, q obeying all of (34), (29), (30)
whenever β > 2/3. This ends the proof of (28) and (9).

4 A restriction estimate

The key part of the proof of Proposition 2.4 is a Fourier restriction estimate
for measures µ satisfying Assumptions (A) and (B) of Theorem 1.2. Such
estimates were first obtained by Mockenhaupt in [23], following Tomas’s proof
of a restriction estimate for the sphere in Rn [31]. The main result in [23]
is an Lp(dx) → L2(dµ) bound for the Fourier restriction operator in the
range 1 ≤ p < 2(2 − 2α + β)/(4(1 − α) + β). For our application, we are
interested in values of p near the endpoint. However, it is necessary for us
to keep track of the behavior of the operator norm (in terms of α and β)
near the endpoint, in particular ensuring that it stays bounded for α, β close
to 1, and explicitly deriving its dependence on C1 and C2. Mockenhaupt’s
analysis yields a bound for the operator norm that blows up at the endpoint.
Our result in contrast gives a uniform bound for the operator norm, though
not “at” the endpoint, only “near” it.

Proposition 4.1. Let 2
3
< α, β ≤ 1, and let µ be a probability measure

supported on E ⊂ [0, 1] and obeying Assumptions (A) and (B) of Theorem
1.2. Then there exists an absolute constant A such that∫

|f |2dµ ≤ 26BACθ
2C

1−θ
1 ‖f̂‖2

`p(Z), (35)

where p = 2(β+4(1−α))
β+8(1−α)

and θ = 2
p
− 1.

Proof. By duality, it suffices to show that the operator T defined by Tg = g∗µ̂
maps `p(Z) → `p

′
(Z), with operator norm bounded by ACθ

2C
1−θ
1 . We prove

this by complex interpolation. Following an approach analogous to Stein’s
proof of the endpoint restriction estimate in the Stein-Tomas theorem [27],

[28], we embed T in the family of operators Tsg = g ∗ K̂s, where K̂s(n) =
ζs(n)µ̂(n). Here

ζs(ξ) = es2 3(1− α)s

6(1− α)− 2s

∫
e−2πixξ|x|−1+sη(x) dx,
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with η ∈ C∞
0 (R) supported in [−1, 1], 0 ≤ η ≤ 1, and η ≡ 1 near the

origin. Then Ks, initially defined on the half-plane Re(s) > 0 admits an
analytic continuation in the interior of the strip −β

2
≤ Re(s) ≤ 2(1 − α)

and is continuous up to its boundary. Moreover, the arguments in [27] (page
326-328) show that ζ0(x) ≡ 1. Thus the desired result will follow from the
three-lines lemma if we establish that ||Ts||`1→`∞ ≤ AC2 for Re(s) = −β

2
,

and ||Ts||`2→`2 ≤ AC1 for Re(s) = 2(1 − α). Specifically, we need the two
estimates

sup
n
|K̂s(n)| ≤ AC2(1− α)−B for Re(s) = −β

2
, (36)

sup
x
|Ks(x)| ≤ AC1 for Re(s) = 2(1− α). (37)

For Re(s) = −β
2
, we have from [28]

|ζs(ξ)| ≤ A(1 + |ξ|)
β
2 ,

for some constant A uniform in α, β for 2
3
≤ α, β ≤ 1. This together with

(B) yields (36).
For Re(s) = 2(1− α), we use Assumption (A) to obtain

|Ks(x)| = |ζ̂s ∗ µ(x)|

=

∣∣∣∣es2 3(1− α)s

6(1− α)− 2s

∣∣∣∣ ∣∣∣∣∫ |x− x′|−1+sη(x− x′)dµ(x′)

∣∣∣∣
≤

∣∣∣∣es2 3(1− α)s

6(1− α)− 2s

∣∣∣∣ ∑
j≥0

∣∣∣∣∫
|x−x′|∼2−j

|x− x′|−1+sη(x− x′)dµ(x′)

∣∣∣∣
≤

∣∣∣∣es2 3(1− α)s

6(1− α)− 2s

∣∣∣∣ ∑
j≥0

2−j(−1+2(1−α))C12
−jα

≤ C1

∣∣∣∣es2 s

6(1− α)− 2s

∣∣∣∣ (1− α)
∑
j≥0

2−j(1−α)

≤ C1 sup
t∈R

[
e4(1−α)2−t2 2(1− α) + |t|

4(1− α) + |t|

]
(1− α)

1− 2−(1−α)

≤ AC1.
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Hence

‖Ts‖`p→`p′ ≤ (AC2(1− α)−B)θ (AC1)
1−θ

= AC1−θ
1 Cθ

2(1− α)
−4B(1−α)
4(1−α)+β

≤ AC1−θ
1 Cθ

226B.

At the last step we used that (1 − α)−(1−α) ≤ 2 for all 2/3 < α < 1, hence
the last factor is bounded by 24B/(4−4α+β) ≤ 24B/β ≤ 26B. This proves (37)
and completes the proof of the proposition.

5 Proof of Proposition 2.4

The proof of the proposition follows roughly the scheme in [12], [14], [30].
We will find a decomposition µ = µ1 + µ2, where µ1 is absolutely continuous
with bounded density, and µ2 is irregular but “random” in the sense that it
has very small Fourier coefficients. We then write

Λ(µ, µ, µ) =
2∑

i,j,k=1

Λ(µi, µj, µk).

The main contribution will come from the term Λ(µ1, µ1, µ1), which we will
bound from below using Proposition 2.2. The remaining terms will be treated
as error terms and will be shown to be small compared to Λ(µ1, µ1, µ1).

We begin by defining µ1 and µ2. Let KN denote the Fejér kernel on [0, 1],
namely

KN(x) =
N∑

n=−N

(
1− |n|

N + 1

)
e2πinx =

1

N + 1

sin2 ((N + 1)πx)

sin2(πx)
. (38)

It follows easily from (38) that KN ≥ 0 and
∫ 1

0
KN = 1 for every N ≥ 1,

N ∈ N. Moreover,

K2N(x) =
1

2N + 1
D2

N(x), (39)

where

DN(x) =
∑
|n|≤N

e2πinx =
sin((2N + 1)πx)

sin(πx)
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is the Dirichlet kernel.
Let N � 1 be a large constant to be determined shortly. Let

µ1(x) = K2N ∗ µ(x),

and write µ = µ1 + µ2. Clearly, µ1 ≥ 0 and
∫ 1

0
µ1(x)dx = 1. We claim that

if α, β are close enough to 1, then N can be chosen so that

0 ≤ µ1(x) ≤M (40)

for some fixed constant M depending on C1 but independent of N . Indeed,
by (39) and Proposition 4.1 there is an absolute constant A such that

µ1(x) =

∫
K2N(x− y)dµ(y) =

1

2N + 1

∫
|DN(x− y)|2dµ(y)

≤ 26BACθ
2C

1−θ
1

2N + 1
||D̂N ||2`p

≤ 26BAC
2/p′

1 (C2(2N + 1))
2
p
−1,

where p =
2(β + 4(1− α))

β + 8(1− α)
.

We may assume that C1, C2 ≥ 1, and we continue to assume that β > 2/3.

For α ≥ 1 − (lnC2)
−1, set N = bC−1

2 e
1

1−α c. Then N ≥ 1 and N → ∞ as

α→ 1. Since
2

p
− 1 =

4(1− α)

β + 4(1− α)
and

2

p′
=

2β

β + 4(1− α)
≤ 1,

µ1(x) ≤ 26B+2AC
2/p′

1 (C2N)
2
p
−1 ≤ 26B+2AC1e

1
1−α

· 4(1−α)
β+4(1−α)

≤ 26B+2AC1e
6.

By Proposition 2.2, there is a constant c0 > 0 (depending on A,B,C1) such
that Λ3(µ1, µ1, µ1) ≥ 2c0.

It remains to verify that the error terms are negligible: if β is sufficiently
close to 1, and at least one of the indices i1, i2, i3 equals 2, then

Λ(µi1 , µi2 , µi3) ≤ c0/8.

We only consider the cases Λ(µ1, µ1, µ2) and Λ(µ2, µ2, µ2); the other cases
are similar and left to the reader.
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By the definition of µ2, we have µ̂2(0) = 0 and

µ̂2(n) = min

(
1,

|n|
2N + 1

)
µ̂(n).

Hence

|Λ(µ1, µ1, µ2)| ≤
∑

0≤|n|≤2N

|µ̂1(n)|2|µ̂2(−2n)|

≤ C3
2(1− α)−3B

∑
0<|n|≤2N

|n|−β |n|
2N + 1

(2|n|)−
β
2

=
C3

2(1− α)−3B

2N + 1

∑
0<|n|≤2N

|n|1−
3β
2

≤ 4C3
2(1− α)−3BN1− 3β

2

≤ 4C3
2(1− α)−3B(C−1

2 e
1

1−α − 1)1− 3β
2 ,

(41)

which can be made arbitrarily small as α→ 1 and N →∞. Similarly,

|Λ(µ2, µ2, µ2)|

≤ C3
2(1− α)−3B

(2N + 1)3

∑
|n|≤2N

|n|3−
3β
2 + C3

2(1− α)−3B
∑

|n|≥2N+1

|n|−
3β
2

≤ 3β + 2

3β − 2
C3

2(1− α)−3BN1− 3β
2

≤ 3β + 2

3β − 2
C3

2(1− α)−3B(C−1
2 e

1
1−α − 1)1− 3β

2 → 0 as N →∞.

(42)

6 A construction of Salem-type sets

We now give a probabilistic construction of examples of sets equipped with
natural measures obeying Assumptions (A)-(B) of Theorem 1.2. The idea is
reasonably simple. Start with the interval [0, 1] equipped with the Lebesgue
measure. Subdivide it into M1 = KN1 intervals of equal length, then choose
Kt1 of them at random and assign weight (Kt1)

−1 to each one. For a generic
choice of subintervals, the Fourier transform of the resulting density function
is close to the Fourier transform of 1[0,1]. Now subdivide each of the intervals
chosen at the first step into N2 subintervals of equal length, choose t2 of
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them at random, assign weight (Kt1t2)
−1 to each one. Continue to iterate

the procedure, taking care at each step to keep the Fourier transform of the
new density function as close as possible to the previous one. In the limit,
we get a Cantor-type set equipped with a natural measure µ such that µ̂ has
the required decay.

In the construction below, we will let N1 = N2 = · · · = N and t1 =
t2 = · · · = t be fixed. This will produce Salem sets of dimension α =
log t
log N

. It should be possible to use the same argument to construct Salem
sets of arbitrary dimension 0 < α < 1; the necessary modification would
involve letting Nj and tj be slowly increasing sequences such that

log tj
log Nj

→ α.

We choose not to do so here, as it would complicate the argument without
contributing new ideas.

The constant K will be set to equal 2N , but any other sufficiently rapidly
increasing function of N would do. The only purpose of this constant is to
ensure the uniformity of the constants C1, C2 in (A)-(B). A reader interested
only in a construction of Salem sets in the traditional sense may as well set
K = 1.

The construction proceeds by iteration. Let N0 and t0 be integers such
that 1 ≤ t0 ≤ N0, and let α = log t0

log N0
. Let N = Nn

0 and t = tn0 , where n is a
large integer to be chosen later. This will allow us to choose N sufficiently
large depending on α, while maintaining the relation α = log t

log N
. Let also

K = 2N , Mj = KN j, Tj = Ktj.
We will construct inductively a sequence of sets A0, A1, A2, . . . such that

A0 =
{

0,
1

K
,

2

K
, . . . ,

K − 1

K

}
,

Aj+1 =
⋃

a∈Aj

Aj+1,a,

where

Aj+1,a ⊂ A∗
j+1,a :=

{
a, a+

1

Mj+1

, a+
2

Mj+1

, . . . , a+
N − 1

Mj+1

}
, (43)

and #Aj+1,a = t for each a ∈ Aj. In particular, #Aj = Tj. Given such Aj,
we define

Ej =
⋃

a∈Aj

[a, a+M−1
j ],
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E =
∞⋂

j=1

Ej.

Clearly, E1 ⊃ E2 ⊃ E3 ⊃ . . . , hence E is a closed non-empty set.
There is a natural measure σ on E, defined as follows. Let Bj be the

family of all intervals of the form I = [a, a+M−1
j ], a ∈ Aj, and let B =

⋃
Bj.

For F ⊂ E, let

σ(F ) = inf
{ ∞∑

i=1

T−1
j(i) : F ⊂

∞⋃
i=1

Ii, Ii ∈ Bj(i)

}
. (44)

Then σ is the weak limit of the absolutely continuous measures σj with
densities

φj =
∑
a∈Aj

T−1
j Mj1[a,a+M−1

j ].

In particular, we have

σ(I) = T−1
j for all I ∈ Bj. (45)

Lemma 6.1. Given 0 < α < 1 and C1 > 1, σ satisfies the assumption (A)
if N = N(α,C1) has been chosen large enough.

Proof. It suffices to prove that (A) holds if the interval J = (x, x + ε) is
contained in [0, 1]. Let m0 be a positive integer such that m−1

0 (m0 +1) < C1.
If |J | ≥ m0K

−1, then there is an integer m ≥ m0 such that mK−1 ≤ |J | ≤
(m+ 1)K−1. We then have

σ(J) ≤ (m+ 1)K−1 ≤ (m+ 1)
|J |
m

≤ C1|J | ≤ C1|J |α,

as required. If on the other hand |J | ≤ m0K
−1, let m = m(J) be an integer

such that M−1
m+1 ≤ |J | < m0M

−1
m . Then J is covered by at most m0 + 1

intervals in Bm, so (45) yields

σ(J ∩ E) ≤ (m0 + 1)T−1
m .

Condition (A) will follow if we verify that (m0 + 1)T−1
m ≤ C1M

−α
m+1, i.e.

(m0 + 1)2−NN−jα ≤ C12
−NαN−(j+1)α.

But this simplifies to 2N(α−1)Nα ≤ C1(m0 + 1)−1, which holds for any α < 1
and C1 > 1 if N has been chosen large enough.
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We now must prove that the sets Aj can be chosen so that σ obeys (B).
The proof will rely on probabilistic arguments inspired by those of Green
in [11, Lemmas 14 and 15]; in particular, Lemma 6.2 is almost identical to
Lemma 14 in [11].

For a finite set A ⊂ R, we will write

SA(k) =
∑
a∈A

e−2πika.

Lemma 6.2. Let B∗ = {0, 1
MN

, 2
MN

, . . . , N−1
MN

}, where M,N are large inte-
gers, and let t ∈ {1, . . . , N}. Let

η2t = 32 ln(8MN2). (46)

Then there is a set B ⊂ B∗ with #B = t such that∣∣∣SBx(k)

t
− SB∗(k)

N

∣∣∣ ≤ η for all k ∈ Z, x = 0, 1, . . . , N − 1, (47)

where

Bx =
{(x+ y)(modN)

MN
:

y

MN
∈ B

}
.

The proof will be based on the following version of Bernstein’s inequality,
which we also borrow from [11]. We state it here for completeness.

Lemma 6.3. Let X1, . . . , Xn be independent random variables with |Xj| ≤ 1,
EXi = 0 and E|Xj|2 = σ2

j . Let
∑
σ2

j ≤ σ2, and assume that σ2 ≥ 6nλ. Then

P
(∣∣∣ n∑

1

Xj

∣∣∣ ≥ nλ
)
≤ 4e−n2λ2/8σ2

. (48)

Proof of Lemma 6.2. Let B ⊂ B∗ be a random set created by choosing each
b ∈ B∗ independently with probability p = t/N , where t ∈ N. For each
b ∈ B∗, define the random variable Xb(k) = (B(b)− p)e−2πibk, where we use
B(·) to denote the characteristic function of the set B. Then Xb(k) obey the
assumptions of Lemma 6.3 with σ2

b = E|Xb(k)|2 = E|B(b) − p|2 = p − p2 ∈
(p/2, p), so that t/2 ≤ σ2 ≤ t. We also have

SB(k)

t
− SB∗(k)

N
= t−1

∑
Xb(k)
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and in particular
∑
Xb(0) = #B − t. Applying Lemma 6.3 with n = N and

λ = ηp/2, we see that

P
(∣∣∣SB(k)

t
− SB∗(k)

N

∣∣∣ ≥ η/2
)
≤ 4 exp(−η2t/32). (49)

By the same argument, (49) holds with B replaced by Bx.
Note that SB∗(k) and SBx(k) are periodic with period MN , hence it

suffices to consider k ∈ {0, 1, . . . ,MN − 1}. Thus the probability that the
above event occurs for any such k and with B replaced by any Bx is bounded
by 4MN2 exp(−η2t/32), which is less than 1/2 whenever (46) holds. Thus
with probability at least 1/2 we have∣∣∣SBx(k)

t
− SB∗(k)

N

∣∣∣ ≤ η

2
for all k ∈ Z, x = 0, 1, . . . , N − 1.

Note further that the last inequality with k = 0, x = 0 implies that |#B−t| ≤
ηt/2. Modifying B by at most ηt/2 elements, we get a set of cardinality t
obeying (47). This proves the lemma. �

Lemma 6.4. The sets Aj can be chosen so that∣∣∣φ̂j+1(k)− φ̂j(k)
∣∣∣ ≤ 16 min

(
1,
Mj+1

|k|

)
T
−1/2
j+1 ln(8Mj+1). (50)

Proof. Since the index j will be fixed throughout this proof, we drop it from
the notation and write A = Aj, A

′ = Aj+1, T = Tj, M = Mj. With this
notation, we have φj =

∑
a∈A T

−1M1[a,a+M−1], hence

φ̂j(k) = MT−1
∑
a∈A

∫ a+M−1

a

e−2πikxdx =
1− e−2πik/M

2πik/M
T−1SA(k). (51)

Let also B∗, B,Bx be as in Lemma 6.2, and let

A′ =
⋃
a∈A

(a+Bx(a)),

where x(a) is chosen randomly from the set {0, 1, . . . , N − 1} and takes each
value with probability N−1, and the choices are independent for different a’s.
Then

φ̂j+1(k)− φ̂j(k) =
1− e−2πik/MN

2πik/MN
· T−1

∑
a∈A

Xa(k), (52)
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where

Xa(k) =
SBx(a)+a(k)

t
− SB∗+a(k)

N
.

Fix k. We consider Xa(k), a ∈ A, as independent random variables. It
is easy to check that EXa(k) = 0 for each a. By Lemma 6.2, |Xa(k)| ≤ η.
Applying Lemma 6.3 to Xa(k), with n = T and σ2 = Tη2, we find that

P
(∣∣∣T−1

∑
Xa(k)

∣∣∣ ≥ λ
)
≤ 4 exp(−λ2T/8η2). (53)

Thus the probability that this happens for any k ∈ {0, 1, . . . ,MN − 1} is
bounded by 4MN exp(−λ2T/8η2), which is less than 1/2 if λ2T ≥ 4η2 ln(8MN).
If η is as in (46), it is easy to check that the last inequality holds for
λ = 16(Tt)−1/2 ln(8MN). This together with (52) completes the proof.

Lemma 6.5. Let C2 > 0 and 0 < β < α < 1. If N is large enough, depending
on C2, α, β, the sets Aj can be chosen so that (B) holds.

Proof. Let Aj be as in Lemma 6.4. By (50), it suffices to prove that for N
sufficiently large we have

∞∑
j=1

min
(

1,
Mj

|k|

)
T
−1/2
j ln(8Mj) <

C2

16
|k|−β/2, k 6= 0. (54)

We may assume that k > 0. Plugging in the values of Mj and Tj, we see
that (54) is equivalent to

∞∑
j=1

min
(

1,
2NN j

k

)
2−N/2N−jα/2(N ln 2 + ln 8 + j lnN) <

C2

16
k−β/2. (55)

We write the sum in (55) as

∞∑
j=1

min
(

1,
2NN j

k

)
2−N/2N−jβ/2N−j(α−β)/2(N ln 2 + ln 8 + j lnN).

It is a simple exercise in calculus to check that N−j(α−β)/2j lnN ≤ 2(α−β)−1.
Hence the sum in (55) is bounded by

∞∑
j=1

min
(

1,
2NN j

k

)
2−N/2N−jβ/2(N ln 2 + ln 8 + 2(α− β)−1).
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We write the last sum as S1 + S2, where S1 is the sum over all j with
1 ≤ j ≤ ln k−N ln 2

ln N
and S2 is the sum over all remaining values of j. We first

estimate S1. We have

S1 = 2N/2k−1(N ln 2 + ln 8 + 2(α− β)−1)
∑

1≤j≤ ln k−N ln 2
ln N

N j(1−β
2
).

The last sum is bounded by

2N
ln k−N ln 2

ln N
(1−β

2
) = 2k1−β

2 2−(1−β
2
)N ,

hence

S1 ≤ 2N/2k−1(N ln 2 + ln 8 + 2(α− β)−1) · 2k1−β
2 2−(1−β

2
)N

= 2
β−1

2
N+1(N ln 2 + ln 8 + 2(α− β)−1)k−β/2,

which is bounded by C2k
−β/2/100 if N is large enough, depending on C2,

α, β.
We now turn to S2:

S2 = 2−N/2(N ln 2 + ln 8 + 2(α− β)−1)
∑

j> ln k−N ln 2
ln N

N−jβ/2,

and the last sum is bounded by

N− ln k−N ln 2
ln N

β
2 = k−β/22−βN/2.

Thus

S2 ≤ 2−N/2(N ln 2 + ln 8 + 2(α− β)−1) · k−
β
2 2−βN/2

= 2
β−1

2
N(N ln 2 + ln 8 + 2(α− β)−1)k−β/2,

which again is bounded by C2k
−β/2/100 if N is large enough. This ends the

proof of the lemma.

Remark. The same argument shows that if N and t are fixed, then σ
obeys (B) for all β < α with some constant C2 = C2(α, β). Thus the sets
constructed here are also Salem sets in the traditional sense.
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7 Salem’s Construction

The purpose of this section is to establish that Salem’s random construction
of Salem sets [25] provides a rich class of examples for which conditions (A)
and (B) can be verified. More precisely, we will show that there exist absolute
large constants C1 and C2 such that for α arbitrarily close to 1, there are
sets occurring with high probability that satisfy condition (A) with exponent
α and constant C1, and (B) with some β > 2/3, C2 > 0 and B = 1

2
. It is

important for our analysis that the constants C1, C2 remain bounded as
α→ 1.

Let us recall Salem’s construction of these sets, which is based on a
generalization of the Cantor construction. Given an integer d ≥ 2, let
0 < a1 < a2 < · · · ad < 1 be d numbers that are linearly independent
over the rationals. Let κ > 0 be a number satisfying

0 < κ < min{aj − aj−1 : 1 ≤ j ≤ d} and κ < 1− ad. (56)

Given an interval [a, b] of length L, a dissection of type (d, a1, a2, · · · , ad, κ) is
performed on [a, b] by calling each of the closed intervals [a+Laj, a+L(aj +
κ)], 1 ≤ j ≤ d, white and the complementary intervals black.

Let us fix the numbers d, a1, · · · , ad, and an infinite sequence {κm : m ≥
1}, each of whose elements satisfies (56). Starting with E0 = [0, 1], we
perform a dissection of type (d, a1, · · · , ad, κ1) and remove the black intervals,
thereby obtaining a set E1 which is a union of d intervals each of length κ1.
On each of the component intervals of E1, we perform a dissection of type
(d, a1, · · · , ad, κ2), remove the black intervals and so obtain a set E2 of d2

intervals each of length κ1κ2. After n steps we obtain a set En of dn intervals,
each of length κ1 · · ·κn. Letting n→∞, we obtain a perfect nowhere dense
set E = ∩∞n=1En, which has Lebesgue measure zero if dnκ1 · · ·κn → 0.

For each n ∈ N, let Fn be a continuous nondecreasing function satisfying

• Fn(x) = 0 for x ≤ 0; Fn(x) = 1 for x ≥ 1.

• Fn increases linearly by d−n on each of the dn white intervals consti-
tuting En.

• Fn is constant on every black interval complementary to En.

The pointwise limit F = limn→∞ Fn is a nondecreasing continuous function
with F (0) = 0, F (1) = 1, and can therefore be realized as the distribution
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function of a probability measure µ. The Fourier transform of µ is given by

µ̂(ξ) = P (ξ)
∞∏

n=1

P (ξκ1 · · ·κn), where P (ξ) =
1

d

d∑
j=1

e2πiajξ. (57)

Given α < 1 (note that d and α are independent parameters), let us set

κ = d−
1
α , and further restrict our choice of aj so that they satisfy

0 < a1 <
1

d
− κ, and κ < aj − aj−1 <

1

d
for 2 ≤ j ≤ d. (58)

Let Ξ = Ξ(d, α) be the collection of all infinite sequences k = {κm : m ≥ 1}
satisfying (

1− 1

2m2

)
κ ≤ κm ≤ κ, m ≥ 1.

Repeating the construction outlined in the previous paragraph with a fixed
choice of (a1, · · · , ad) as in (58) and different choices of k ∈ Ξ, we obtain an
uncountable collection of sets E = E[k], all of which have Hausdorff dimen-
sion α. In fact, the supporting measures µ = µ[k] satisfy a ball condition
of the form (A), a fact that was observed in [23]. The following result is a
rephrasing of Proposition 3.2 in [23], with special attention to the implicit
constants.

Proposition 7.1 ([23]). There exists an absolute constant C0 such that for
every α < 1 and k ∈ Ξ, the corresponding measure µ = µ[k] satisfies

µ[x, x+ r] ≤ dC0r
α, 0 < r ≤ 1.

Thus condition (A) holds with C1 = dC0.

We now turn to (B). One of the main results in [25] is that for fixed
d ≥ 2, α < 1 and (a1, · · · , ad) satisfying (58), there exists a parametrization
of Ξ = {k(t) : 0 ≤ t ≤ 1} such that for almost every t ∈ [0, 1], µ̂[k(t)] satisfies
a decay condition. We need a stronger version of this result that formalizes
how the implicit constant in the Fourier decay condition depends on α. The
main result in this section is the next proposition.

Proposition 7.2. For all d sufficiently large, there exist constants C2 ≥ 1,
ε0 � 1 and β > 4

5
(depending on d) with the following property. For every

α ∈ (1− ε0, 1), there exist numbers (a1, · · · , ad) satisfying (58) such that the
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random measures µ = µ[k] constructed by Salem based on (a1, · · · , ad) obey
the Fourier decay estimate

|µ̂(ξ)| ≤ C2

(1− α)
1
2

|ξ|−
β
2 for all ξ 6= 0,

with large probability.

The proof of the proposition is based on the following three lemmas.

Lemma 7.3. Given any m,M ≥ 10, there exists x = (x1, · · · , xm) ∈ (0, 1)m

such that

|x · r| ≥M−2m for all 0 6= r ∈ Zm, ||r||∞ ≤M.

Proof. The proof is a simple volume estimation argument. Given any r as in
the statement of the lemma, let

Vr =
{
x ∈ (0, 1)m : |x · r| < ε||r||∞

}
.

Then |Vr| ≤ ε. Since the number of possible choices of r is (2M + 1)m − 1,
| ∪ {Vr : 0 6= r ∈ Zm, ||r||∞ ≤ M}| ≤ (2M + 1)mε. Choosing any ε <
(2M + 1)−m would therefore guarantee the existence of x ∈ [0, 1]m \ ∪Vr. In
particular, ε = M−2m suffices.

Lemma 7.4. Let Q(ξ) =
∑d

j=1 λje
2πibjξ, where b = (b1, · · · , bd) is any col-

lection of real numbers linearly independent over the rationals. Given s > 0,
let

δs(b) = inf
{
|b · j| : 0 6= j ∈ Zd, j · 1 = 0, ||j||∞ ≤ s

2
+ 1

}
> 0, (59)

where 1 = (1, · · · , 1) ∈ Rd. Then there exists a constant c = c(d, s) > 0 such
that for all T ≥ T0 = c(d, s)(δs(b))−1 and all t ∈ R:

1

T

∫ T+t

t

|Q(ξ)|sdξ ≤ 2
(s

2
+ 1

) s
2 ( d∑

j=1

λ2
j

) s
2 .
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Proof. This result is a variant of the lemma in section 3 of [25]. Unlike [25]
however, we are mainly concerned with the explicit dependence of T0 on
δs(b), so we revise the proof with attention to this detail. Let 2q be the even
integer such that s ≤ 2q < s+ 2. Then |Q(ξ)|2q = Q(ξ)qQ(ξ)q = Q1 +Q2(ξ),
where

Q1 =
∑
j≥0

j·1=q

|λλλ2j|
(
q!

j!

)2

< q!
∑
j≥0

j·1=q

|λλλ2j|q!
j!

= q!
( d∑

j=1

|λj|2
)q

, and

Q2(ξ) =
∑
j 6=i

j·1=i·1=q

λλλjλλλ
i
e2πiξ(j−i)·b.

Here λλλ = (λ1, · · · , λd); the vectors j = (j1, · · · , jd) and i = (i1, · · · , id)
are multi-indices consisting of non-negative integer entries; j! = j1! · · · jd!,
λλλj = λj1

1 · · ·λ
jd

d . Thus

1

T

∫ T+t

t

|Q(ξ)|2q dξ ≤ q!
( d∑

j=1

|λj|2
)q

+
1

T

∣∣∣∣∫ T+t

t

Q2(ξ) dξ

∣∣∣∣
≤ q!

( d∑
j=1

|λj|2
)q

+
∣∣∣ ∑

j 6=i
j·1=i·1=q

λλλjλλλ
k

[
e2πi(j−i)·b(T+t) − e2πi(j−i)·bt

]
T (j− i) · b

∣∣∣
≤ q!

( d∑
j=1

|λj|2
)q

+ c(d, q)||λλλ||2q
∞

1

δs(b)T
,

and hence ≤ 2q!
(∑d

j=1 |λj|2
)q

if T ≥ T0 = c(d, q)(δs(b))−1. By Hölder’s

inequality, [
1

T

∫ T+t

t

|Q(ξ)|s dξ
] 1

s

≤
[

1

T

∫ T+t

t

|Q(ξ)|2q dξ

] 1
2q

≤ (2q!)
1
2q

( d∑
j=1

|λj|2
) 1

2

≤ 2
1
2q q

1
2

( d∑
j=1

|λj|2
) 1

2
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≤ 2
1
s

(s
2

+ 1
) 1

2
( d∑

j=1

|λj|2
) 1

2
,

whence the result follows.

Lemma 7.5. Given d and s ≥ 2, there exist positive constants c0 and ε0 � 1
depending only on these parameters such that for all α ∈ (1− ε0, 1), there is
a = (a1, · · · , ad) satisfying (58) and δs(a) ≥ c0(1 − α). Here δs(·) is as in
(59).

Proof. We replace the variables a = (a1, · · · , ad) satisfying (58) by the new
set ηηη = (η2, · · · , ηd) ∈ [0, 1]d−1, with ζζζ = (ζ2, · · · , ζd) being an intermediate
set of coordinates. These are defined as follows:

ζj = d
1
α (aj − aj−1) for 2 ≤ j ≤ d, so that 1 < ζj < d

1
α
−1, and

ηj =
ζj − 1

d
1
α
−1 − 1

for 2 ≤ j ≤ d, so that 0 < ηj < 1.

For any 0 6= j ∈ Zd with j · 1 = 0 and ||j||∞ ≤ s
2

+ 1, the linear functional
a 7→ j · a may be expressed in these new coordinates as:

j · a =

(
1

d

) 1
α

[ζ2(j2 + · · ·+ jd) + ζ3(j3 + · · ·+ jd) + · · ·+ ζdjd]

=

(
1

d

) 1
α

[ζ2m2 + · · ·+ ζdmd]

=

(
1

d

) 1
α [

m · 1 +
(
d

1
α
−1 − 1

)
ηηη ·m

]
,

where m = (m2, · · · ,md) ∈ Zd−1, m` = j` + j`+1 + · · · + jd, so that 0 <
||m||∞ ≤ ds. Thus to prove the lemma it suffices to show that for all α
sufficiently close to 1, there exists ηηη ∈ (0, 1)d−1 satisfying

inf
{(1

d

) 1
α

∣∣∣m · 1 +
(
d

1
α
−1 − 1

)
ηηη ·m

∣∣∣ : 0 6= m ∈ Zd−1, ||m||∞ ≤ ds
}

≥ c0(1− α).
(60)

We consider two cases. If m · 1 6= 0, then for every ηηη ∈ (0, 1)d−1,(1

d

) 1
α

∣∣∣m · 1 +
(
d

1
α
−1 − 1

)
ηηη ·m

∣∣∣ ≥ (1

d

) 1
α

[
1−

(
d

1
α − 1

)
d2s

]
≥ 1

2d2
,

31



provided α is close enough to 1 to ensure (d
1
α
−1−1)d2s ≤ 2(1−α)d3s log d ≤

1
2
. This of course gives a better estimate than required by (60). If m · 1 = 0,

then by Lemma 7.3 there exists ηηη ∈ (0, 1)d−1 such that(1

d

) 1
α (
d

1
α
−1−1

)
|ηηη ·m| ≥ d−2(1−α) log d|ηηη ·m| ≥ d−2(1−α) log d(ds)−2(d−1).

This completes the proof of (60) and hence the lemma.

Proof of Proposition 7.2. We follow the proof of Theorem II in [25] with
minor modifications and special attention to constants. Let ε > 0 be suffi-
ciently small (for instance any ε < 1

10
suffices). The value of ε will remain

fixed throughout the proof and the constant C2 in condition (B) will depend
on this choice of ε. Let s = 3/ε, and d be the smallest integer ≥ 2 such that

√
d ≥ 2

(s
2

+ 1
) s

2
.

By Lemma 7.5, there exist constants c0 and ε0 > 0 depending only on ε such
for every α ∈ (1 − ε0, 1) we can find a = (a1, · · · , ad) satisfying (58) and
δs(a) ≥ c0(1−α). For this choice of a and s, and P as in (57), the conclusion
of Lemma 7.4 holds with Q replaced by P , and T0 = Cε/(1 − α) for some
large constant Cε (independent of α). Let µt denote the random measure
generated by the sequence k(t) ∈ Ξ, 0 ≤ t ≤ 1, and the fixed choice of a
above. Choosing θ = 2( s

2
− 1)/(s− 1), the proof of Theorem II in [25] yields∫ 1

0

|µ̂t(n)|sdt ≤ 1

|n|α( s
2
−1)

, for |n| ≥ T0.

Writing α( s
2
− 1) = 2 + γ, we obtain for some absolute constant C > 0,∑

n≥T0

nγ

∫ 1

0

|µ̂t(n)|sdt ≤
∑
n≥T0

1

n2
≤ C

T0

. (61)

By (61) and Chebyshev’s inequality,

P
({
t : sup

n6=0

∣∣|n| γ
s µ̂t(n)

∣∣ > N
})

≤ P
(∑

n6=0

|n|γ
∣∣µ̂t(n)

∣∣s > N s
)

≤ P
(∑

n≥T0

|n|γ|µ̂t(n)|s > N s − T γ+1
0

)
≤ C/T0

N s − T γ+1
0

.
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Choosing N =
√
T0, and observing that

γ

s
=
α

2
− (α + 2)

s
=
α

2
− ε

(α + 2)

3
,

we deduce that with large probability, condition (B) holds with some expo-
nent β > 4

5
, some constant C2 (uniform in α) and B = 1

2
, provided that α is

close to 1, and ε is sufficiently small.

8 Brownian images

In this section, we address the question of finding 3-term arithmetic progres-
sions in the “random” Salem sets constructed by Kahane [16].

Fix α ∈ (0, 1), and let Fα be a subset of [0, 1] of Hausdorff dimension α/2.
Let θ = θα be a probability measure on a set Fα ⊂ R such that

θα(I) ≤ C0|I|
α
2 (62)

for each interval I. By Frostman’s lemma, such a measure exists provided Fα

has positive Hausdorff measure of order α
2
. The constant C0 can be chosen

uniform in α as α → 1, provided the α
2
-dimensional Hausdorff measure of

Fα remains bounded away from zero (see [16], p130). We will always assume
this to be the case. Let W (·) denote the one-dimensional Brownian motion,
and µ the image of θ by W , i.e.,∫

f dµ =

∫ 1

0

f(W (t)) dθ(t),

so that µ is a random measure on R. The Fourier transform of µ is given by

µ̂(ξ) =

∫ 1

0

e−2πiξW (t)dθ(t).

Kahane [16] proves that under the above assumptions, E = suppµ is almost
surely a Salem set: for all β < α we have almost surely

sup
ξ∈R

|(1 + |ξ|)
β
2 |µ̂(ξ)| <∞. (63)

It is not difficult to modify Kahane’s argument so as to show that Assump-
tion (B) holds (i.e. the implicit constants in (63) can be chosen independent
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of α) with probability at least 1/2. On the other hand, Assumption (A) is
not expected to hold: it is known in the probabilistic literature (see e.g. [7])
that Brownian images of measures as in (62) obey an estimate similar to (A)
but with an additional factor of log(ε−1), and that this is optimal. Thus our
Theorem 1.2 does not apply in this case.

Nonetheless, we are able to show that Brownian images contain non-
trivial 3-term arithmetic progressions with positive probability. Our ap-
proach here will not rely on Theorem 1.2; instead, we will appeal directly to
a variant of Proposition 2.3 which we now state.

Proposition 8.1. Let µ be a probability measure supported on a closed set
E ⊂ R such that (63) holds for some β ∈ (2/3, 1]. Assume furthermore that
Λ(µ, µ, µ) > 0, where

Λ(µ, µ, µ) =

∫
µ̂2(ξ)µ̂(−2ξ)dξ. (64)

Then there are x, y ∈ E such that x 6= y and x+y
2
∈ E.

This differs from the statement of Proposition 2.3 in that µ is no longer
required to be compactly supported and that, accordingly, the Λ quantity is
now defined using the continuous Fourier transform rather than the Fourier
series. Proposition 8.1 follows by exactly the same argument as in Section 3,
except that ν is now a linear functional on Cc(R2), the space of all compactly
supported continuous functions on R2.

Our desired conclusion now follows from Proposition 8.1 and the next
proposition.

Proposition 8.2. There is a constant c > 0, depending only on the constant
C0 in (62) but independent of α as long as α > 2

3
+ ε, such that

P(Λ(µ, µ, µ) > 0) ≥ c.

The proof of Proposition 8.2 will rely on the following result due to Ka-
hane [16], which we state here without proof. (Strictly speaking, this is only
proved in [16] for integer q, but the extension to all q > 0 follows trivially
from Hölder’s inequality.)

Proposition 8.3. [16, pp. 254–255] Let µ be as defined above. Then for
any ξ 6= 0 and any q > 0,

E
[
|µ̂(ξ)|2q

]
≤ (C ′

0q|ξ|−α)q,

where C ′
0 depends only on C0 but not on q or α.
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Lemma 8.4. There is a constant C, depending only on C0, such that for µ
as above we have

E
[∫

|µ̂(ξ)|2|µ̂(−2ξ)| dξ
]
< C, (65)

E

[(∫
|µ̂(ξ)|2|µ̂(−2ξ)| dξ

)2
]
< C. (66)

In particular, this implies E(|Λ(µ, µ, µ)|) <∞ and E(|Λ(µ, µ, µ)|2) <∞.

Proof. It suffices to prove (66), since (65) follows from it via Hölder’s in-
equality.

Let p, p′ ∈ (1,∞) be dual exponents. By Hölder’s inequality, we have

E
[(∫

|µ̂(ξ)|2|µ̂(−2ξ)|dξ
)2

]
≤ E

(
||µ̂||42p||µ̂||2p′

)
≤ E

(
||µ̂||4p

2p

)
+ E

(
||µ̂||2p′

p′

)
.

Let η, κ be positive numbers to be fixed later. Using Hölder’s inequality once
more, we estimate the last line by

E
(∫

|µ̂(ξ)|4p(1 + |ξ|)1+2ηdξ

) (∫
(1 + |ξ|)−(1+2η)dξ

)
+ E

(∫
|µ̂(ξ)|2p′(1 + |ξ|)1+2κdξ

) (∫
(1 + |ξ|)−(1+2κ)dξ

)
≤ C

∫
E(|µ̂(ξ)|4p)(1 + |ξ|)1+2ηdξ

+ C

∫
E(|µ̂(ξ)|2p′)(1 + |ξ|)1+2κdξ,

where the constants are uniformly bounded as long as

η, κ > ε0 > 0. (67)

By Proposition 8.3, this is bounded by

C

∫
(2C ′

0p(1 + |ξ|)−α)2p(1 + |ξ|)1+2ηdξ

+ C

∫
(C ′

0p
′(1 + |ξ|)−α)p′(1 + |ξ|)1+2κdξ

≤ C ′
∫

(1 + |ξ|)−2αp+1+2ηdξ + C ′
∫

(1 + |ξ|)−αp′+1+2κdξ.
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Both integrals above converge, provided that η < αp−1 and κ < αp′

2
−1. If we

choose p = 3/2, p′ = 3, then the conditions on η and κ become η, κ < 3α
2
−1,

which is consistent with (67) if α is bounded from below away from 2/3.

Lemma 8.5. There is an absolute constant c0 > 0 such that E(Λ(µ, µ, µ)) >
c0.

Proof. Let us define

Λε(µ, µ, µ) =

∫
µ̂(ξ)2µ̂(−2ξ)e−2π2ε|ξ|2 dξ.

Lemma 8.4 combined with dominated convergence (in ξ) yields Λε → Λ as
ε→ 0 for almost every Brownian path. Further,

E(Λε) =

∫ [∫
E

(
e2πi(2W (t3)−W (t1)−W (t2))ξ−2π2ε|ξ|2

)
dξ

] 3∏
i=1

dθ(ti)

=
∑
π∗

∫
Uπ∗

[∫
E

(
e2πi(2W (t3)−W (t1)−W (t2))ξ−2π2ε|ξ|2

)
dξ

] 3∏
i=1

dθ(ti),

where π∗ = (π∗1, π
∗
2, π

∗
3) ranges over all permutations of (1, 2, 3), and Uπ∗ =

{t = (t1, t2, t3) : tπ∗1 < tπ∗2 < tπ∗3}. We claim that the sum above is strictly
positive.

Consider the term with π∗ = (1, 2, 3), all other cases being similar. Since
W (t1), W (t2) − W (t1) and W (t3) − W (t2) are independent and normally
distributed, 2W (t3)−W (t1)−W (t2) = (W (t2)−W (t1)) + 2(W (t3)−W (t2))
is also normal with mean 0 and variance σ2 = σ2

π∗(t) = t2 − t1 + 4(t3 − t2).
It follows therefore that

E
(
e2πi(2W (t3)−W (t1)−W (t2))ξ

)
= e−2π2σ2|ξ|2 , which implies

∫
Uπ∗

[∫
E

(
e2πi(2W (t3)−W (t1)−W (t2))ξ−2π2ε|ξ|2

)
dξ

] 3∏
i=1

dθ(ti)

=
1√
2π

∫
U∗π

∏3
i=1 dθ(ti)√

(t2 − t1) + 4(t3 − t2) + ε
.

Note that since 0 ≤ ti ≤ 1, the expression in the denominator is bounded
from above by

√
5 + ε.
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A similar calculation can be performed for each of the remaining terms.
Since Λε ≤

∫
|µ̂(ξ)|2|µ̂(−2ξ)|dξ, whose expectation has been shown to be

finite in Lemma 8.4, another application of dominated convergence (this time
on the space of Brownian paths) yields

E(Λ) = lim
ε→0

E(Λε) =
1√
2π

∫ [∑
π∗

1Uπ∗ (t)

σπ∗(t)

]
3∏

i=1

dθ(ti).

Since the function
∑

π∗ 1Uπ∗σ
−1
π∗ bounded from below by a strictly positive

universal constant in [0, 1]3, except for the zero-measure set where it is not
defined, this proves the lemma.

Proof of Proposition 8.2. The proposition follows immediately from Lem-
mas 8.4, 8.5, and the Paley-Zygmund inequality [16, p.8]:

P(X > λE(X)) ≥ (1− λ)2 (E(X))2

E(X2)
,

where 0 < λ < 1 and X is a positive random variable with E(X2) <∞.
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[19] Y. Kohayakawa, T.  Luczak, V. Rödl, Arithmetic progressions of length
three in subsets of a random set, Acta Arith. 75 (1996), 133–163.

[20] M. Kolountzakis, Infinite patterns that can be avoided by measure, Bull.
London Math. Soc. 29 (1997), 4, 415-424.

38
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