- There are 10 questions worth a total of 100 .

1. 0 marks Question 1.40

## Solution:

(a)

$$
\begin{aligned}
\bigcup_{i=1}^{5} A_{2 i} & =A_{2} \cup A_{4} \cup A_{6} \cup A_{8} \cup A_{10} \\
& =\{1,3\} \cup\{3,5\} \cup\{5,7\} \cup\{7,9\} \cup\{9,11\}=\{1,3,5, \cdots, 11\} .
\end{aligned}
$$

(b)

$$
\bigcup_{i=1}^{5}\left(A_{i} \cap A_{i+1}\right)=\bigcup_{i=1}^{5}(\{i-1, i+1\} \cap\{i, i+2\})=\bigcup_{i=1}^{5} \emptyset=\emptyset .
$$

(c)

$$
\bigcup_{i=1}^{5}\left(A_{2 i-1} \cap A_{2 i+1}\right)=\bigcup_{i=1}^{5}(\{2 i-2,2 i\} \cap\{2 i, 2 i+2\})=\bigcup_{i=1}^{5}\{2 i\}=\{2,4,6,8,10\} .
$$

2. 20 marks Question 1.42 - 10 marks for each

## Solution:

(a) Let $A_{n}=[1,2+1 / n)$. Then

$$
\begin{aligned}
& \bigcup_{n \in \mathbb{N}} A_{n}=[1,3) \\
& \bigcap_{n \in \mathbb{N}} A_{n}=[1,2]
\end{aligned}
$$

The union is the first interval as all the other intervals are subsets of the first interval.

The intersection contains 2 but no number bigger than 2, so it is closed. Notice that all intervals contain 2 and $2+1 / n$ converges to 2 as $n$ goes to $\infty$.
(b) Let $A_{n}=\left(\frac{1-2 n}{n}, 2 n\right)$. Then

$$
\begin{aligned}
& \bigcup_{n \in \mathbb{N}} A_{n}=(-2, \infty) \\
& \bigcap_{n \in \mathbb{N}} A_{n}=(-1,2)
\end{aligned}
$$

The union contains every number larger than -2 , but not -2 (since -2 does not belong to any of these intervals), so it is open.

The intersection is the first interval as the first interval is a subset of all the other intervals.
3. 15 marks Question $1.46-3$ marks for each

## Solution:

(a) $S_{1}$ is a partition of $A$ as it satisfies all the requirements of being a partition.
(b) $S_{2}$ is not a partition of $A$ since $g$ belongs to no element of $S_{2}$.
(c) $S_{3}$ is a partition of $A$ as it satisfies all the requirements of being a partition.
(d) $S_{4}$ is not partition of $A$ since empty set belongs to $S_{4}$.
(e) $S_{5}$ is not partition of $A$ since $b$ belongs to two elements of $S_{5}$.
4. 10 marks Question $1.54-5$ marks for answer, 5 marks for justification

Solution: Let $S=\{\{1\},\{2\},\{3,4,5,6\},\{7,8,9,10\},\{11,12\}\}$, then $S$ has 5 elements with no element of size 3 and it has subset $T=\{\{1\},\{2\},\{3,4,5,6\},\{7,8,9,10\}\}$ satisfying two required conditions.
5. 0 marks Question 1.60

Solution: $\mathcal{P}(A)=\{\emptyset,\{\emptyset\},\{\{\emptyset\}\}, A\}$ and therefore for the cartesian product we have $A \times \mathcal{P}(A)=\{(\emptyset, \emptyset),(\emptyset,\{\emptyset\}),(\emptyset,\{\{\emptyset\}\}),(\emptyset, A),(\{\emptyset\}, \emptyset),(\{\emptyset\},\{\emptyset\}),(\{\emptyset\},\{\{\emptyset\}\}),(\{\emptyset\}, A)\}$.
6. 15 marks Question $2.6-5$ marks for each

Solution: Since $A \in \mathcal{P}(\{1,2,4\}), A$ is a subset of $\{1,2,4\}$.
(a) We need $A$ to be a subset of $\{1,2,3\}$, so we need $A=\emptyset,\{1\},\{2\}$ or $\{1,2\}$.
(b) We need $A$ to not be a subset of $\{1,2,3\}$, so we need $4 \in A$. Thus $A=$ $\{4\},\{1,4\},\{2,4\}$ or $\{1,2,4\}$.
(c) We need $A$ to be disjoint from $\{1,2,3\}$, so we need $A=\emptyset$ or $\{4\}$.
7. 0 marks Question 2.16

## Solution:

(a) True.
(b) False.
(c) False.
(d) True.
(e) True.
8. 0 marks Question 2.29

Solution: Only (c) implies that $P \vee Q$ is false.
9. 20 marks Question $2.32-4$ marks for explanation and 4 marks for each answer

Solution: To have the implication $P(x) \Rightarrow Q(x)$ true we need to look for those $x$ which make $P(x)$ false and also those $x$ which make both $P(x)$ and $Q(x)$ true.
(a) All $x \in S$ for which $x \neq 7$.
(b) All $x \in S$ for which $x>-1$ ( this is the union of $(-1,1)$ and $[1,+\infty)$ ).
(c) All $x \in S$ (for all natural numbers both hypothesis and conclusion are true).
(d) All $x \in S$ (for all elements in domain $S$ both hypothesis and conclusion are true).
10. 20 marks Question $2.44-3$ marks for each answer and 2 marks for each justification

## Solution:

(i) $P(1) \Rightarrow Q(1)$ is false since 0 is even and 1 is odd so we have T implies F which is false;
(ii) $Q(4) \Rightarrow P(4)$ is true since 0 is even and 6 is even so we have T implies T which is true;
(iii) $P(2) \Leftrightarrow R(2)$ is true since 1 is not even and 9 is not a prime so we have F iff F which is true;
(iv) $Q(3) \Leftrightarrow R(3)$ is false since 4 is even and 33 is not a prime so we have T iff F which is false.

