This midterm has 6 questions on 7 pages, for a total of 100 points.

Duration: 80 minutes

- Read all the questions carefully before starting to work.
- Give complete arguments and explanations for all your calculations; answers without justifications will not be marked.
- Continue on the back of the previous page if you run out of space.
- Attempt to answer all questions for partial credit.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)

Full Name (including all middle names):

Student-No:

Signature: _____

Question:	1	2	3	4	5	6	Total
Points:	20	20	10	20	20	10	100
Score:							

20 marks

1. (a) (10 marks) For $A = \{-2, -1, 0, 1, 2\}$ and $B = \{-3, -2, \dots, 2, 3\}$ list the elements of the set

$$S = \{(a, b) \in A \times B : (a - b)^2 = 4\}.$$

Solution: We have $(a, b) \in S$ if and only if either a - b = 2 or a - b = -2. Therefore

$$S = \{(-2,0), (-1,-3), (-1,1), (0,2), (0,-2), (1,3), (1,-1), (2,0)\}.$$

(b) (10 marks) For the sets A, B defined in part (a), give an example of a set X such that $A \cap B \subset X \subset A \cup B$.

Solution: We have $A \cap B = A$ and $A \cup B = B$, so we could take either $C = \{-2, -1, 0, 1, 2, 3\}$ or $C = \{-3, -2, -1, 0, 1, 2\}$.

20 marks

s 2. (a) (10 marks) Let P and Q be statements. Show that

$$[(P \lor Q) \land \sim (P \land Q)] \equiv \sim (P \Leftrightarrow Q).$$

	P	Q	$\sim (P \Leftrightarrow Q)$	$\left \left[(P \lor Q) \land \sim (P \land Q) \right] \right.$
	Т	Т	F	F
Solution:	Т	F	Т	Т
	\mathbf{F}	Т	Т	Т
	F	F	F	F
			1 1	1

(b) (10 marks) Prove or disprove the following statement. Let A, B, C be sets, then

$$A - (B - C) \subseteq (A - B) \cup (A \cap C).$$

Solution: True. Let $x \in A - (B - C)$ so that $x \in A$ and $x \notin B - C$. By De Morgan this means that $x \in A$ and $(x \notin B \text{ or } x \in C)$. So we either have that $(x \in A \text{ and } x \notin B)$ or $(x \in A \text{ and } x \in C)$ so $x \in (A - B) \cup (A \cap C)$.

10 marks 3. Let $m, n \in \mathbb{Z}$. Prove that if $m \equiv n \pmod{3}$ then $m^3 \equiv n^3 \pmod{9}$.

Solution: We will use a direct proof. *Proof.* Let $m \equiv n \pmod{3}$, then m-n = 3k for some $k \in \mathbb{Z}$. We can write n = 3a+r,

Proof. Let $m \equiv n \pmod{3}$, then m-n = 3k for some $k \in \mathbb{Z}$. We can write n = 3a+r, where $a \in \mathbb{Z}$ and r = 0, 1, or 2. Then m = n + 3k = 3a + r + 3k = 3b + r, where $b = a + k \in \mathbb{Z}$. Therefore

$$m^{3} - n^{3} = (3a + r)^{3} - (3b + r)^{3}$$

= $(27a^{3} + 27a^{2}r + 9ar^{2} + r^{3}) - (27b^{3} + 27b^{2}r + 9br^{2} + r^{3})$
= $9(3a^{3} + 3a^{2}r + ar^{2} - 3b^{3} - 3b^{2}r - br^{2})$

This is divisible by 9, since $3a^3 + 3a^2r + ar^2 - 3b^3 - 3b^2r - br^2 \in \mathbb{Z}$.

This could also be proved by cases (with $m \equiv n \equiv 0, 1, \text{ and } 2 \pmod{3}$). The calculation would be similar.

20 marks 4. (a) (10 marks) Prove the following statement: for all $n \in \mathbb{Z}$, the number $n^2 + n - 1$ is odd.

Solution: We prove this by cases.

 n^2

• Suppose that $n \in \mathbb{Z}$ is odd, then n = 2k + 1 for some $k \in \mathbb{Z}$, so

$$+n-1 = (2k+1)^{2} + (2k+1) - 1 = 4k^{2} + 4k + 1 + 2k + 1 - 1$$

$$= 4k^2 + 6k + 1 = 2(2k^2 + 3k) + 1$$

- Since $2k^2 + 3k$ is integer, $n^2 + n 1$ is odd.
- Suppose now that $n \in \mathbb{Z}$ is even, then n = 2k for some $k \in \mathbb{Z}$, so

$$n^{2} + n - 1 = (2k)^{2} + (2k) - 1 = 4k^{2} + 2k - 1 = 2(2k^{2} + k - 1) + 1$$

Since
$$2k^2 + k - 1$$
 is integer, $n^2 + n - 1$ is odd.

The conclusion is true since it is true in both cases.

(b) (10 marks) Let a, b, c be integers. Prove that if $a^2 \not| bc$, then either $a \not| b$ or $a \not| c$.

Solution: We will prove the contrapositive, which is

If a|b and a|c, then $a^2|bc$.

Assume that a|b and a|c, then b = ax and c = ay for some $x, y \in \mathbb{Z}$. Then $bc = (ax)(ay) = a^2xy$ and $xy \in \mathbb{Z}$, so $a^2|bc$.

20 marks 5. (a) (10 marks) Prove that every real number x satisfies $x^2 + 4 > |2x - 1|$.

Solution: Let $x \in \mathbb{R}$. We have two cases.

- If $2x 1 \ge 0$, then |2x 1| = 2x 1, so we have to prove $x^2 + 4 > 2x 1$, or equivalently $x^2 2x + 5 > 0$. But $x^2 2x + 5 = (x 1)^2 + 4 \ge 4 > 0$.
- If 2x-1 < 0, then |2x-1| = -2x+1, so we have to prove $x^2+4 > -2x+1$, or equivalently $x^2 + 2x + 3 > 0$. But $x^2 + 2x + 3 = (x+1)^2 + 2 \ge 2 > 0$.
- (b) (10 marks) Prove the following statement: $\exists x \in \mathbb{R}$ such that $\forall y \in \mathbb{R}, y \leq x 1 \Rightarrow y^2 x^2 \geq 4$.

Solution: Let x = -2. Then $y \le x-1$ implies $y \le -3$, so that $x+y \le -2-3 = -5$. Also, $y \le x-1$ implies $y-x \le -1$. Therefore $y^2 - x^2 = (y+x)(y-x) \ge (-5)(-1) = 5$. (No additional points for trying to find the optimal x.) **Solution:** Proof by contradiction: Suppose that $\sqrt{2} + 2\sqrt{3}$ is rational, then $\sqrt{2} + 2\sqrt{3} = \frac{m}{n}$ for some $m, n \in \mathbb{Z}, n \neq 0$. Then $\sqrt{2} = \frac{m}{n} - 2\sqrt{3}$. Squaring this, we get

$$2 = \frac{m^2}{n^2} - 4\frac{m}{n}\sqrt{3} + 12,$$
$$4\frac{m}{n}\sqrt{3} = \frac{m^2}{n^2} + 10.$$

• If $m \neq 0$, we get

and $\sqrt{3}$ are irrational.)

10 marks

$$\sqrt{3} = \frac{\frac{m^2}{n^2} + 10}{4m/n} = \frac{m^2 + 10n^2}{4mn}.$$

Since $m^2 + 10n^2$ and 4mn are both integer, $\sqrt{3}$ is rational, which is a contradiction.

• If m = 0, then $\sqrt{2} + 2\sqrt{3} = 0$, so that $\sqrt{2} = -2\sqrt{3}$. Squaring this, we get 2 = 12, a contradiction again.