This midterm has 6 questions on 7 pages, for a total of 100 points.

Duration: 80 minutes

- Read all the questions carefully before starting to work.
- Give complete arguments and explanations for all your calculations; answers without justifications will not be marked.
- Continue on the back of the previous page if you run out of space.
- Attempt to answer all questions for partial credit.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)

Full Name (including all middle names):

Student-No: \qquad

Signature: \qquad

Question:	1	2	3	4	5	6	Total
Points:	20	20	10	20	20	10	100
Score:							

20 marks 1. (a) (10 marks) For $A=\{-2,-1,0,1,2\}$ and $B=\{-3,-2, \ldots, 2,3\}$ list the elements of the set

$$
S=\left\{(a, b) \in A \times B:(a-b)^{2}=4\right\} .
$$

Solution: We have $(a, b) \in S$ if and only if either $a-b=2$ or $a-b=-2$. Therefore

$$
S=\{(-2,0),(-1,-3),(-1,1),(0,2),(0,-2),(1,3),(1,-1),(2,0)\}
$$

(b) (10 marks) For the sets A, B defined in part (a), give an example of a set X such that $A \cap B \subset X \subset A \cup B$.

Solution: We have $A \cap B=A$ and $A \cup B=B$, so we could take either $C=\{-2,-1,0,1,2,3\}$ or $C=\{-3,-2,-1,0,1,2\}$.
2. (a) (10 marks) Let P and Q be statements. Show that

$$
[(P \vee Q) \wedge \sim(P \wedge Q)] \equiv \sim(P \Leftrightarrow Q)
$$

	P	Q	$\sim(P \Leftrightarrow Q)$	$[(P \vee Q) \wedge \sim(P \wedge Q)]$
	T	T	F	F
Solution:	T	F	T	T
	F	T	T	T
	F	F	F	F

(b) (10 marks) Prove or disprove the following statement. Let A, B, C be sets, then

$$
A-(B-C) \subseteq(A-B) \cup(A \cap C)
$$

Solution: True. Let $x \in A-(B-C)$ so that $x \in A$ and $x \notin B-C$. By De Morgan this means that $x \in A$ and $(x \notin B$ or $x \in C)$. So we either have that $(x \in A$ and $x \notin B)$ or $(x \in A$ and $x \in C)$ so $x \in(A-B) \cup(A \cap C)$.

10 marks 3 . Let $m, n \in \mathbb{Z}$. Prove that if $m \equiv n(\bmod 3)$ then $m^{3} \equiv n^{3}(\bmod 9)$.

Solution: We will use a direct proof.
Proof. Let $m \equiv n(\bmod 3)$, then $m-n=3 k$ for some $k \in \mathbb{Z}$. We can write $n=3 a+r$, where $a \in \mathbb{Z}$ and $r=0,1$, or 2 . Then $m=n+3 k=3 a+r+3 k=3 b+r$, where $b=a+k \in \mathbb{Z}$. Therefore

$$
\begin{aligned}
m^{3}-n^{3} & =(3 a+r)^{3}-(3 b+r)^{3} \\
& =\left(27 a^{3}+27 a^{2} r+9 a r^{2}+r^{3}\right)-\left(27 b^{3}+27 b^{2} r+9 b r^{2}+r^{3}\right) \\
& =9\left(3 a^{3}+3 a^{2} r+a r^{2}-3 b^{3}-3 b^{2} r-b r^{2}\right)
\end{aligned}
$$

This is divisible by 9 , since $3 a^{3}+3 a^{2} r+a r^{2}-3 b^{3}-3 b^{2} r-b r^{2} \in \mathbb{Z}$.

This could also be proved by cases (with $m \equiv n \equiv 0,1$, and $2(\bmod 3)$). The calculation would be similar. odd.

Solution: We prove this by cases.

- Suppose that $n \in \mathbb{Z}$ is odd, then $n=2 k+1$ for some $k \in \mathbb{Z}$, so

$$
\begin{gathered}
n^{2}+n-1=(2 k+1)^{2}+(2 k+1)-1=4 k^{2}+4 k+1+2 k+1-1 \\
=4 k^{2}+6 k+1=2\left(2 k^{2}+3 k\right)+1
\end{gathered}
$$

Since $2 k^{2}+3 k$ is integer, $n^{2}+n-1$ is odd.

- Suppose now that $n \in \mathbb{Z}$ is even, then $n=2 k$ for some $k \in \mathbb{Z}$, so

$$
n^{2}+n-1=(2 k)^{2}+(2 k)-1=4 k^{2}+2 k-1=2\left(2 k^{2}+k-1\right)+1
$$

Since $2 k^{2}+k-1$ is integer, $n^{2}+n-1$ is odd.
The conclusion is true since it is true in both cases.
(b) (10 marks) Let a, b, c be integers. Prove that if $a^{2} \not \backslash b c$, then either $a \nmid b$ or $a \not \backslash c$.

Solution: We will prove the contrapositive, which is If $a \mid b$ and $a \mid c$, then $a^{2} \mid b c$.

Assume that $a \mid b$ and $a \mid c$, then $b=a x$ and $c=a y$ for some $x, y \in \mathbb{Z}$. Then $b c=(a x)(a y)=a^{2} x y$ and $x y \in \mathbb{Z}$, so $a^{2} \mid b c$.

20 marks 5. (a) (10 marks) Prove that every real number x satisfies $x^{2}+4>|2 x-1|$.
Solution: Let $x \in \mathbb{R}$. We have two cases.

- If $2 x-1 \geq 0$, then $|2 x-1|=2 x-1$, so we have to prove $x^{2}+4>2 x-1$, or equivalently $x^{2}-2 x+5>0$. But $x^{2}-2 x+5=(x-1)^{2}+4 \geq 4>0$.
- If $2 x-1<0$, then $|2 x-1|=-2 x+1$, so we have to prove $x^{2}+4>-2 x+1$, or equivalently $x^{2}+2 x+3>0$. But $x^{2}+2 x+3=(x+1)^{2}+2 \geq 2>0$.
(b) (10 marks) Prove the following statement: $\exists x \in \mathbb{R}$ such that $\forall y \in \mathbb{R}, y \leq x-1 \Rightarrow$ $y^{2}-x^{2} \geq 4$.

Solution: Let $x=-2$. Then $y \leq x-1$ implies $y \leq-3$, so that $x+y \leq-2-3=$ -5 . Also, $y \leq x-1$ implies $y-x \leq-1$. Therefore $y^{2}-x^{2}=(y+x)(y-x) \geq$ $(-5)(-1)=5$.
(No additional points for trying to find the optimal x.)
6. Prove that the number $\sqrt{2}+2 \sqrt{3}$ is irrational. (In this question, you may use that $\sqrt{2}$ and $\sqrt{3}$ are irrational.)

Solution: Proof by contradiction: Suppose that $\sqrt{2}+2 \sqrt{3}$ is rational, then $\sqrt{2}+$ $2 \sqrt{3}=\frac{m}{n}$ for some $m, n \in \mathbb{Z}, n \neq 0$. Then $\sqrt{2}=\frac{m}{n}-2 \sqrt{3}$. Squaring this, we get

$$
\begin{gathered}
2=\frac{m^{2}}{n^{2}}-4 \frac{m}{n} \sqrt{3}+12 \\
4 \frac{m}{n} \sqrt{3}=\frac{m^{2}}{n^{2}}+10
\end{gathered}
$$

- If $m \neq 0$, we get

$$
\sqrt{3}=\frac{\frac{m^{2}}{n^{2}}+10}{4 m / n}=\frac{m^{2}+10 n^{2}}{4 m n}
$$

Since $m^{2}+10 n^{2}$ and $4 m n$ are both integer, $\sqrt{3}$ is rational, which is a contradiction.

- If $m=0$, then $\sqrt{2}+2 \sqrt{3}=0$, so that $\sqrt{2}=-2 \sqrt{3}$. Squaring this, we get $2=12$, a contradiction again.

