RELATED RATES PROBLEMS

Be sure to read each problem carefully before proceeding. Draw a diagram if possible. Assign symbols to the quantities involved and identify the relationships between them. Express this information as an equation, differentiate that equation with respect to t, and solve for the unknown rate.

1. Air is being pumped into a spherical balloon so that its volume increases at a rate of $100 \mathrm{~cm}^{3} / \mathrm{s}$. How fast is the radius of the balloon increasing when the diameter is 50 cm ?
2. A man starts walking north at $4 \mathrm{ft} / \mathrm{s}$ from a point P. Five minutes later a woman starts walking south at $5 \mathrm{ft} / \mathrm{s}$ from a point 500 ft due east of P. At what rate are the people moving apart 15 min after the woman starts walking?

EXTREME-VALUE PROBLEMS

Read each problem carefully before proceeding. Draw a diagram if possible. Express the quantity to be optimized as a function of one variable, and determine the allowed range of the variable in question. Find the absolute minimum/maximum of the function over the given interval.

1. A rectangular storage container with an open top is to have a volume of $10 \mathrm{~m}^{3}$. The length of its base is twice the width. Material for the base costs $\$ 10$ per square meter. Material for the sides costs $\$ 6$ per square meter. Find the cost of materials for the cheapest such container.
2. Find the point on the hyperbola $y^{2}-x^{2}=4$ that is closest to the point $(2,0)$.
