- There are 10 questions worth a total of 100.
- 1. 0 marks Question 1.40

Solution:
(a)

$$\bigcup_{i=1}^{5} A_{2i} = A_{2} \cup A_{4} \cup A_{6} \cup A_{8} \cup A_{10} \\
= \{1,3\} \cup \{3,5\} \cup \{5,7\} \cup \{7,9\} \cup \{9,11\} = \{1,3,5,\cdots,11\}.$$
(b)

$$\bigcup_{i=1}^{5} (A_{i} \cap A_{i+1}) = \bigcup_{i=1}^{5} (\{i-1,i+1\} \cap \{i,i+2\}) = \bigcup_{i=1}^{5} \emptyset = \emptyset.$$
(c)

$$\bigcup_{i=1}^{5} (A_{2i-1} \cap A_{2i+1}) = \bigcup_{i=1}^{5} (\{2i-2,2i\} \cap \{2i,2i+2\}) = \bigcup_{i=1}^{5} \{2i\} = \{2,4,6,8,10\}.$$

2. 20 marks Question 1.42 - 10 marks for each

Solution:

(a) Let $A_n = [1, 2 + 1/n)$. Then

$$\bigcup_{n \in \mathbb{N}} A_n = [1, 3)$$
$$\bigcap_{n \in \mathbb{N}} A_n = [1, 2]$$

The union is the first interval as all the other intervals are subsets of the first interval.

The intersection contains 2 but no number bigger than 2, so it is closed. Notice that all intervals contain 2 and 2 + 1/n converges to 2 as n goes to ∞ .

(b) Let
$$A_n = (\frac{1-2n}{n}, 2n)$$
. Then

$$\bigcup_{n \in \mathbb{N}} A_n = (-2, \infty)$$
$$\bigcap_{n \in \mathbb{N}} A_n = (-1, 2)$$

The union contains every number larger than -2, but not -2 (since -2 does not belong to any of these intervals), so it is open.

The intersection is the first interval as the first interval is a subset of all the other intervals.

3. 15 marks Question 1.46 - 3 marks for each

Solution:

- (a) S_1 is a partition of A as it satisfies all the requirements of being a partition.
- (b) S_2 is not a partition of A since g belongs to no element of S_2 .
- (c) S_3 is a partition of A as it satisfies all the requirements of being a partition.
- (d) S_4 is not partition of A since empty set belongs to S_4 .
- (e) S_5 is not partition of A since b belongs to two elements of S_5 .
- 4. 10 marks Question 1.54 5 marks for answer, 5 marks for justification

Solution: Let $S = \{\{1\}, \{2\}, \{3, 4, 5, 6\}, \{7, 8, 9, 10\}, \{11, 12\}\}$, then S has 5 elements with no element of size 3 and it has subset $T = \{\{1\}, \{2\}, \{3, 4, 5, 6\}, \{7, 8, 9, 10\}\}$ satisfying two required conditions.

5. 0 marks Question 1.60

Solution: $\mathcal{P}(A) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, A\}$ and therefore for the cartesian product we have $A \times \mathcal{P}(A) = \{(\emptyset, \emptyset), (\emptyset, \{\emptyset\}), (\emptyset, \{\{\emptyset\}\}), (\emptyset, A), (\{\emptyset\}, \emptyset), (\{\emptyset\}, \{\emptyset\}), (\{\emptyset\}, A)\}.$

6. 15 marks Question 2.6 — 5 marks for each

Solution: Since $A \in \mathcal{P}(\{1, 2, 4\})$, A is a subset of $\{1, 2, 4\}$.

- (a) We need A to be a subset of $\{1, 2, 3\}$, so we need $A = \emptyset, \{1\}, \{2\}$ or $\{1, 2\}$.
- (b) We need A to not be a subset of $\{1, 2, 3\}$, so we need $4 \in A$. Thus $A = \{4\}, \{1, 4\}, \{2, 4\}$ or $\{1, 2, 4\}$.
- (c) We need A to be disjoint from $\{1, 2, 3\}$, so we need $A = \emptyset$ or $\{4\}$.
- 7. 0 marks Question 2.16

Solution:			
(a) True.			
(b) False.			
(c) False.			
(d) True.			
(e) True.			

8. 0 marks Question 2.29

Solution: Only (c) implies that $P \lor Q$ is false.

9. 20 marks Question 2.32 - 4 marks for explanation and 4 marks for each answer

Solution: To have the implication $P(x) \Rightarrow Q(x)$ true we need to look for those x which make P(x) false and also those x which make both P(x) and Q(x) true.

- (a) All $x \in S$ for which $x \neq 7$.
- (b) All $x \in S$ for which x > -1 (this is the union of (-1, 1) and $[1, +\infty)$).
- (c) All $x \in S$ (for all natural numbers both hypothesis and conclusion are true).
- (d) All $x \in S$ (for all elements in domain S both hypothesis and conclusion are true).
- 10. 20 marks Question 2.44 3 marks for each answer and 2 marks for each justification

Solution:

- (i) $P(1) \Rightarrow Q(1)$ is false since 0 is even and 1 is odd so we have T implies F which is false;
- (ii) $Q(4) \Rightarrow P(4)$ is true since 0 is even and 6 is even so we have T implies T which is true;
- (iii) $P(2) \Leftrightarrow R(2)$ is true since 1 is not even and 9 is not a prime so we have F iff F which is true;
- (iv) $Q(3) \Leftrightarrow R(3)$ is false since 4 is even and 33 is not a prime so we have T iff F which is false.