This midterm has 6 questions on 7 pages, for a total of 100 points.

Duration: 80 minutes

- Read all the questions carefully before starting to work.
- Give complete arguments and explanations for all your calculations; answers without justifications will not be marked.
- Continue on the back of the previous page if you run out of space.
- Attempt to answer all questions for partial credit.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)

Full Name (including all middle names):

Student-No: \qquad

Signature: \qquad

Question:	1	2	3	4	5	6	Total
Points:	20	20	10	20	20	10	100
Score:							

20 marks 1. (a) (10 marks) For $A=\{-2,-1,0,1,2\}$ and $B=\{-3,-2, \ldots, 2,3\}$ list the elements of the set

$$
S=\left\{(a, b) \in A \times B:(a-b)^{2}=4\right\} .
$$

(b) (10 marks) For the sets A, B defined in part (a), give an example of a set X such that $A \cap B \subset X \subset A \cup B$.

20 marks 2. (a) (10 marks) Let P and Q be statements. Show that

$$
[(P \vee Q) \wedge \sim(P \wedge Q)] \equiv \sim(P \Leftrightarrow Q)
$$

(b) (10 marks) Prove or disprove the following statement. Let A, B, C be sets, then

$$
A-(B-C) \subseteq(A-B) \cup(A \cap C)
$$

10 marks 3 . Let $m, n \in \mathbb{Z}$. Prove that if $m \equiv n(\bmod 3)$ then $m^{3} \equiv n^{3}(\bmod 9)$.

20 marks 4. (a) (10 marks) Prove the following statement: for all $n \in \mathbb{Z}$, the number $n^{2}+n-1$ is odd.
(b) (10 marks) Let a, b, c be integers. Prove that if $a^{2} \nmid b c$, then either $a \nmid b$ or $a \nmid c$.

20 marks 5. (a) (10 marks) Prove that every real number x satisfies $x^{2}+4>|2 x-1|$.
(b) (10 marks) Prove the following statement: $\exists x \in \mathbb{R}$ such that $\forall y \in \mathbb{R}, y \leq x-1 \Rightarrow$ $y^{2}-x^{2} \geq 4$.

10 marks 6. Prove that the number $\sqrt{2}+2 \sqrt{3}$ is irrational. (In this question, you may use that $\sqrt{2}$ and $\sqrt{3}$ are irrational.)

