Math 226 - Advanced Calculus 1
December 2005

1. (a) Prove that the line given by the parametric equations x = 1+4t, y =2—1t, z = —3t,
1s parallel to the plane 2x + 5y + z = 4.

We check that the direction vector of the line (4, —1, —3) is perpendicular to the vector
n = (2,5,1) normal to the plane: (4,—1,-3)-(2,5,1)=8—-5-3=0.

(b) Find the distance between the plane and the line in (a).

Pick a point on the line, e.g. P(1,2,0), and one in the plane, e.g. Q(1,0,2). Then
QP = (0,2,—2). The distance from the line to the plane is equal to the scalar projection
of Q_P on n:
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2. Find all points on the surface 3x% — y? + 222 = 1 where the tangent plane is parallel to
both of the vectors (2,2,—1) and (4,1, —5).

We find a vector perpendicular to (2,2, —1) and (4,1, —5):
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So we need to find points on the surface where the normal vector to the surface is parallel
to (3,—2,2). The normal vector at (z,y, 2) is (6x, —2y,4z), or (3z,—y,2z) (divide by 2).
Thus we should have for some t,

3x = 3t, —y = —2t,2z = 2t,
ie.x =t,y =2tz =t. If we plug this into the equation of the surface, we get
32—t 22 =2 =1, t = +1.

This corresponds to two points, (z,y,z) = (1,2,1) or (—1,-2,—1).

3. (a) Find g—; and g—; at (z,y) = (1,0), if z = f(e*T2Y, sin(zy),e* Y) and f : R® — R is

a function of class C' such that f(e,0,e) =3 and V f(e,0,¢e) = (3,—1,2). (Use the Chain
Rule).

By the Chain Rule, we have

0z
— = 3e" T — 2"V =3e—0+2=5
92 (1.0 e y cos(zy) + 2e o) e — 0+ 2e = be,
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=3-2e"t?Y — gcos(xy) — 2"V =6e —1—2e=4e—1.
(1,0) (1,0)

(b) If F(z,y) = (;2) , where z is as in (a), find DF(1,0).

We have, again by the Chain Rule,

Hence

0z 0z
DF(1,0) = <a<z2) a(z2)> = (30e 24e—6)'
ox dy

4. (a) Find the local mazimum and minimum values and saddle points of the function
flz,y) =a* +y* — dzy + 6.

We have
f:l: - 4373 - 43/5 fy = 4y3 - 4'1:7
fee = 1222, f,, = 1207, fo, = —4.

We first find critical points: if f, = f, =0, then 3 = y and y® = z, so that 2% = y3 =z,
x=0o0r 28 =1,z = +1. We get three critical points: (0,0),(1,1),(—1,—1). Now the
second derivative test: (0,0) is a saddle point because

0 -4
f22(0,0) =0, 4 0 ’——16<0,
(1,1) and (—1,—1) are local minimizers because
12 —4
feo(FL,#1) =12, | ' — 144 — 16 > 0.

Thus f has two local minima f(1,1) = f(—1,—1) = 4 and one saddle point f(0,0) = 6.

(b) Does the function in (a) have a global mazimum or minimum? FExplain why or why
not.

Since f(x,y) — o0 as |[(z,y)|| — oo, there is no global maximum, and the two local
minima at (£1,+1) are in fact global minima.

5. The plane x + 2y + z = 10 intersects the paraboloid z = x* + y? in an ellipse. Find the
points on this ellipse which are nearest to and farthest from the origin.
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We need to find the critical points of f(z,y,2) = 22 + y? + 22 subject to constraints
g1(z,y,2) = 2+2y+2z =10 and go(z,y, z) = 22 +y? — 2 = 0. We use Lagrange multipliers.
Since

Vf - (2$7 2y, 22)7 v.gl = (17 2, 1)7 v.gZ = (21" 2y, _1)7

the critical points must satisfy for some A1, Ao

2r = )\1 —+ ZI)\Q, 2y = 2)\1 —+ Qy)\g, 2z = )\1 — /\2.
From the first two equations we have

2217(1 — )\2) = )\1, 2.{6(1 — )\2) = 2)\1

Thus either y = 2z, or else 1 — Ay = A1y = 0. In the second case we would have 2z =
0 — 1 = —1, which contradicts the fact that z = 22 4 y? should be nonnegative. Therefore
y = 2x. Plugging this into g; = 10 and g2 = 0 we get

r+4r+2 =5+ 2z =10, 2% + 42 = 522 = 2.
Hence 10 =5z + 2 =6+ 522, 22 +2—-2=0,z =1 or —2. If z = 1, then y = 22 = 2

and z = 522 = 5, and if z = —2 then y = —4 and z = 20. Clearly, (1,2,5) will minimize
the distance to the origin, and (-2, —4,20) will maximize it.

6. In each part of this problem, provide a precise definition of the word or phrase in
boldface. Let

——_ if (x,y) # (0,0),
vy = |
USE { 0, i (x,y) = (0,0).

(a) Prove that f is continuous at (0,0). (Hint: use polar coordinates.)
f is continuous at a if the limit lim f(x,y) exists and is equal to f(a). Here

(z,y)—a

a = (0,0). In polar coordinates x = rcosf,y = rsinf, we have

2 cosfsin @
flz,y) = w = rcosfsiné.

Thus —r < f(x,y) < r. As (z,y) — 0, r — 0, hence ( %Hn( )f(:v,y) =0= f(0,0) as
z,y)—(0,0
required.

(b) If u is a unit vector, find the directional derivative D, f(0,0) directly from the
definition.

The directional derivative Dy f(a) is

Daf(@) = Jim = (f(a-+ hw) — f(a))
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If u = (uy,u2) = (cosf,sinf) is a unit vector, then by the first part,

1 h cos 6 sin 6
Dy, f(0,0) = illli% E(f(hcos&,hsin@) —0) = %%thm = cosfsinf = ujus.

(c¢) Is f differentiable at (0,0)? Explain why or why not.
f is differentiable at (a,b) if f, and f, exist at (a,b) and if

) 1
o T 0 ) (0 = R D) =0

In this example, f;(0,0) = f,(0,0) = 0, so differentiability of f at 0 would imply that
Dy, f(0,0) = 0 for any unit vector u. But this is not the case, by (b). Hence f is not
differentiable at (0,0).

7. Let f : R™ — R be a function of class C' such that
fix) =t*f(x) for allx € R",t >0

for some fixred a € R (such functions are called homogeneous of degree a). Prove that

X Vf(x) = af(x).
(Hint: for fived x, differentiate f(tx) with respect to t.)
Fix x. On the one hand, we have by the Chain Rule

%f(tx) = xlg—if(tx) +...+ xn%f(tx) =x-Vf(tx),

on the other hand, using the homogeneity of f we also have

d

d a _ a—1
Ef(tx) = E(t f(x)) = at®"" f(x).

Hence x - V f(tx) = at®~! f(x). Setting now t = 1, we get x - Vf(x) = af(x), as required.
8. Fwaluate the following integrals.

(a) // 3dA, if D is the region bounded by the parabola y> — x — 5 = 0 and the line
D
x4+ 2y = 3.

We first find the points where the parabola intersects the line: if x = y? — 5 and
z+2y=3theny?> —5+2y—3, 42+ 2y —8 =0, y =2, —4. It will be more convenient to
integrate in x first (draw a picture!):

2 ,3-2y 2
// 3dA:/ / dedy:/ 3(3 — 2y — v + 5)dy
D —4 Jy?2-5 —4
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2 y3 9
=3/ (—y2—2y+8)dy=3(—§—y2+8y)‘ = 108

—4

//x sin(y dydw-// 2% sin(y dxdy—/ (—sm(y3)

! 311 —cos(1) +1
:/ y—sin(yg)dy _ _cos(y )‘ _ cos(1) + .
0

N
Y dy
=0

4 12 o 12

9. Let R be the solid region in R® bounded by the planes x =0, y = 0, y = 4 — x, and

the surface z = 4 — x%. Write /// f(x,y,2)dV as iterated integrals where the order of
R

integration is as indicated below (i.e. find the limits of integration).

Actually, this defines two unbounded regions in R3, one below the surface z = 4 — 22,

one above it. (I had intended to add the condition z > 0, but it was left out of the typed
version by mistake.) For the region below the surface z = 4—x?, the solution is as indicated

below.
4 4—x 4—22
/ / / f(z,y, 2)dzdydx
0 0 — 00

(a)
/ /mm(4 v /4 ) f(z,y, z)dydzdz

12 4—zx Vi—z pd—=x
/ / / (z,y,z dydacdz—l—/ / / (x,y, z)dydxdz.
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