MATH 101 REVIEW: DERIVATIVES AND APPLICATIONS

Math 100 main topics:

- Real numbers, functions, absolute values, inequalities
- Limits and rates of change: limits of sequences and functions, limit laws, continuity, Intermediate Value Theorem
- Derivatives: tangents and differentiability, higher derivatives, differentiation formulae (including chain rule), implicit differentiation, Mean Value Theorem and applications (monotonicity, concavity)
- Elementary functions: inverse functions and their derivatives, derivatives of trig and inverse trig functions, exponential and logarithmic functions and their derivatives, exponential growth and decay
- Applications: curve sketching, maximum and minimum problems, related rate problems, l'Hopital's rule
- Approximation: linearization (with error estimate), quadratic and higher approximations, Taylor polynomials

Review problems I: True or false? Explain why.

(a) If $f(x) \leq g(x) \leq h(x)$ on some open interval including a, and if $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=$ L, then $\lim _{x \rightarrow a} g(x)=L$.
(a) A function cannot be odd and even at the same time.
(b) A function continuous on a closed interval $[a, b]$ attains its minimum and maximum values.
(c) A function continuous on an open interval (a, b) attains its minimum and maximum values.
(d) If a function $f(x)$ is differentiable and increasing on an open interval (a, b), then $f^{\prime}(x)$ is nonnegative on (a, b). Does $f^{\prime}(x)$ have to be strictly positive on (a, b) ?
(e) If $f^{\prime}(x)$ exists and is positive at all points x where $f(x)$ is defined, then $f(x)$ is increasing.
(f) If $f(x)$ has a local minimum at a, then $f^{\prime}(a)=0$.
(g) If $f(x)$ is concave up on an open interval containing a and if $f^{\prime}(a)=0$, then $f(x)$ has a local minimum at a.
(h) If $f(x)$ is defined and twice differentiable on an open interval containing a, and if $f(x)$ has a local minimum at a, then there is an open interval containing a on which $f(x)$ is concave up.
(i) If a function $f(x)$ is continuous on the closed interval $[1,2], f(1)=-1, f(2)=4$, then $f(x)=3$ for at least one x in $[1,2]$.
(j) If a function $f(x)$ is differentiable on the open interval $(1,2), f(1)=-1, f(2)=4$, then $f^{\prime}(x)=5$ for at least one x in $(1,2)$.
(k) If a function $f(x)$ and its derivative $f^{\prime}(x)$ are continuous on the closed interval $[0,2]$, $f(0)=0, f(1)=4, f(2)=2$, then $f^{\prime}(x)=0$ for some x in $(0,2)$.

Review problems II: Calculation and evaluation problems

1. Evaluate the limits

$$
\text { (a) } \lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}-2 x} \text {, (b) } \lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-x\right) \text {. }
$$

2. Compute the derivative of $f(x)=\frac{1}{x^{2}}$ directly from the definition.
3. Calculate and simplify where possible the derivatives of the following fuctions.

$$
\text { (a) } \frac{\sin 5 x}{1+x^{2}}, \text { (b) } \ln \left(x+e^{x}\right),(c)\left(1+x^{2}\right) \tan ^{-1}(x)
$$

4. Use l'Hospital's rule to evaluate $\lim _{x \rightarrow 0} \frac{\sin (2 x)-2 x e^{-x^{2}}}{x^{3}}$.
5. Sketch the graphs of the functions below. Identify any critical points, singular points, local maxima and minima, inflection points, vertical and horizontal asymptotes.

$$
\text { (a) } f(x)=\frac{x^{2}-4}{x^{2}-1}, \text { (b) } g(x)=x e^{-x^{2} / 2}, \text { (c) } h(x)=\left(x^{2}-1\right)^{2 / 3}
$$

6. Check that $e^{x+x^{2}}>1+x$ for all $x>0$.
7. Find all lines that are tangent to both of the curves $y=x^{2}$ and $y=-x^{2}+2 x-5$. (Draw a picture.)
8. Find the equation of the tangent line to the curve $x \sin \left(x y-y^{2}\right)=x^{2}-1$ at $(1,1)$.
