This midterm has 7 questions on 8 pages, for a total of 100 points.

Duration: 80 minutes

- Read all the questions carefully before starting to work.
- You should give complete arguments and explanations for all your calculations; answers without justifications will not be marked.
- Continue on the back of the previous page if you run out of space.
- Attempt to answer all questions for partial credit.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)

Full Name (including all middle names):

Student-No: \qquad

Signature: \qquad

Question:	1	2	3	4	5	6	7	Total
Points:	14	16	16	8	12	18	16	100
Score:								

14 marks 1. (a) (8 marks) Let P be the statement
If 3 is even, then 6 is even or divisible by 5 .
Write out the negation, converse and contrapositive of P. Determine the truth value of all four statements (P, its negation, converse and contrapositive). Explain your answers.

Solution:

- P is true because 3 is not even. (" P is true because 6 is even" is also a correct answer.)
- Negation: 3 is even and 6 is neither even nor divisible by 4. False, because 3 is not even (alternatively, because 6 is even).
- Converse: If 6 is even or divisible by 5 , then 3 is even. False, because 6 is even but 3 is not even.
- Contrapositive: If 6 is neither even nor divisible by 5 , then 3 is not even. True because 3 is not even (alternatively, because 6 is even).
(b) (6 marks) Is the statement

$$
\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, \forall z \in \mathbb{Z}, \text { if } z>y \text { then } z>x
$$

true or false? Explain why. Write the negation of it.
Solution: The statement is true: given $x \in \mathbb{R}$, let $y=x$ (for example), then the conclusion holds. The negation is:

$$
\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, \exists z \in \mathbb{Z}, z>y \text { and } z<x
$$

16 marks 2. (a) (4 marks) For $n \in \mathbb{N}$, let $A_{n}=\left\{x \in \mathbb{R}: 1-\frac{1}{n} \leq x \leq n^{2}\right\}$. Find $\bigcap_{n \in \mathbb{N}} A_{n}$ and $\bigcup_{n \in \mathbb{N}} A_{n}$.

Solution:

$$
\bigcap_{n \in \mathbb{N}} A_{n}=\{x \in \mathbb{R}: 1 \leq x \leq 1\}=\{1\}, \bigcup_{n \in \mathbb{N}} A_{n}=[0, \infty)
$$

(b) (4 marks) For the sets A_{n} from part (a), find $\bigcap_{n \in I} A_{n}$ and $\bigcup_{n \in I} A_{n}$, if $I=\{2,3,4\}$.

Solution: $A_{2}=[1 / 2,4], A_{3}=[2 / 3,9], A_{4}=[3 / 4,16]$. Therefore

$$
\bigcap_{n \in I} A_{n}=[3 / 4,4], \bigcup_{n \in I} A_{n}=[1 / 2,16]
$$

(c) (4 marks) Is there a non-empty set $J \subset \mathbb{N}$ such that $\bigcap_{n \in J} A_{n}=\bigcup_{n \in J} A_{n}$? If yes, find such J (one example will suffice); if no, explain why.

Solution: Yes, J could be any one-element set. For example, $J=\{1\}$, then $\bigcap_{n \in J} A_{n}=\bigcup_{n \in J} A_{n}=A_{1}$.
(d) (4 marks) Give an example of a set B such that $B \cap \mathcal{P}(B) \neq \emptyset$. (Recall that $\mathcal{P}(B)$ is the power set of B.)

Solution: We can take $B=\{1,\{1\}\}$ then $\{1\} \in B \cap \mathcal{P}(B)$.
3. (a) (8 marks) Prove that for all $n \in \mathbb{N}$, the number $5 n+3$ is odd if and only if $3 n-2$ is even.

Solution: Proof by cases.

- Let $n \in \mathbb{N}$, and assume that n is odd, so that $n=2 k+1$ for some integer k. Then $5 n+3=5(2 k+1)+3=10 k+8=2(5 k+4)$ and $5 k+4$ is integer, so $5 n+3$ is even. Also, $3 n-2=3(2 k+1)-2=6 k+1=2(3 k)+1$ is odd. Therefore the statements

$$
\text { " } 5 n+3 \text { is odd" and " } 3 n-2 \text { is even" }
$$

are both false, so the biconditional is true in this case.

- Assume now that n is even, so that $n=2 k$ for some integer k. Then $5 n+3=10 k+3=2(5 k+1)+1$ is odd, since $5 k+1$ is integer. Also, $3 n-2=6 k-2=2(3 k-1)$ is even, since $3 k-1 \in \mathbb{Z}$. Therefore in this case both statements are true, so that the biconditional is again true.
(b) (8 marks) Let a, b, c be integers such that $a \neq 0$. Prove that if a divides $b+c$ and a does not divide b, then a does not divide c.

Solution: Proof by contradiction: suppose that $a \mid b+c, a \nmid b$, and $a \mid c$. Then $b+c=k a$ and $c=\ell a$ for some integers k, ℓ. But then $b=(b+c)-c=k a-\ell a=$ $(k-\ell) a$, so that a divides b, which contradicts our assumptions.

8 marks
4. Prove the following statement: for all $n \in \mathbb{Z}$, if n^{2} is not divisible by 4 then $n^{2} \equiv 1(\bmod$ 4).

Solution: We prove this by cases.

- Suppose that $n \in \mathbb{Z}$ is odd, then $n=2 k+1$ for some $k \in \mathbb{Z}$, so

$$
n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=4\left(k^{2}+k\right)+1 \equiv 1(\bmod 4)
$$

In this case, n^{2} is not divisible by 4 and $n^{2} \equiv 1(\bmod 4)$, so the implication is true.

- Suppose now that $n \in \mathbb{Z}$ is even, then $n=2 k$ for some $k \in \mathbb{Z}$, so $n^{2}=(2 k)^{2}=$ $4 k^{2}$ is divisible by 4 since $k \in \mathbb{Z}$. Hence the implication is again true.

12 marks 5. Are the following statements true or false? Prove your answers.
(a) (6 marks) Let A, B, C be sets. If $A \cap B, B \cap C$, and $A \cap C$ are all non-empty, then $A \cap B \cap C$ is non-empty.

Solution: False: let $A=\{1,2,3\}, B=\{3,4,5\}, C=\{1,5\}$. Then $A \cap B=\{3\}$, $B \cap C=\{5\}$ and $A \cap C=\{1\}$ are all non-empty, but $A \cap B \cap C=\emptyset$.
(b) (6 marks) If A and B are sets such that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, then $A \subseteq B$.

Solution: True. We will prove the contrapositive, which is
If $A \nsubseteq B$, then $\mathcal{P}(A) \nsubseteq \mathcal{P}(B)$.
Suppose that $A \nsubseteq B$, then there is an element $x \in A$ such that $x \notin B$. Then $\{x\} \in \mathcal{P}(A)$, but $\{x\} \notin \mathcal{P}(B)$. Therefore $\mathcal{P}(A) \nsubseteq \mathcal{P}(B)$, as claimed.
6. (a) (12 marks) Consider the statements
(1) For every $x \in \mathbb{R}$, there exists a $y \in \mathbb{R}$ such that if $x+1>y$ then $x>y$.
(2) There exists $x \in \mathbb{R}$ such that for every $y \in \mathbb{R}$, if $x+1>y$ then $x>y$.

For each statement, decide whether it is true or false. Prove your answer.

Solution:

- (1) is true. Given $x \in \mathbb{R}$, we can take $y=x-1$, then $x+1>x-1=y$ and $x>x-1=y$, so the implication is true. (Any other y such that $y<x$ or $y \geq x+1$ would also work.)
- (2) is false. It says that there is an $x \in \mathbb{R}$ such that the implication "if $x+1>y$ then $x>y$ " is true for all $y \in \mathbb{R}$. But this is false because given any x, if $y=x+.5$, then $x+1>y$ but $x<y$.
(b) (6 marks) Prove that the number $\frac{\sqrt{2}+1}{4}$ is irrational. (You can use that $\sqrt{2}$ is irrational.)

Solution: We will prove this by contradiction. Suppose that $\frac{\sqrt{2}+1}{4}$ is rational, then $\frac{\sqrt{2}+1}{4}=\frac{m}{n}$, where $m, n \in \mathbb{Z}$ and $n \neq 0$. Then $\sqrt{2}+1=\frac{4 m}{n}$, so that $\sqrt{2}=\frac{4 m}{n}-1=\frac{4 m-n}{n}$, so that $\sqrt{2}$ is rational. But we know this to be false. Therefore the original statement is true.
7. (a) (8 marks) Let P, Q, R be statements. Prove that the statements

$$
P \Rightarrow((\sim Q) \vee(Q \Rightarrow R)) \quad \text { and } \quad \sim((P \wedge Q) \wedge(\sim R))
$$

are logically equivalent.

Solution:

$$
\begin{aligned}
\sim[P \Rightarrow((\sim Q) \vee(Q \Rightarrow R))] & \equiv P \wedge \sim((\sim Q) \vee(Q \Rightarrow R)) \\
& \equiv P \wedge(Q \wedge \sim(Q \Rightarrow R)) \\
& \equiv P \wedge(Q \wedge(Q \wedge \sim R)) \\
& \equiv P \wedge Q \wedge(\sim R)
\end{aligned}
$$

Negating both statements, we get the equivalence we need. (This could also be done using a truth table as below.)
(b) (8 marks) Prove that for any two statements P, Q, the following is a tautology:

$$
(((\sim P) \Rightarrow Q) \wedge(\sim Q)) \Rightarrow P
$$

Solution: We will use a truth table. Let R denote the statement

$$
((\sim P) \Rightarrow Q) \wedge(\sim Q)
$$

Then

P	Q	$\sim P$	$(\sim P) \Rightarrow Q$	$\sim Q$	R	$R \Rightarrow P$
T	T	F	T	F	F	T
T	F	F	T	T	T	T
F	T	T	T	F	F	T
F	F	T	F	T	F	T

