
Math 226 - Advanced Calculus I
December 2005

1. (a) Prove that the line given by the parametric equations x = 1+4t, y = 2− t, z = −3t,
is parallel to the plane 2x + 5y + z = 4.

We check that the direction vector of the line (4,−1,−3) is perpendicular to the vector
n = (2, 5, 1) normal to the plane: (4,−1,−3) · (2, 5, 1) = 8− 5− 3 = 0.

(b) Find the distance between the plane and the line in (a).

Pick a point on the line, e.g. P (1, 2, 0), and one in the plane, e.g. Q(1, 0, 2). Then
~QP = (0, 2,−2). The distance from the line to the plane is equal to the scalar projection

of ~QP on n:
|(2, 5, 1) · (0, 2,−2)|

‖(2, 5, 1)‖
=
|0 + 10− 2|√

4 + 25 + 1
=

8√
30

.

2. Find all points on the surface 3x2 − y2 + 2z2 = 1 where the tangent plane is parallel to
both of the vectors (2, 2,−1) and (4, 1,−5).

We find a vector perpendicular to (2, 2,−1) and (4, 1,−5):

(2, 2,−1)× (4, 1,−5) =

∣∣∣∣∣∣
i j k
2 2 −1
4 1 −5

∣∣∣∣∣∣ = i
∣∣∣∣ 2 −1
1 −5

∣∣∣∣− j
∣∣∣∣ 2 −1
4 −5

∣∣∣∣+ k
∣∣∣∣ 2 2
4 1

∣∣∣∣ = −9i + 6j− 6k.

So we need to find points on the surface where the normal vector to the surface is parallel
to (3,−2, 2). The normal vector at (x, y, z) is (6x,−2y, 4z), or (3x,−y, 2z) (divide by 2).
Thus we should have for some t,

3x = 3t,−y = −2t, 2z = 2t,

i.e. x = t, y = 2t, z = t. If we plug this into the equation of the surface, we get

3t2 − 4t2 + 2t2 = t2 = 1, t = ±1.

This corresponds to two points, (x, y, z) = (1, 2, 1) or (−1,−2,−1).

3. (a) Find
∂z

∂x
and

∂z

∂y
at (x, y) = (1, 0), if z = f(ex+2y, sin(xy), ex−y) and f : R3 → R is

a function of class C1 such that f(e, 0, e) = 3 and ∇f(e, 0, e) = (3,−1, 2). (Use the Chain
Rule).

By the Chain Rule, we have

∂z

∂x

∣∣∣
(1,0)

= 3ex+2y − y cos(xy) + 2ex−y
∣∣∣
(1,0)

= 3e− 0 + 2e = 5e,
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∂z

∂y

∣∣∣
(1,0)

= 3 · 2ex+2y − x cos(xy)− 2ex−y
∣∣∣
(1,0)

= 6e− 1− 2e = 4e− 1.

(b) If F(x, y) =
(

z
z2

)
, where z is as in (a), find DF(1, 0).

We have, again by the Chain Rule,

∂(z2)
∂x

∣∣∣
(1,0)

= 2z
∂z

∂x

∣∣∣
(1,0)

= 2 · 3 · 5e = 30e,

∂(z2)
∂y

∣∣∣
(1,0)

= 2z
∂z

∂y

∣∣∣
(1,0)

= 2 · 3 · (4e− 1) = 24e− 6.

Hence

DF(1, 0) =

(
∂z
∂x

∂z
∂y

∂(z2)
∂x

∂(z2)
∂y

)
=
(

5e 4e− 1
30e 24e− 6

)
.

4. (a) Find the local maximum and minimum values and saddle points of the function
f(x, y) = x4 + y4 − 4xy + 6.

We have
fx = 4x3 − 4y, fy = 4y3 − 4x,

fxx = 12x2, fyy = 12y2, fxy = −4.

We first find critical points: if fx = fy = 0, then x3 = y and y3 = x, so that x9 = y3 = x,
x = 0 or x8 = 1, x = ±1. We get three critical points: (0, 0), (1, 1), (−1,−1). Now the
second derivative test: (0, 0) is a saddle point because

fxx(0, 0) = 0,

∣∣∣∣ 0 −4
−4 0

∣∣∣∣ = −16 < 0,

(1, 1) and (−1,−1) are local minimizers because

fxx(±1,±1) = 12,

∣∣∣∣ 12 −4
−4 12

∣∣∣∣ = 144− 16 > 0.

Thus f has two local minima f(1, 1) = f(−1,−1) = 4 and one saddle point f(0, 0) = 6.

(b) Does the function in (a) have a global maximum or minimum? Explain why or why
not.

Since f(x, y) → ∞ as ‖(x, y)‖ → ∞, there is no global maximum, and the two local
minima at (±1,±1) are in fact global minima.

5. The plane x + 2y + z = 10 intersects the paraboloid z = x2 + y2 in an ellipse. Find the
points on this ellipse which are nearest to and farthest from the origin.

2



We need to find the critical points of f(x, y, z) = x2 + y2 + z2 subject to constraints
g1(x, y, z) = x+2y+z = 10 and g2(x, y, z) = x2+y2−z = 0. We use Lagrange multipliers.
Since

∇f = (2x, 2y, 2z), ∇g1 = (1, 2, 1),∇g2 = (2x, 2y,−1),

the critical points must satisfy for some λ1, λ2

2x = λ1 + 2xλ2, 2y = 2λ1 + 2yλ2, 2z = λ1 − λ2.

From the first two equations we have

2x(1− λ2) = λ1, 2x(1− λ2) = 2λ1.

Thus either y = 2x, or else 1 − λ2 = λ1 = 0. In the second case we would have 2z =
0− 1 = −1, which contradicts the fact that z = x2 + y2 should be nonnegative. Therefore
y = 2x. Plugging this into g1 = 10 and g2 = 0 we get

x + 4x + z = 5x + z = 10, x2 + 4x2 = 5x2 = z.

Hence 10 = 5x + z = 5x + 5x2, x2 + x − 2 = 0, x = 1 or −2. If x = 1, then y = 2x = 2
and z = 5x2 = 5, and if x = −2 then y = −4 and z = 20. Clearly, (1, 2, 5) will minimize
the distance to the origin, and (−2,−4, 20) will maximize it.

6. In each part of this problem, provide a precise definition of the word or phrase in
boldface. Let

f(x, y) =

{
xy√

x2+y2
, if (x, y) 6= (0, 0),

0, if (x, y) = (0, 0).

(a) Prove that f is continuous at (0, 0). (Hint: use polar coordinates.)

f is continuous at a if the limit lim
(x,y)→a

f(x, y) exists and is equal to f(a). Here

a = (0, 0). In polar coordinates x = r cos θ, y = r sin θ, we have

f(x, y) =
r2 cos θ sin θ

r
= r cos θ sin θ.

Thus −r ≤ f(x, y) ≤ r. As (x, y) → 0, r → 0, hence lim
(x,y)→(0,0)

f(x, y) = 0 = f(0, 0) as

required.

(b) If u is a unit vector, find the directional derivative Duf(0, 0) directly from the
definition.

The directional derivative Duf(a) is

Duf(a) = lim
h→0

1
h

(f(a + hu)− f(a)).
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If u = (u1, u2) = (cos θ, sin θ) is a unit vector, then by the first part,

Duf(0, 0) = lim
h→0

1
h

(f(h cos θ, h sin θ)− 0) = lim
h→0

h cos θ sin θ

h
= cos θ sin θ = u1u2.

(c) Is f differentiable at (0, 0)? Explain why or why not.

f is differentiable at (a, b) if fx and fy exist at (a, b) and if

lim
(h,k)→0

1
‖(h, k)‖

(f(a + h, b + k)− hfx(a, b)− kfy(a, b)) = 0.

In this example, fx(0, 0) = fy(0, 0) = 0, so differentiability of f at 0 would imply that
Duf(0, 0) = 0 for any unit vector u. But this is not the case, by (b). Hence f is not
differentiable at (0, 0).

7. Let f : Rn → R be a function of class C1 such that

f(tx) = taf(x) for all x ∈ Rn, t > 0

for some fixed a ∈ R (such functions are called homogeneous of degree a). Prove that

x · ∇f(x) = af(x).

(Hint: for fixed x, differentiate f(tx) with respect to t.)

Fix x. On the one hand, we have by the Chain Rule

d

dt
f(tx) = x1

∂f

∂x1
f(tx) + . . . + xn

∂f

∂xn
f(tx) = x · ∇f(tx),

on the other hand, using the homogeneity of f we also have

d

dt
f(tx) =

d

dt
(taf(x)) = ata−1f(x).

Hence x · ∇f(tx) = ata−1f(x). Setting now t = 1, we get x · ∇f(x) = af(x), as required.

8. Evaluate the following integrals.

(a)
∫ ∫

D

3dA, if D is the region bounded by the parabola y2 − x − 5 = 0 and the line

x + 2y = 3.

We first find the points where the parabola intersects the line: if x = y2 − 5 and
x + 2y = 3 then y2 − 5 + 2y − 3, y2 + 2y − 8 = 0, y = 2,−4. It will be more convenient to
integrate in x first (draw a picture!):∫ ∫

D

3dA =
∫ 2

−4

∫ 3−2y

y2−5

3dxdy =
∫ 2

−4

3(3− 2y − y2 + 5)dy

4



= 3
∫ 2

−4

(−y2 − 2y + 8)dy = 3(−y3

3
− y2 + 8y)

∣∣∣2
−4

= 108.

(b)
∫ 1

0

∫ 1

x2
x3 sin(y3)dydx =

∫ 1

0

∫ √y

0

x3 sin(y3)dxdy =
∫ 1

0

(
x4

4
sin(y3)

∣∣∣√y

x=0
dy

=
∫ 1

0

y2

4
sin(y3)dy = −cos(y3)

12

∣∣∣1
0

=
− cos(1) + 1

12
.

9. Let R be the solid region in R3 bounded by the planes x = 0, y = 0, y = 4 − x, and

the surface z = 4− x2. Write
∫ ∫ ∫

R

f(x, y, z)dV as iterated integrals where the order of

integration is as indicated below (i.e. find the limits of integration).

Actually, this defines two unbounded regions in R3, one below the surface z = 4− x2,
one above it. (I had intended to add the condition z ≥ 0, but it was left out of the typed
version by mistake.) For the region below the surface z = 4−x2, the solution is as indicated
below.

(a) ∫ 4

0

∫ 4−x

0

∫ 4−x2

−∞
f(x, y, z)dzdydx

(b) ∫ 4

−∞

∫ min(4,
√

4−z)

0

∫ 4−x

0

f(x, y, z)dydxdz

=
∫ −12

−∞

∫ 4

0

∫ 4−x

0

f(x, y, z)dydxdz +
∫ 4

−12

∫ √4−z

0

∫ 4−x

0

f(x, y, z)dydxdz.
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