
SPLITTING FOR INTEGER TILINGS

IZABELLA  LABA AND ITAY LONDNER

Abstract. We consider translational integer tilings by finite sets A ⊂ Z. We introduce a
new method based on splitting, together with a new combinatorial interpretation of some of
the main tools of [24], [25]. We also use splitting to prove the Coven-Meyerowitz conjecture
for a new class of tilings A⊕B = ZM . This includes tilings of period M = pn1

1 pn2
2 pn3

3 with

p1 > pn2−1
2 pn3−1

3 , and tilings of period M = pn1
1 p22p

2
3p

2
4 with p1 > p2p3p4, where p1, p2, p3, p4

are distinct primes and n1, n2, n3 ∈ N.
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1. Introduction

Let A ⊂ Z be a finite and nonempty set. We say that A tiles the integers by translations,
and call it a finite tile, if there is a set T ⊂ Z such that each n ∈ Z has a unique representation
n = a+ t with a ∈ A and t ∈ T . It is well known [36] that any such tiling must be periodic,
so that there exists a M ∈ N such that T = B ⊕MZ for some finite set B ⊂ Z. We then
have |A| |B| =M , so that A⊕B = ZM is a factorization of the cyclic group ZM .

By translational invariance, we may assume that A,B ⊂ {0, 1, . . . }. The mask polynomials
of A and B are

A(X) =
∑
a∈A

Xa, B(x) =
∑
b∈B

Xb.
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2 IZABELLA  LABA AND ITAY LONDNER

In this language, A⊕B = ZM is equivalent to

(1.1) A(X)B(X) = 1 +X + · · ·+XM−1 mod (XM − 1).

Recall that the s-th cyclotomic polynomial Φs(X) is the minimal polynomial of e2πi/s.
The identity

Xn − 1 =
∏
s|n

Φs(X),

allows us to rephrase (1.1) as

|A||B| =M and Φs(X) | A(X)B(X) for all s|M, s ̸= 1.

Since Φs are irreducible, each Φs(X) with s|M must divide at least one of A(X) and B(X).

The Coven-Meyerowitz theorem [3] is as follows.

Theorem 1.1. [3] Let SA be the set of prime powers pα such that Φpα(X) divides A(X).
Consider the following conditions.

(T1) A(1) =
∏

s∈SA
Φs(1),

(T2) if s1, . . . , sk ∈ SA are powers of different primes, then Φs1...sk(X) divides A(X).

Then:

• if A satisfies (T1), (T2), then A tiles Z;
• if A tiles Z then (T1) holds;
• if A tiles Z and |A| has at most two distinct prime factors, then (T2) holds.

We do not know whether all finite tiles satisfy (T2). The statement that this is true
has become known in the literature as the Coven-Meyerowitz conjecture and is generally
considered to be the main open question in the theory of integer tilings. The progress to
date includes our work in [24], [25], leading to Theorem 1.3 in the odd case and partial
results for general tilings, as well as mild extensions of the Coven-Meyerowitz theorem in
[32], [41], [46], and proofs of (T2) for tilings of certain special types [22], [5]. There is also
significant interest in other tiling questions, for example translational tilings of Zn and Rn

[1], [12], [14], [15], and tilings of the real line by a function [19]).

The main result of this paper is the following theorem. For N ∈ N, we will use the notation

D(N) =
N∏

p|N,p prime p
.

Theorem 1.2. Let M = pn1
1 M1, where p1 is prime, n1 ∈ N, and p1 ∤ M1. Assume that for

any M ′|M1, (T2) holds for both A′ and B′ in any tiling A′ ⊕B′ = ZM ′, and that

(1.2) p1 > D(M1).

Then in any tiling A⊕B = ZM , both A and B satisfy (T2).

Theorem 1.2 is a natural application of splitting, a new method developed in this article
and described briefly below. The proof is much shorter and simpler than those in [24], [25].
Splitting is also an important part of the proof of Theorem 1.3. In [25], we proved Theorem
1.3 under the additional assumption that M is odd. In the companion paper [26] we use a
combination of splitting and the methods of [24], [25] to extend the same result to the even
case, thus completing the proof of the theorem.
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Theorem 1.3. [25], [26] Let M = p21p
2
2p

2
3, where p1, p2, p3 are distinct primes. Assume that

A⊕B = ZM , with |A| = |B| = p1p2p3. Then both A and B satisfy (T2).

In order to apply Theorem 1.2, we need to have a number M ′ such that (T2) holds for
both tiles in any M ′-periodic tiling. Such choices of M ′ are provided by Theorems 1.1, 1.3,
and [24, Corollary 6.2]. Corollary 1.4 below states the most general assumptions onM under
which our work here, combined with [24], [25], [26], yields (T2) for both tiles in any tiling
A⊕B = ZM .

Corollary 1.4. Let
M∗ = pα1

1 p
α2
2 p

α3
3 p4p5 . . . pKq

β1

1 . . . qβL

L ,

where p1, . . . , pK , q1, . . . , qL are distinct primes, β1, . . . , βL ∈ N, and either

(1.3) α3 = 1, α1, α2 ∈ N,
or

α1 = α2 = α3 = 2.

Assume further that

(1.4) qj > D(Nj) for j = 1, . . . , L,

where N1 := pα1
1 p

α2
2 p

α3
3 and

Nj := Nj−1q
βj

j for j = 2, . . . , L.

Then for any M |M∗, both tiles A and B in any tiling A⊕B = ZM satisfy (T2).

The two special cases below use Theorem 1.2 together with Theorems 1.1 and 1.3.

Corollary 1.5. Assume that A⊕B = ZM , and that one of the following holds:

• M = pn1
1 p

n2
2 p

n3
3 with p1 > pn2−1

2 pn3−1
3 ,

• M = pn1
1 p

2
2p

2
3p

2
4 with p1 > p2p3p4,

where p1, p2, p3, p4 are distinct primes and n1, n2, n3 ∈ N. Then both A and B satisfy (T2).

We note the application to Fuglede’s conjecture [10] which (in its original formulation)
states that a set Ω ⊂ Rn of positive n-dimensional Lebesgue measure tiles Rn by translations
if and only if the space L2(Ω) admits an orthogonal basis of exponential functions. A set with
the latter property is called spectral. The conjecture is known to be false, in its full generality,
in dimensions 3 and higher [45], [20], [21], [8], [35], [9]. However, there are important special
cases in which the conjecture was confirmed [16], [13], [31], and the finite abelian group
analogue of the conjecture is currently a very active area of research, see e.g. [7], [17], [18],
[32], [33], [41].

In dimension 1, the problem is still open in both directions, and the “tiling implies spec-
trum” direction hinges on proving (T2) for all finite tiles ([28], [29], [23]; see also [6] for an
overview of the problem and an investigation of the converse direction). Our Corollary 1.4,
combined with [23, Theorem 1.5] and [24, Corollary 6.2], yields the following result.

Corollary 1.6. Let M satisfy the assumptions of Corollary 1.4. Then:

(i) If A ⊂ ZM tiles ZM by translations, then it is spectral.
(ii) Let A ⊂ Z be a finite set such that A mod M tiles ZM , and let F =

⋃
a∈A[a, a+ 1],

so that F tiles R by translations. Then F is spectral.
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As mentioned above, our arguments are based on splitting (Section 4). Given a fiber in
ZM (an arithmetic progression of stepM/p and length p for some prime divisor p|M), we ask
which elements of A and B tile the elements of that progression. It is not difficult to prove
that, for each fiber separately, these elements must follow a certain “splitting” pattern. If
these splitting patterns are uniform for all M -fibers corresponding to some prime factor p,
and if this uniformity persists under dilations of the sets A and B, we are able to apply a
tiling reduction developed in [24, Section 6.2].

If the assumption (1.2) holds, it is relatively easy both to prove such uniformity and to set
up an inductive argument proving (T2). For other classes of tilings, further work is needed.
Towards this end, in Section 7 we prove several partial results on splitting consistency on
grids that are needed in the proof of Theorem 1.3 in [26].

An additional goal of this paper is to revisit and simplify some of our results from [24, 25].
In Section 3, we provide a simple proof of Theorem 3.7 based on the dilation theorems of
Sands and Tijdeman, and a new combinatorial interpretation of concepts (such as saturating
sets) derived from that theorem. In Section 5, we give a new formulation of the slab reduction
from [24] in terms of splitting. This offers an easier way to verify the criteria of the reduction
(see [26, Section 9] for examples), and supplies a key part of our proof of Theorem 1.2.

2. Notation and preliminaries

We assume thatM = pn1
1 . . . pnK

K , where p1, . . . , pK are distinct primes and n1, . . . , nK ∈ N.
If A ⊂ ZM , its mask polynomial is A(X) =

∑
a∈AX

a. We use the convolution notation
A ∗ B for the weighted sumset of A and B (interpreted as a multiset if necessary), so
that (A ∗ B)(X) = A(X)B(X). If one of the sets is a singleton, say A = {x}, we write
x ∗B = {x} ∗B. The direct sum notation A⊕B is reserved for tilings, so that A⊕B = ZM

means that A,B ⊂ ZM are both sets and A(X)B(X) = XM−1
X−1

mod XM − 1.

The Chinese Remainder Theorem identifies the cyclic group ZM with Zp
n1
1

⊕ Zp
n2
2

⊕ . . .⊕
Zp

nK
K

. This allows us to interpret ZM as a K-dimensional lattice, periodic in each direction,

with an explicit coordinate system defined as follows. For j ∈ {1, . . . , K}, letMj :=M/p
nj

j =∏
i ̸=j p

ni
i . Then each x ∈ ZM has a unique representation

x =
K∑
j=1

xjMj, xj ∈ Z
p
nj
j
.

For D|M , a D-grid in ZM is a set of the form

Λ(x,D) := x ∗DZM = {x′ ∈ ZM : D|(x− x′)}

for some x ∈ ZM . We note a few important special cases.

• A line through x ∈ ZM in the pν direction is the set ℓν(x) := Λ(x,Mν).
• A plane through x ∈ ZM perpendicular to the pν direction, on the scale Mνp

αν
ν , is

the set Π(x, pαν
ν ) := Λ(x, pαν

ν ).
• A fiber in the pν direction is a set of the form x ∗ Fν , where x ∈ ZM and

Fν = {0,M/pν , 2M/pν , . . . , (pν − 1)M/pν}.

Thus x ∗ Fν = Λ(x,M/pν).
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A set A ⊂ ZM is fibered in the pj direction if there is a subset A′ ⊂ A such that A = A′∗Fj.
Since in this paper we only consider fibers at the top scale M , we use the terms “fiber” and
“fibered” instead of “M -fiber” and “M -fibered” as in [24], [25], [26].

3. Divisor isometries and the box product

3.1. Divisor isometries. We continue to assume that M = pn1
1 . . . pnK

K , where p1, . . . , pK
are distinct primes. The divisor set of A ⊂ ZM is the set

Div(A) := {(a− a′,M) : a, a′ ∈ A}

Our analysis here is motivated in part by the fundamental theorems of Sands [39] and
Tijdeman [47], which we now state.

Theorem 3.1. (Divisor exclusion; Sands [39]) Let A,B ⊂ ZM . Then A ⊕ B = ZM if
and only if |A| |B| =M and

Div(A) ∩Div(B) = {M}.

Theorem 3.2. (Dilation invariance of tiling; Tijdeman [47]) Let A⊕B = ZM , and let
r ∈ ZM satisfy (r, |A|) = 1. Then rA⊕B = ZM is also a tiling, where rA = {ra : a ∈ A}.

Definition 3.3. Let ψ : ZM → ZM be a mapping. We will say that ψ is a divisor isometry
if for every x, x′ ∈ ZM we have

(ψ(x)− ψ(x′),M) = (x− x′,M).

Examples of divisor isometries include translations τc(x) = x − c for any c ∈ ZM and
invertible dilations ψr(x) = rx for any r ∈ R, where

R := {r ∈ ZM : (r,M) = 1}.

We note that the composition of any number of translations and dilations is always a linear
transformation. An example of a divisor isometry that is not a linear mapping is provided
by a plane exchange mapping, defined as follows. Let c, c′ ∈ ZM satisfy (c− c′,M) =Mip

α−1
i

for some i ∈ {1, . . . , K} and 0 < α ≤ ni. Then

Ex(c, c′, pαi )(x) :=


x+ (c′ − c) if x ∈ Π(c, pαi ),

x+ (c− c′) if x ∈ Π(c′, pαi ),

x if x ̸∈ Π(c, pαi
i ) ∪ Π(c′, pαi

i ).

Lemma 3.4 below is an immediate consequence of Theorem 3.1.

Lemma 3.4. Let ψ : ZM → ZM be a divisor isometry. If A ⊕ B = ZM is a tiling, then so
is ψ(A)⊕B = ZM .

We use ϕ to denote the Euler totient function: if n =
∏L

i=1 q
βi

i , where q1, . . . , qL are distinct

primes and βi ∈ N, then ϕ(n) =
∏L

i=1(qi − 1)qβi−1
i .

Lemma 3.5. (Properties of dilations) For r ∈ R, let ψr be the dilation ψr(z) = rz. Let
x, x′ ∈ ZM with (x,M) = (x′,M) = m. Let

Rx,x′ := {r ∈ R : ψr(x) = x′}.
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Then

|Rx,x′ | = ϕ(M)

ϕ(M/m)
.

Moreover, for any r ∈ Rx,x′ we have

Rx,x′ = Λ(r,M/m) ∩R.

Proof. Let x, x′ ∈ ZM with (x,M) = (x′,M) = m. We first check that there exists at
least one r ∈ R such that rx = x′. Indeed, since (x/m,M) = (x′/M) = 1, the numbers
x/m and x′/m are invertible in ZM . Let r = (x/m)−1x′/m, then (r,M) = 1 and rx =
(x/m)−1(x′/m)x = (x/m)−1(x/m)x′ = x′.

With r as above, we have r′ ∈ Rx,x′ if and only if r ∈ R and rx = r′x = x′, so that
(r − r′)x = 0 in ZM . Since (x,M) = m, we need r − r′ to be divisible by M/m. In other
words, r′ ∈ R ∩ Λ(r,M/m).

We now count the number Y of elements r′ ∈ Λ(r,M/m) such that (r′,M) = 1. Without
loss of generality, we may assume thatM/m = pα1

1 . . . pαl
l for some l ≤ K and α1, . . . , αl ≥ 1.

Then |Λ(r,M/m)| = m, and

Y = m ·
K∏

j=l+1

pj − 1

pj
,

ϕ(M/m)Y =
M

m

l∏
j=1

pj − 1

pj
·m

K∏
j=l+1

pj − 1

pj
= ϕ(M)

as claimed. □

Lemma 3.6. (Multitransitivity of dilations) For ν = 1, . . . , K, let xν , x
′
ν ∈ ZM with

(xν ,M) = (x′ν ,M) = M/pαν
ν , where α1, . . . , αK ≥ 1. Then there exists r ∈ R such that

rxν = x′ν for ν = 1, . . . , K.

Proof. By Lemma 3.5, for each ν there exists rν ∈ R such that rνxν = x′ν . Furthermore,

Rxν ,x′
ν
= Π(rν , p

αν
ν ) ∩R.

Let r ∈
⋂K

ν=1 Π(rν , p
αν
ν ). We claim that r ∈ R. Indeed, suppose that pν |r for some ν. Since

pαν
ν |r − rν and αν ≥ 1, this implies that pν |rν , contradicting the fact that rν ∈ R. This
establishes the claim, and proves that r satisfies the conclusion of the lemma. □

A brief discussion of the relationship between Theorem 3.1, Theorem 3.2, and Lemma 3.4
is in order. The special case of Tijdeman’s theorem with r ∈ R was first proved by Sands
[39, Theorem 2]. Sands used this to prove Theorem 3.1 [39, Theorem 3]. Lemma 3.4 uses
Theorem 3.1 to extend [39, Theorem 2] to more general divisor isometries.

Theorem 3.2 extends Theorem 3.1 in a different direction. Instead of assuming as in [39,
Theorem 2] that r ∈ R, Tijdeman only assumes that r is relatively prime to |A|. This is a
significantly weaker assumption, since the mapping x → rx with (r, |A|) = 1 need not be a
divisor isometry if |B| has prime factors that |A| does not have. Coven and Meyerowitz [3]
used the full strength of Theorem 3.2 to prove that if |A| tiles the integers, then it must in
fact tile a cyclic group ZM for some M with the same prime factors as |A|.
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3.2. A combinatorial interpretation of the box product. Following [24, 25] we define
for x ∈ ZM

Am[x] = #{a ∈ A : (x− a,M) = m}.
If X ⊂ ZM and x ∈ ZM , we write Am[x|X] = #{a ∈ A ∩X : (x− a,N) = m}.

For A,B ⊂ ZM , we define their box product

⟨A[x],B[y]⟩ =
∑
m|M

1

ϕ(M/m)
Am[x]Bm[y].

Theorem 3.7. ([24]; following [11, Theorem 1]) If A⊕B = ZM is a tiling, then

(3.1) ⟨A[x],B[y]⟩ = 1 ∀x, y ∈ ZM .

The proof of Theorem 3.7 in [11], [24] uses discrete harmonic analysis. Below, we present
an alternative combinatorial proof, based on averaging over dilations ψr with r ∈ R.

Proof. Suppose that A⊕B = ZM . Without loss of generality, we may assume that x = y = 0.
By Theorem 3.2, we have rA⊕B = ZM for all r ∈ R.

We count the number of triples (a, b, r) ∈ A × B × R such that ra + b = 0. We have
|R| = ϕ(M), and for every r ∈ R, it follows from Theorem 3.2 that there is exactly one pair
(a, b) ∈ A×B such that ra+ b = 0. Thus the number of such triples is ϕ(M).

On the other hand, let m|M , and suppose that b ∈ B satisfies (b,M) = m. Then
(−b,M) = m, and by Lemma 3.5, for every a ∈ A with (a,M) = m we have

|{r ∈ R : ψr(a) = −b}| = ϕ(M)

ϕ(M/m)
.

Thus the number of triples as above is also equal to∑
m|M

ϕ(M)

ϕ(M/m)
Am[0]Bm[0].

The identity follows. □

3.3. Saturating sets. Let A⊕B = ZM , and x, y ∈ ZM . We define

Ax,y := {a ∈ A : (x− a,M) = (y − b,M) for some b ∈ B},
and similarly for By,x with A and B interchanged. These are the sets that saturate the box
product in (3.1), in the sense that

⟨A[x|Ax,y],B[y|By,x]⟩ = 1.

We also define the saturating set for x with respect to A,

Ax := {a ∈ A : (x− a,M) ∈ Div(B)} =
⋃
b∈B

Ax,b,

with By defined similarly.

We note an alternative description of saturating sets, based on dilations and closely related
to the alternative proof of Theorem 3.7 presented above.

Lemma 3.8. Let A ⊕ B = ZM be a tiling, and let x, y ∈ ZM , a ∈ A, b ∈ B. Then the
following are equivalent:
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(i) a ∈ Ax,y and b ∈ By,x,
(ii) there exists r ∈ R such that x− a = r(y − b),
(iii) there exists r ∈ R such that 0 = (a−x)+(−r)(b−y) in the tiling τx(A)⊕(−r)τy(B) =

ZM , where we use τx to denote translations as in Section 3.1.

Proof. The equivalence between (i) and (ii) follows from Lemma 3.5. Part (iii) is a reformu-
lation of (ii). □

4. Splitting

4.1. Splitting for fibers. We continue to assume that M = pn1
1 . . . pnK

K and A⊕B = ZM .

Definition 4.1. For a set Z ⊂ ZM , define

ΣA(Z) = {a ∈ A : z = a+ b for some z ∈ Z, b ∈ B},
ΣB(Z) = {b ∈ B : z = a+ b for some z ∈ Z, a ∈ A}.

These are the sets of elements of A and B that tile Z. Note that ΣA(Z) depends on both A
and B; whenever more than one tiling complement of A is being considered, we will identify
the relevant tiling explicitly.

Definition 4.2. Let Z = x∗Fi ⊂ ZM be a fiber in the pi direction. We will say that Z splits
with parity (A,B) if:

(i) pni
i |a− a′ for any a, a′ ∈ ΣA(Z),

(ii) pni−1
i ∥ b− b′ for any two distinct b, b′ ∈ ΣB(Z).

An extension to lower scales is easy and could be added with only minimal additional
effort, but will not be needed here.

Lemma 4.3. (Splitting for fibers) Every fiber Z splits with parity either (A,B) or (B,A).
In particular, if Z is a fiber in the pi direction, then for any a ∈ ΣA(Z) and b ∈ ΣB(Z), we
have ΣA(Z) ⊂ Π(a, pni−1

i ) and ΣB(Z) ⊂ Π(b, pni−1
i ).

Proof. Let {z0, z1, . . . , zpi−1} ⊂ ZM be a fiber in the pi direction. Without loss of generality,
we may assume that zν = νM/pi for ν = 0, 1, . . . , pi − 1.

Let aν ∈ A, bν ∈ B satisfy aν + bν = zν . Then for ν ̸= ν ′,

(aν − aν′) + (bν − bν′) = (aν + bν)− (aν′ + bν′) = (ν − ν ′)M/pi,

so that (aν − aν′ ,M/pi) = (bν − bν′ ,M/pi). The only way to reconcile this with divisor
exclusion is to have either

(4.1) pni
i |aν − aν′ and p

ni−1
i ∥ bν − bν′

or the same with A and B interchanged.

Assume now that (4.1) holds for some ν, ν ′. Then for any other ν ′′ ∈ {0, 1, . . . , pi − 1},
we must have either pni

i ∤ bν − bν′′ or p
ni
i ∤ bν′ − bν′′ . In both cases, by (4.1) with either ν

or ν ′ replaced by ν ′′, it follows that pni
i |aν − aν′′ and p

ni−1
i ∥ bν − bν′ . This implies splitting

with parity (A,B). Similarly, if (4.1) holds for some ν, ν ′ with A and B interchanged, we
get splitting with parity (B,A) instead. □
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Lemma 4.4. (Translation invariance of splitting) Let c ∈ ZM . If z ∗ Fi splits with
parity (A,B) for some z ∈ ZM , then (z − c) ∗ Fi splits with parity (τc(A), B). Similarly, if
z ∗ Fi splits with parity (B,A), then (z − c) ∗ Fi splits with parity (B, τc(A)).

Proof. Given u ∈ ZM , we have u ∈ z ∗Fi if and only if u′ := u−c ∈ (z−c)∗Fi, and u = a+b
with a ∈ A, b ∈ B if and only if u′ = a′ + b with a′ = a− c ∈ τc(A) and b ∈ B. □

Splitting is closely related to saturating sets. Our dilation-based reinterpretation of the
latter shows them to be the sets of elements of A and B that tile a fixed element z of ZM in
tilings A⊕ rB, where r ranges over an appropriate set of dilations. Splitting does not take
dilations into account; however, instead of tiling just one element of ZM , we tile an entire
arithmetic progression at the same time.

Lemma 4.5. (Splitting and saturating sets) Suppose that 0 ∈ A∩B. The following are
equivalent:

(i) a ∈ Ax,y and b ∈ By,x for x = νM/pi and y = ν ′M/pi (in other words, (a −
νM/pi,M) = (b− ν ′M/pi,M)) for some ν, ν ′ ∈ {0, . . . , pi − 1},

(ii) a+ rb = ν ′′M/pi for some r ∈ R and ν ′′ ∈ {0, . . . , pi − 1}.

Proof. We have that (i) holds if and only if a − νM/pi = −r(b − ν ′M/pi), which in turn is
equivalent to a+ rb = (ν − rν ′)M/pi □

4.2. Splitting uniformity.

Definition 4.6. (i) We say that the tiling A⊕B = ZM has uniform (A,B) splitting parity
in the pi direction if all fibers in the pi direction split with parity (A,B). Uniform (B,A)
splitting parity is defined analogously.

(ii) We say that the tiling A ⊕ B = ZM has A-uniform (A,B) splitting parity in the pi
direction if all fibers a ∗ Fi, with a ∈ A, split with parity (A,B). A-uniform (B,A) splitting
parity is defined analogously as well as the two possible B-uniform splitting parities.

We now focus on the consequences of A-uniform splitting parity.

Lemma 4.7. Assume that 0 ∈ B, and that a0 ̸= a1 ∈ A satisfy

(4.2) pni
i |a0 − a1.

Assume further that aµ ∗ Fi splits with parity (B,A) for µ = 0, 1. Then ΣA(a0 ∗ Fi) and
ΣA(a1 ∗ Fi) are disjoint.

Proof. Suppose that the conclusion is false. Then there exist a ∈ ΣA(a0 ∗ Fi) ∩ ΣA(a1 ∗ Fi)
and b0, b1 ∈ ΣB(aµ ∗ Fi) such that

a+ b0 = a0 + νM/pi

a+ b1 = a1 + λM/pi

for some ν, λ ∈ {1, . . . , pi − 1}. By the assumptions of the lemma, a0 ∗ Fi, a1 ∗ Fi split with
parity (B,A) and 0 ∈ ΣB(aµ ∗ Fi), thus p

ni
i |bµ for µ = 0, 1. Together with (4.2), this shows

that ν = λ. Subtracting the two equations above, we get a0 − a1 = b0 − b1. Since a0 ̸= a1,
this contradicts divisor exclusion. □
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Lemma 4.8. (Local uniform splitting implies uniform distribution) Assume that
0 ∈ B, and that there exists a0 ∈ A such that for every element a ∈ A∩Π(a0, p

ni−1
i ) the fiber

a ∗ Fi splits with parity (B,A). Then for every ν ∈ {1, . . . , pi − 1},

(4.3) |A ∩ Π(a0, p
ni
i )| = |A ∩ Π(a0 + νM/pi, p

ni
i )|.

Consequently, Φp
ni
i
|(A ∩ Π(a0, p

ni−1
i )).

Proof. We start by proving that

(4.4) |A ∩ Π(a0, p
ni
i )| ≤ |A ∩ Π(a0 + νM/pi, p

ni
i )| for all ν = 1, . . . , pi − 1.

Assume first that A ∩ Π(a0, p
ni
i ) = {a0}. By assumption a0 + 0 = a0 and a0 ∗ Fi splits with

parity (B,A), thus

|A ∩ Π(a0 + νM/pi, p
ni
i )| ≥ 1 for all ν = 1, . . . , pi − 1,

as required. When A∩Π(a0, p
ni
i ) is not a singleton, we simply apply Lemma 4.7 to all pairs

a ∗ Fi, a
′ ∗ Fi with a, a

′ ∈ A ∩Π(a0, p
ni
i ). We get that ΣA(a ∗ Fi) and ΣA(a

′ ∗ Fi) are disjoint
for all a, a′ ∈ A ∩ Π(a0, p

ni
i ), hence (4.4) follows.

In order to prove (4.3), it remains to prove that the converse of (4.4) holds for all ν ∈
{1, . . . , pi − 1}. Fix such ν, and let aν ∈ A ∩ Π(a0 + νM/pi, p

ni
i ) (the existence of such an

element is guaranteed by (4.4)). Since Π(a0, p
ni−1
i ) = Π(aν , p

ni−1
i ), the assumptions of the

lemma hold with a0 replaced by aν , and the converse inequality follows by applying (4.4) to
aν .

Finally, we note a combinatorial interpretation of prime power cyclotomic divisibility.
Suppose that Y ⊂ ZM is a set, and that pα|M . Since

Φpα(X) = Φp(X
pα−1

) = 1 +Xpα−1

+X2pα−1

+ · · ·+X(p−1)pα−1

,

it follows that Φpα|Y if and only if

(4.5) |Y ∩ Π(y, pα)| = 1

p
|Y ∩ Π(y, pα−1)| ∀y ∈ Y.

By (4.3), this holds for the set A∩Π(a0, p
ni−1
i ) with p = pi and α = ni. This proves the last

statement in the lemma. □

Corollary 4.9. (A-uniform splitting implies cyclotomic divisibility) Suppose that
0 ∈ B and that the tiling A ⊕ B = ZM has A-uniform (B,A) splitting parity in the pi
direction. Then Φp

ni
i
|A.

Proof. By (4.5), Φp
ni
i
|A if and only if Φp

ni
i
|A ∩ Π(a, pni−1

i ) for every a ∈ A. This together

with Lemma 4.8 implies the corollary. □

We do not know whether the converse of Corollary 4.9 holds, i.e. whether Φp
ni
i
|A implies

that the tiling A⊕B = ZM has A-uniform (B,A) splitting parity in the pi direction.
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5. Tiling reductions

The slab reduction in Theorem 5.1 and Corollary 5.2 was introduced in [24] and used in
the proof of (T2) for 3 prime factors in [25].

Theorem 5.1. [24, Theorem 6.5] Let M = pn1
1 . . . pnK

K . Assume that A⊕B = ZM , and that
Φp

ni
i
|A for some i ∈ {1, . . . , K}. Define

Api = {a ∈ A : 0 ≤ πi(a) ≤ pni−1
i − 1}.

Then the following are equivalent:

(i) For any translate A′ of A, we have A′
pi
⊕B = ZM/pi.

(ii) For every m such that pni
i |m|M , we have

(5.1) m ∈ Div(A) ⇒ m/pi /∈ Div(B).

(iii) For every d such that pni
i |d|M , at least one of the following holds:

Φd|A,

Φd/piΦd/p2i
. . .Φd/p

ni
i

| B.

If a tiling A ⊕ B = ZM satisfies the conditions of Theorem 5.1, we can reduce proving
(T2) for A and B to proving it for the tilings A′

pi
⊕B = ZM/pi defined above [24, Corollary

6.7]. Corollary 5.2 below follows by iterating this procedure until (T2) is known to hold.

Corollary 5.2. (Slab reduction) Let M0 ∈ N. Assume that for any M |M0, and for any
tiling A⊕B = ZM , at least one of the following holds:

(i) both A and B satisfy (T2),
(ii) A and B obey the conditions of Theorem 5.1 for some pi|M ,
(iii) the conditions of Theorem 5.1 hold with A and B interchanged for some pi|M .

Then in any tiling A0 ⊕B0 = ZM0, both A0 and B0 satisfy (T2).

This section aims to connect the slab reduction with uniform splitting parity (Definition
4.6) in a fixed direction. This relationship is made precise in Lemma 5.4. Additionally,
Theorem 5.4 below establishes a direct link between the slab reduction and [24, Conjecture
9.4], while Corollary 5.5 (i) may be viewed as a step towards resolving Conjecture 9.2 in [24].

Clearly, if A and B satisfy (5.1) then the same holds for A and rB for all r ∈ R. Thus
A,B satisfy the slab reduction conditions if and only if the same is true for A, rB with any
r ∈ R.

Definition 5.3. Let A ⊕ B = ZM . Given a ∈ A and b ∈ B, we say that the product
⟨A[a∗Fi],B[b]⟩ splits with parity (A,B) if Ax,b ⊂ Π(a, pni

i ) for all x ∈ a∗Fi, and with parity
(B,A) if Ax,b ⊂ Π(x, pni

i ) for all x ∈ a ∗ Fi.

Lemma 5.4. Let A⊕B = ZM . Then the following are equivalent:

(I) A and B satisfy the slab reduction conditions in Theorem 5.1.
(II) The tiling A⊕ rB = ZM has uniform (rB,A) splitting parity in the pi direction, for

every r ∈ R.
(III) For every a ∈ A and b ∈ B, the product ⟨A[a ∗ Fi],B[b]⟩ splits with parity (B,A).
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Proof. We start by noting that the properties (I)–(III) are all translation-invariant. This is
clear for (I) and (III); for (II), we use that r(B − c) = rB − rc and that uniform splitting
parity is invariant under translations. The same is true of the conditions in Theorem 5.1.

We first prove that (I) and (II) are equivalent. Suppose that A and B satisfy the slab
reduction conditions. Note that the condition (ii) of Theorem 5.1 depends only on the sets
Div(A) and Div(B). Since Div(B) = Div(rB) for r ∈ R, it follows that A and rB must also
satisfy the slab reduction conditions for such r. In particular, by (i) we have

(5.2) Api ⊕ rB = ZM/pi .

Assume by contradiction that there exist z ∈ ZM and r ∈ R such that z ∗ Fi splits with
parity (A, rB) in the tiling A⊕ rB = ZM . Let a ∈ A, b ∈ B satisfy z = a+ rb. Without loss
of generality, we may assume that a ∈ Api . By the parity assumption, there exist

a1, . . . , api−1 ∈ A ∩ Π(a, pni
i ) ⊂ Api

and

b1, . . . , bpi−1 ∈ B ∩ (Π(b, pni−1
i ) \ Π(b, pni

i ))

such that aµ + rbµ = z + µM/pi, µ = 1, . . . , pi − 1. It follows that (a + rb,M/pi) = (aµ +
rbµ,M/pi) for all µ ∈ {1, . . . , pi−1}. This contradicts (5.2), since (5.2) implies that all sums
a+ rb with a ∈ Api and b ∈ B must be distinct modulo M/pi.

For the other direction, assume that (II) holds. It follows from Corollary 4.9 that Φp
ni
i
|A.

Assume by contradiction that A and B do not satisfy the slab reduction conditions (i)-(iii).
Then (5.1) must fail, so that there exist pni

i |m|M such that m ∈ Div(A) and m/pi ∈ Div(B).
By translational invariance, we may assume that

(5.3) 0 ∈ A ∩B

and that there exist a ∈ A, b ∈ B and µ ∈ {1, . . . , pi − 1} satisfying

(a,M) = (b− µM/pi,M) = m.

By Lemma 4.5, there exists r ∈ R such that r(b−µM/pi) = −a, so that a+rb = rµM/pi ∈ Fi.
By (5.3), the latter implies that Fi splits with parity (A, rB), contradicting (II).

Next, we prove that (II) and (III) are equivalent. We show that (II) implies (III), but the
argument is completely reversible. Indeed, suppose that (II) holds yet (III) fails. Without
loss of generality, we may assume that 0 ∈ A ∩ B and that (III) fails with a = b = 0 and
x =M/pi, so that AM/pi,0 ∩ Π(0, pni

i ) ̸= ∅. This implies that there exist pni
i |m|M and

(5.4) a ∈ A ∩ Π(0, pni
i ), b ∈ B ∩ Π(M/pi, p

ni
i )

satisfying

(a,M) = (b−M/pi,M) = m.

By Lemma 4.5, there exists r ∈ R such that r(b−M/pi) = −a, so that a+ rb = µM/pi for
some µ ∈ {1, . . . pi − 1}. By (5.4), this means that the tiling A ⊕ B = ZM does not have
uniform splitting in the pi direction with parity (rB,A), contradicting (II). □

Corollary 5.5. Let A⊕B = ZM be a tiling. Assume that at least one of the following holds
for some i ∈ {1, . . . , K}:

(i) AM/pi [a] > 0 for every a ∈ A,
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(ii) Φp
ni
i
|A, and for every b ∈ B we have

(5.5) |B ∩ Π(b, pni
i )| = |B|/(|B|, pni

i ).

Then A satisfies the conditions of Theorem 5.1.

Proof. Suppose first that (i) holds. This clearly implies the condition (II) of Lemma 5.4,
hence the conclusion follows from the lemma.

Assume now that (ii) holds. Since Φp
ni
i
|A, we must have

(|B|, pni
i ) =

∏
α:1≤α≤ni−1,Φpα

i
|B

Φpαi
(1).

It follows as in [25, Lemma 4.3 and Corollary 4.4] that for every b ∈ B,

|B ∩ Π(b, pni−1
i )| ≤ |B|/(|B|, pni

i ).

Combining this with (5.5), we see that for every b ∈ B we must have B ∩ Π(b, pni−1
i ) =

B ∩ Π(b, pni
i ). This, again, clearly implies the condition (II) of Lemma 5.4. □

6. Proof of Theorem 1.2 and Corollary 1.4

6.1. Proof of Theorem 1.2. LetM = pn1
1 . . . pnK

K , where p1, . . . , pK are distinct primes and
n1, . . . , nK ∈ N. Assume that A⊕ B = ZM . We first prove the theorem under the stronger
assumption that

(6.1) p1 > M1,

whereM1 = pn2
2 . . . pnK

K . We first claim that (6.1) implies uniform splitting in the p1 direction.
Assume towards contradiction that z ∗ F1 splits with parity (A,B) and z′ ∗ F1 splits with
parity (B,A) for some z, z′ ∈ ZM . We have |ΣB(z ∗ F1)| = p1 > M1, so that at least two
elements of ΣB(z ∗ F1) lie on one line in the p1 direction, with M/p1 ∈ Div(B). Similarly,
the (B,A) splitting parity implies that M/p1 ∈ Div(A). However, by divisor exclusion it is
not possible for both of these to hold.

Assume therefore that the tiling has uniform (B,A) splitting parity, withM/p1 ∈ Div(A).
By the same argument as above, all tilings A ⊕ rB = ZM with r ∈ R also have uniform
(B,A) splitting parity. It follows from Lemma 5.4 that the tiling A ⊕ B = ZM satisfy the
slab reduction conditions in Theorem 5.1. By Corollary 5.2, to prove that A and B satisfy
(T2), it suffices to prove that (T2) holds for both sets in any tiling A′ ⊕ B′ = ZM ′ , where
M ′ =M/p1. Iterating the procedure, we eventually reduce the question to proving (T2) for
all tilings of period M1. But at that point, the assumption on M1 implies the conclusion.

For the full strength of the theorem, we need the proposition below.

Proposition 6.1. Assume that

(6.2) pi > (|B|,Mi).

If M/pi /∈ Div(A), then the tiling A⊕B = ZM has uniform (A,B) splitting parity in the pi
direction.
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Proof. Let x ∈ ZM . Suppose that x ∗ Fi splits with parity (B,A), so that there exist
a0, a1, . . . , api−1 ∈ A and b0, b1, . . . , bpi−1 ∈ B ∩ Π(b0, p

ni
i ) such that

aν + bν = x+ νM/pi for ν ∈ {0, 1, . . . , pi − 1}.

We first claim that if M/pi /∈ Div(A), then |ΣB(x ∗ Fi)| = pi, and in particular

(6.3) |B ∩ Π(b0, p
ni
i )| ≥ pi.

(Note that this part does not use (6.2).) Indeed, If we had bν = bν′ for some ν ̸= ν ′, it would
follow that aν − aν′ = (ν − ν ′)M/pi, contradicting the assumption that M/pi /∈ Div(A).
Hence the elements b0, b1, . . . , bpi−1 are all distinct, proving the claim.

To complete the proof of the proposition, we recall the plane bound from [24, Lemma 2.3]:
for any z ∈ ZM we have

|B ∩ Π(z, pni
i )| ≤ (|B|,Mi).

This is clearly incompatible with (6.3) if (6.2) holds. □

We return to the proof of Theorem 1.2. Assume that (1.2) holds, so that

p1 > pn2−1
2 . . . pnK−1

K .

We proceed by induction in M . To initialize, if M has at most 2 distinct prime factors, then
the conclusion follows from the Coven-Meyerowitz theorem. Assume now that the theorem

holds for all M̃ |M with M̃ ̸= M , and let A ⊕ B = ZM be a tiling. If there exists some
i ∈ {1, . . . , K} such that pi ∤ |A| or pi ∤ |B|, we may apply the subgroup reduction in [3,
Lemma 2.5] (see also Theorem 6.1 and Corollary 6.2 in [24]) to reduce proving (T2) for A
and B to our inductive assumption on tilings of ZM/pi .

We may therefore assume that pi divides both |A| and |B| for each i. This implies that

(|A|,M1) ≤ pn2−1
2 . . . pnK−1

K < p1.

and similarly for |B|. By divisor exclusion, at least one of M/p1 ̸∈ Div(A) and M/p1 ̸∈
Div(B) must hold. Assume without loss of generality that the latter holds. Applying Propo-
sition 6.1 with i = 1, we see that the tiling has uniform (B,A) splitting parity in the p1
direction, and that M/p1 ∈ Div(A). The rest of the proof is as above: by Lemma 5.4, A
and B satisfy the slab reduction conditions in Theorem 5.1. By Corollary 5.2, it suffices to

prove (T2) for both tiles in any tiling of period M̃ =M/p1. But this again follows from our
inductive assumption.

6.2. Proof of Corollary 1.4. Lemma 6.2 is based on the same argument as [24, Corollary
6.2] (see also [46, 5, 41]), but we modify the statement slightly to fit the present context.

Lemma 6.2. Let M = M0p
n1
1 p

n2
2 p

n3
3 . . . pnK

K and p1, . . . , pK are distinct primes not dividing
M0. Assume that A⊕B = ZM , and that:

• For each i ∈ {1, . . . , K}, the prime factor pi divides at most one of |A| and |B|.
(This happens e.g., if ni = 1 for all i.)

• For any tiling A0 ⊕B0 = ZM0, both A0 and B0 satisfy (T2).

Then both A and B satisfy (T2).
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Proof. We proceed by induction in n1 + · · · + nK . The case K = 0 and M = M0 is covered
by the assumptions of the lemma. Suppose now that K ≥ 1 and that (T2) holds for both A′

and B′ in any tiling A′ ⊕ B′ = ZM/pK . By the assumption of the lemma, at least one of |A|
and |B| is not divisible by pK . Assume without loss of generality that pK ∤ |A|. By Theorem
3.2, Ã⊕B = ZM is again a tiling, where Ã(X) = A(XpK ). Since Ã ⊂ pKZM , we may apply
[24, Theorem 6.1] and the inductive assumption to conclude that A and B satisfy (T2). □

We now prove Corollary 1.4. Let

M∗ = pα1
1 p

α2
2 p

α3
3 p4p5 . . . pKq

β1

1 . . . qβL

L ,

where p1, . . . , pK , q1, . . . , qL are distinct primes and the assumptions of Corollary 1.4 hold.

Each of the primes p4, . . . , pK , as well as p3 if (1.3) holds, appears in the factorization of
M only once. Hence each of these primes may divide at most one of |A| and |B| in any tiling
A⊕B = ZM with M |M∗. By Lemma 6.2, it suffices to prove the corollary with

M∗ = N0q
β1

1 . . . qβL

L ,

which we now assume. Using (1.4), and applying Theorem 1.2 inductively, we can also
remove all of the qj primes, starting with qL and working back to q1. This leaves us with
proving the corollary with

M∗ = N0.

Let M |M∗ and A ⊕ B = ZM . If M = N0 = p21p
2
2p

2
3 and |A| = |B| = p1p2p3, then both A

and B satisfy (T2) by Theorem 1.3. If only two of the primes p1, p2, p3 divide M , then A
and B satisfy (T2) by Theorem 1.1. In all other cases, there is an i ∈ {1, 2, 3} such that pi
divides at most one of |A| and B. We then apply Lemma 6.2 to pass from a tiling of period
M to tiling of period M/pi. Continuing this procedure, we eventually get to the point where
Theorem 1.1 applies.

7. Splitting consistency

Our work in Sections 5 and 6 shows that uniform splitting offers a viable path to proving
the Coven-Meyerowitz conjecture. The goal of this section is to place the first few building
blocks in the systematic study of uniform splitting.

Partial results towards establishing uniform splitting might involve proving that splitting
is uniform on certain subgrids of ZM . We are also interested in splitting consistency –
extensions of Lemma 4.3 saying that the elements of A and B that tile certain grids larger
than a fiber must come from cosets of proper subgroups of ZM . In Section 7.1, we prove
such a result for 2-dimensional grids; a result of this type for 3-dimensional grids, but with
additional assumptions, is given in Lemma 7.6.

In Section 7.2, we study tiling structure and splitting under the assumption that one of
the sets A and B has fibered intersections with all D(M)-grids. To provide some context,
we describe briefly our approach to the case M = pni

i p
nj

j p
nk
k . In [25, 26], given a tiling

A ⊕ B = ZM , we analyze the set whose mask polynomial is divisible by ΦM (say, A).
This divisibility condition places constraints on the structure of A on any fixed D(M)-grid.
Broadly speaking, on any fixed grid A may either be written as a disjoint union of fibers in
some fixed direction, or else it must have one out of several “unfibered” structures we have
identified explicitly. We say that A is fibered on D(M)-grids if the former holds on every
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grid Λ(a,D(M)) for every a ∈ A. Our results in Section 7.2 are an important part of the
argument in the fibered grids case in [26].

7.1. General results. We start with two results on splitting consistency on subgrids. In
addition to applications in [26], Lemma 7.1 has been used in the proof of Lemma 6.4 in [2].

Lemma 7.1. (Plane consistency) Let M = pn1
1 . . . pnK

K , and assume that A ⊕ B = ZM .
Fix i, j ∈ {1, . . . , K}, and let Λ := Λ(z,M/pipj) for some z ∈ ZM . Then there exists a
ν ∈ {i, j} such that

ΣA(Λ) ⊂ A ∩ Π(a, pnν−1
ν ),

ΣB(Λ) ⊂ B ∩ Π(b, pnν−1
ν ),

where a ∈ A and b ∈ B satisfy a+ b = z.

Proof. Assume towards contradiction that the lemma is false. Then there exist z′, z′′ ∈ Λ
such that z′ = a′ + b′ and z′′ = a′′ + b′′ with a′, a′′ ∈ A and b′, b′′ ∈ B, and

(7.1) pni−1
i ∤ a− a′, p

nj−1
j ∤ b− b′′.

Let zij be the unique element of Π(z′, p
nj

j ) ∩ Π(z′′, pni
i ) ∩ Λ, so that

M/pi | zij − z′, M/pj | zij − z′′.

Let aij ∈ A and bij ∈ B satisfy zij = aij + bij. By Lemma 4.3, we have

pni−1
i | aij − a′, p

nj−1
j | bij − b′′.

Together with (7.1), this implies that

(7.2) pni−1
i ∤ a− aij and p

nj−1
j ∤ b− bij.

However, we also have (M/pipj)|z−zij = (a−aij)+(b−bij). Hence (a−aij, pnk
k ) = (b−bij, pnk

k )
for all k ̸∈ {i, j}, and, by (7.2), the same holds for k ∈ {i, j}. This contradicts divisor
exclusion and ends the proof of the lemma. □

Corollary 7.2. (No cross-direction fibers) Let M = pn1
1 . . . pnK

K , and assume that A ⊕
B = ZM . Let Λij := Λ(z,M/pipj) as in Lemma 7.1. Suppose that a0 ∗ Fi ⊂ A for some
a0 ∈ ΣA(Λij). Then

(7.3) ΣA(Λij) ⊂ Π(a0, p
nj−1
j ).

Proof. Let b0 ∈ B satisfy z0 := a0 + b0 ∈ Λij. By translational invariance, we may assume
that z0 = a0 = b0 = 0, so that Fi ⊂ A. Then Λij =

⋃
a∈Fi

a ∗ Fj. For each a ∈ Fi,
we have a = a + 0, with a ∈ A and 0 ∈ B. Applying Lemma 4.3 to a ∗ Fj, we see that

ΣA(a ∗ Fj) ⊂ Π(a0, p
nj−1
j ). But a ∈ Fi was arbitrary, and (7.3) follows. □
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7.2. Splitting for fibered grids. In this section, we assume the following.

Assumption (F): We have A ⊕ B = ZM , where M = pni
i p

nj

j p
nk
k has three distinct prime

factors. Furthermore, ΦM |A, and A is fibered on D(M)-grids.

Let I be the set of elements of A that belong to a fiber in the pi direction, that is,

I = {a ∈ A : AM/pi [a] = ϕ(pi)}.
The sets J and K are defined similarly. The assumption (F) implies that A = I ∪ J ∪ K.
In general, this does not have to be a disjoint union and an element of A may belong to two
or all three of these sets.

We will write D = D(M) for short. We also define the direction assignment function
κ : A → {i, j, k} as follows. Write A =

⋃
x∈{1,...,M/D}A ∩ Λ(x,D). By (F), for each x ∈

{1, . . . ,M/D} such that A ∩ Λ(x,D) is nonempty, there exists ν(x) ∈ {i, j, k} such that
A∩Λ(x,D) is fibered in the pν(x) direction. (If there exists more than one such ν, we choose
one arbitrarily and fix that choice.) We then let κ(a) := ν(x) for all a ∈ A ∩ Λ(x,D).

With this definition, we have κ(a) = κ(a′) for all a, a′ ∈ A such that D|(a− a′). We also
define

F (a) := a ∗ Fκ(a) for a ∈ A.

Observe that, for any a, a′ ∈ A, the fibers F (a) and F (a′) are either identical or disjoint.
Indeed, suppose that a′′ ∈ F (a)∩F (a′); then a, a′ belong to the same grid Λ(a′′, D), so that
κ(a) = κ(a′) by definition, and F (a) = F (a′).

Lemma 7.3. Let a, a′ ∈ A and b, b′ ∈ B. If (b ∗ F (a)) ∩ (b′ ∗ F (a′)) ̸= ∅, then b = b′ and
F (a) = F (a′).

Proof. Suppose that z ∈ (b∗F (a))∩(b′∗F (a′)). Then z = b+a1 = b′+a2 for some a1 ∈ F (a)
and a2 ∈ F (a′). It follows that b = b′ and a1 = a2, so that F (a) ∩ F (a′) ̸= ∅, implying that
F (a) = F (a′) as claimed. □

We will prove that every D-grid is tiled by fibers in at most 2 directions, with the “strat-
ified” structure described in Lemma 7.4. We then prove a few results concerning the local-
ization of ΣA(Λ), in the same spirit as Lemma 7.1, but with stronger conclusions since we
now have the fibering assumption at our disposal.

The geometric intuition for the next result is provided by tilings of a 3-dimensional space
by rectangular columns. Define Ri, Rj, Rk ⊂ R3 by

Ri = R× [0, 1]× [0, 1], Rj = [0, 1]× R× [0, 1], Rk = [0, 1]× [0, 1]× R.
Then any tiling of R3 by translated, pairwise disjoint (up to sets of measure zero) copies
of Ri, Rj, Rk must use translated copies of at most two of these sets. Moreover, the tiling
can be stratified into slabs of thickness 1, with each slab tiled by translates of just one of
Ri, Rj, Rk.

Lemma 7.4. Assume (F), and let Λ = Λ(z0, D) for some z0 ∈ ZM .

(i) Suppose that
ΣA(Λ) ∩ I ∩ J ∩ K ≠ ∅,

and that there exists a ∈ ΣA(Λ) ∩ I ∩ J ∩ K such that κ(a) = i. Then κ(a′) = i for
all a′ ∈ ΣA(Λ), and in particular ΣA(Λ) ⊂ I.



18 IZABELLA  LABA AND ITAY LONDNER

(ii) Assume that

(7.4) ΣA(Λ) ∩ I ∩ J ∩ K = ∅.
Then there is a subset S ⊂ {i, j, k} with |S| ≤ 2 such that κ(a) ∈ S for all a ∈ ΣA(Λ).
In particular, ΣA(Λ) is contained in the union of just two of the sets I,J ,K.

(iii) Assume (possibly after a permutation of the indices i, j, k) that S = {i, j}, and let
zν = z0 + νM/pk for ν = 0, 1, . . . , pk − 1. Then for each ν, there is a λ(ν) ∈ {i, j}
such that

(7.5) κ(a) = λ(ν) for all a ∈ ΣA(zν ∗ Fi ∗ Fj)).

Proof. We will use throughout the proof that if a ∈ ΣA(Λ) and a
′ ∈ Λ(a,D), then F (a′) ⊂

ΣA(Λ). This is because if a+ b ∈ Λ for some b ∈ B, then we also have b ∗ F (a′) ⊂ Λ.

We first prove (i). Assume that a ∈ ΣA(Λ) ∩ I ∩ J ∩ K such that κ(a) = i. Then
(a ∗ Fj) ∪ (a ∗ Fk) ⊂ A, and since κ(a′) = κ(a) for all a′ ∈ A ∩ Λ(a,D), we have

A0 := (a ∗ Fi ∗ Fj) ∪ (a ∗ Fi ∗ Fk) ⊂ A.

Let a′′ ∈ ΣA(Λ). If a′′ ∈ A ∩ Λ(a,D), we already have κ(a′′) = i. Assume now that
a′′ ∈ A \ Λ(a,D), and let b, b′′ ∈ B satisfy b ∗ A0 ⊂ Λ and b′′ ∗ F (a′′) ⊂ Λ. By Lemma 7.3,
b′′ ∗ F (a′′) must be disjoint from b ∗ A0. This is possible only if κ(a′′) = i, proving (i).

We split the proof of (ii) and (iii) in two cases.

Case 1. Assume that (7.4) holds, and that some a ∈ ΣA(Λ) belongs to two of the sets
I,J ,K. Without loss of generality, we may assume that a ∈ I ∩J and that κ(a) = i. Then
a ∗ Fi ∗ Fj ⊂ ΣA(Λ) and κ(a

′) = κ(a) = i for all a′ ∈ a ∗ Fi ∗ Fj. We have (a+ b) ∗ Fi ∗ Fj =
zν ∗ Fi ∗ Fj for some b ∈ B and ν ∈ {0, 1, . . . , pk − 1}, so that (7.5) is proved with λ(ν) = i
for that ν.

Let µ ̸= ν, and let aµ ∈ A and bµ ∈ B satisfy aµ+bµ ∈ zµ∗Fi∗Fj. By Lemma 7.3, bµ∗F (aµ)
must be disjoint from (a+ b) ∗ Fi ∗ Fj, hence κ(aµ) = λ for some λ ∈ {i, j}. Furthermore, if
a′µ ∈ A and b′µ ∈ B satisfy a′µ + b′µ ∈ zµ ∗ Fi ∗ Fj, then b

′
µ ∗ F (a′µ) must be either identical

to bµ ∗ F (aµ), or else it must be disjoint from both bµ ∗ F (aµ) and (a+ b) ∗ Fi ∗ Fj. In both
cases we have κ(a′µ) = κ(aµ) = λ. This proves (ii)–(iii) in Case 1.

Case 2. Assume now that for each z ∈ Λ, we have z = a+ b, where b ∈ B and a belongs to
exactly one of the sets I,J ,K.

We first prove that κ(a) with a ∈ ΣA(Λ) may take at most two distinct values. We argue
by contradiction. Suppose that there exist ai, aj, ak ∈ A and bi, bj, bk ∈ B with κ(aλ) = λ
and xλ := aλ + bλ ∈ Λ for λ = i, j, k. Let Gλ := bλ ∗ F (aλ). Let

y ∈ Π(zi, p
nk
k ) ∩ Π(zj, p

ni
i ) ∩ Π(zk, p

nj

j ),

and suppose that a ∈ A and b ∈ B satisfy a+ b = y. By Lemma 7.3, the fiber G := b ∗F (a)
must be disjoint from all of Gi, Gj, Gk. However, if κ(a) = i then G ∩ Gk ̸= ∅; if κ(a) = j
then G ∩ Gi ̸= ∅; and if κ(a) = k then G ∩ Gj ̸= ∅. There is no permitted value of κ(a),
contradicting our assumption. (We used a very similar argument in [24, Proposition 7.10].)

Assume now that κ(a) ∈ {i, j} with a ∈ ΣA(Λ). For each ν ∈ {0, 1, . . . , pk − 1}, let
λ(ν) = κ(aν), where aν satisfies aν + bν = zν . Then for any a′ν ∈ A and b′ν ∈ B with
a′ν + b′ν ∈ zν ∗ Fi ∗ Fj, we must have κ(a′ν) = κ(aν) = λν , since the other choice would
contradict Lemma 7.3. □
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Proposition 7.5. (Consistency for fibered grids) Assume that (F) holds, and that
0 ∈ A ∩B. Let Λ := Λ(0, D), and assume that κ(0) = i. Then:

(i) There exists l ∈ {j, k} such that

(7.6) ΣA(Λ) ⊂ Π(0, pnl−1
l ).

(ii) Assume further that ΣA(Λ) ⊂ I ∪ J , with both ΣA(Λ) ∩ I ≠ ∅ and ΣA(Λ) ∩ J ≠ ∅.
Then (7.6) holds with l = k.

Proof. By Lemma 7.4, we may assume without loss of generality that κ(a) ∈ {i, j} for all
a ∈ ΣA(Λ). Let Λij = Fi ∗Fj and Λik = Fi ∗Fk. For all a

′ ∈ ΣA(Λij), we must have κ(a′) = i,
since κ(a′) = j would contradict Lemma 7.3.

Proof of (i). By Corollary 7.2, we have

ΣA(Λij) ⊂ Π(0, p
nj−1
j ), ΣA(Λik) ⊂ Π(0, pnk−1

k ).

It suffices to prove that, additionally, we have

(7.7) either ΣA(Λij) ⊂ Π(0, pnk−1
k ) or ΣA(Λik) ⊂ Π(0, p

nj−1
j ).

Indeed, suppose that the first inclusion in (7.7) holds. Writing Λ =
⋃

z∈Λij
z∗Fk and applying

Lemma 4.3 to each z ∗Fk, we get that (7.6) holds with l = k. Assuming the second inclusion
in (7.7), we get the same with l = j.

It remains to prove (7.7) Assume, by contradiction, that

ΣA(Λij) ̸⊂ Π(0, pnk−1
k ) and ΣA(Λik) ̸⊂ Π(0, p

nj−1
j ).

Then there must exist zj ∈ Λij, zk ∈ Λik, and aj, ak ∈ A, bj, bk ∈ B satisfying

aν + bν = zν , ν ∈ {j, k}.
such that

(7.8) p
nj−1
j ∤ ak, bk, pnk−1

k ∤ aj, bj.

Recall that κ(aj) = i. Replacing aj by a different point of aj ∗Fi if necessary, we may assume
that zj ∈ Π(zk, p

ni
i ). Let zjk ∈ Λ and a0 ∈ Fi satisfy

(zjk − zj,M) = (a0 − zk,M) =M/pk, (zjk − zk,M) = (a0 − zj,M) =M/pj.

Let ajk ∈ A, bjk ∈ B satisfy zjk = ajk + bjk. By Lemma 4.3 and (7.8),

p
nj−1
j ∤ ak − ajk, p

nk−1
k ∤ aj − ajk.

On the other hand, since zjk ∈ a0 ∗Fj ∗Fk, it follows from Lemma 7.1 with z = a0 that p
nν−1
ν

must divide ajk − a0 for some ν ∈ {j, k}. This contradiction proves (i).

Proof of (ii). Let Aν = {A ∈ ΣA(Λ) : κ(a) = ν} for ν = i, j. Let zi, zj ∈ Λ satisfy
zi = ai + bi, zj = aj + bj with ai ∈ Ai, aj ∈ Aj, b1, b2 ∈ B. We claim that

(7.9) pnk−1
k |ai − aj.

Indeed, let z′i = a′i + bi ∈ bi ∗ F (ai) and z′j = a′j + bj ∈ bj ∗ F (aj) be the points such that

(z′i−z′j,M) =M/pk. By Lemma 4.3 applied to z′i ∗Fk, we have p
nk−1
k |a′i−a′j. But a′i ∈ F (ai)

and a′j ∈ F (aj), hence (7.9) holds.
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The proof of (ii) is completed as follows. Suppose that A satisfies the assumptions of (ii).
Then (7.9) implies the following: given ai ∈ Ai, any aj ∈ Aj must satisfy pnk−1

k |ai − aj, and
the same holds with the i and j indices interchanged. Since A1 and A2 are both nonempty,
this clearly implies (7.6) with l = k. □

We briefly discuss splitting parity and the slab reduction for fibered grids. If A⊕B = ZM ,
where M has at most 3 prime factors, our expectation is that the condition of the slab
reductions are satisfied for at least one of A and B in some direction [24, Conjecture 9.1]. By
Lemma 5.4, this means uniform splitting parity in that direction for all tilings A⊕ rB = ZM

with r ∈ R. An intermediate result in this direction might establish uniform splitting parity
on certain subgrids of ZM . For example, the following is easy to prove.

Lemma 7.6. Assume that (F) holds. Let Λ = Λ(z0, D) for some z0 ∈ ZM . Assume that
ΣA(Λ) has the structure described in Lemma 7.4 (i), and that for each λ ∈ {i, j},

(7.10) #{ν ∈ {0, 1, . . . , pk − 1} : λ(ν) = λ} ≥ 2.

Then the tiling has uniform splitting parity in the pk direction on Λ. (That is, all fibers z∗Fk

with z ∈ Λ split with the same parity, either (A,B) for all z or (B,A) for all z).

Proof. We first claim the following. Let z ∈ Λ. Then the fibers z′∗Fk have the same splitting
parity in the pk direction for all z′ ∈ z ∗ Fi.

To see this, assume that ν and µ are two distinct numbers in {0, 1, . . . , pk − 1} with
λ(ν) = λ(µ) = i, and let z ∈ Λ. Let yµ, yν satisfy

(yµ − z,M) = (yν − z,M) =M/pk, yµ ∈ zµ ∗ Fi ∗ Fj, yν ∈ zν ∗ Fi ∗ Fj,

with zµ, zν defined as in Lemma 7.4. Then zν = aν + bν and zµ = aµ + bµ, with aν , aµ ∈ A,
bν , bµ ∈ B, and κ(aν) = κ(aµ) = i.

Let z′ ∈ z ∗Fi, so that z′ = z+ ρM/pi for some ρ ∈ {0, 1, . . . , pi − 1}. Consider the points
z′ν , z

′
µ ∈ x ∗ Fk given by z′ν = zν + ρM/pi and z

′
µ = zµ + ρM/pi. We have

z′ν = (aν + ρM/pi) + bν , z′µ = (aµ + ρM/pi) + bµ.

Thus z ∗ Fk splits with parity (B,A) if and only if pnk
k |bν − bµ, if and only if z′ ∗ Fk splits

with parity (B,A). The case of parity (A,B) is similar.

We now complete the proof of the lemma. Let z ∈ Λ. By the claim above, z′ ∗ Fk splits
with the same parity as z ∗ Fk for all z′ ∈ z ∗ Fi. By the same claim again, applied with i
and j interchanged, z′′ ∗Fk splits with the same parity as z′ ∗Fk for all z′′ ∈ z′ ∗Fj. But this
means that all fibers z′′ ∗ Fk with z′′ ∈ z ∗ Fi ∗ Fj split with the same parity, as claimed. □

It is likely that, at least for ni = nj = 2, Lemma 7.6 can be proved using our current
methods without the assumption that (7.10) holds. However, since this extension is not
needed in the proofs of our main results, we do not attempt it here.
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