Math 226 - Advanced Calculus I

December 2005

1. (a) Prove that the line given by the parametric equations $x=1+4 t, y=2-t, z=-3 t$, is parallel to the plane $2 x+5 y+z=4$.

We check that the direction vector of the line $(4,-1,-3)$ is perpendicular to the vector $\mathbf{n}=(2,5,1)$ normal to the plane: $(4,-1,-3) \cdot(2,5,1)=8-5-3=0$.
(b) Find the distance between the plane and the line in (a).

Pick a point on the line, e.g. $P(1,2,0)$, and one in the plane, e.g. $Q(1,0,2)$. Then $\overrightarrow{Q P}=(0,2,-2)$. The distance from the line to the plane is equal to the scalar projection of $\overrightarrow{Q P}$ on \mathbf{n} :

$$
\frac{|(2,5,1) \cdot(0,2,-2)|}{\|(2,5,1)\|}=\frac{|0+10-2|}{\sqrt{4+25+1}}=\frac{8}{\sqrt{30}} .
$$

2. Find all points on the surface $3 x^{2}-y^{2}+2 z^{2}=1$ where the tangent plane is parallel to both of the vectors $(2,2,-1)$ and $(4,1,-5)$.

We find a vector perpendicular to $(2,2,-1)$ and $(4,1,-5)$:
$(2,2,-1) \times(4,1,-5)=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 2 & -1 \\ 4 & 1 & -5\end{array}\right|=\mathbf{i}\left|\begin{array}{cc}2 & -1 \\ 1 & -5\end{array}\right|-\mathbf{j}\left|\begin{array}{cc}2 & -1 \\ 4 & -5\end{array}\right|+\mathbf{k}\left|\begin{array}{cc}2 & 2 \\ 4 & 1\end{array}\right|=-9 \mathbf{i}+6 \mathbf{j}-6 \mathbf{k}$.
So we need to find points on the surface where the normal vector to the surface is parallel to $(3,-2,2)$. The normal vector at (x, y, z) is $(6 x,-2 y, 4 z)$, or $(3 x,-y, 2 z)$ (divide by 2). Thus we should have for some t,

$$
3 x=3 t,-y=-2 t, 2 z=2 t,
$$

i.e. $x=t, y=2 t, z=t$. If we plug this into the equation of the surface, we get

$$
3 t^{2}-4 t^{2}+2 t^{2}=t^{2}=1, t= \pm 1
$$

This corresponds to two points, $(x, y, z)=(1,2,1)$ or $(-1,-2,-1)$.
3. (a) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at $(x, y)=(1,0)$, if $z=f\left(e^{x+2 y}, \sin (x y), e^{x-y}\right)$ and $f: \mathbf{R}^{3} \rightarrow \mathbf{R}$ is a function of class C^{1} such that $f(e, 0, e)=3$ and $\nabla f(e, 0, e)=(3,-1,2)$. (Use the Chain Rule).

By the Chain Rule, we have

$$
\left.\frac{\partial z}{\partial x}\right|_{(1,0)}=3 e^{x+2 y}-y \cos (x y)+\left.2 e^{x-y}\right|_{(1,0)}=3 e-0+2 e=5 e
$$

$$
\left.\frac{\partial z}{\partial y}\right|_{(1,0)}=3 \cdot 2 e^{x+2 y}-x \cos (x y)-\left.2 e^{x-y}\right|_{(1,0)}=6 e-1-2 e=4 e-1 .
$$

(b) If $\mathbf{F}(x, y)=\binom{z}{z^{2}}$, where z is as in (a), find $D \mathbf{F}(1,0)$.

We have, again by the Chain Rule,

$$
\begin{gathered}
\left.\frac{\partial\left(z^{2}\right)}{\partial x}\right|_{(1,0)}=\left.2 z \frac{\partial z}{\partial x}\right|_{(1,0)}=2 \cdot 3 \cdot 5 e=30 e \\
\left.\frac{\partial\left(z^{2}\right)}{\partial y}\right|_{(1,0)}=\left.2 z \frac{\partial z}{\partial y}\right|_{(1,0)}=2 \cdot 3 \cdot(4 e-1)=24 e-6 .
\end{gathered}
$$

Hence

$$
D \mathbf{F}(1,0)=\left(\begin{array}{cc}
\frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} \\
\frac{\partial\left(z^{2}\right)}{\partial x} & \frac{\partial\left(z^{2}\right)}{\partial y}
\end{array}\right)=\left(\begin{array}{cc}
5 e & 4 e-1 \\
30 e & 24 e-6
\end{array}\right) .
$$

4. (a) Find the local maximum and minimum values and saddle points of the function $f(x, y)=x^{4}+y^{4}-4 x y+6$.

We have

$$
\begin{gathered}
f_{x}=4 x^{3}-4 y, f_{y}=4 y^{3}-4 x, \\
f_{x x}=12 x^{2}, f_{y y}=12 y^{2}, f_{x y}=-4 .
\end{gathered}
$$

We first find critical points: if $f_{x}=f_{y}=0$, then $x^{3}=y$ and $y^{3}=x$, so that $x^{9}=y^{3}=x$, $x=0$ or $x^{8}=1, x= \pm 1$. We get three critical points: $(0,0),(1,1),(-1,-1)$. Now the second derivative test: $(0,0)$ is a saddle point because

$$
f_{x x}(0,0)=0,\left|\begin{array}{cc}
0 & -4 \\
-4 & 0
\end{array}\right|=-16<0
$$

$(1,1)$ and $(-1,-1)$ are local minimizers because

$$
f_{x x}(\pm 1, \pm 1)=12,\left|\begin{array}{cc}
12 & -4 \\
-4 & 12
\end{array}\right|=144-16>0
$$

Thus f has two local minima $f(1,1)=f(-1,-1)=4$ and one saddle point $f(0,0)=6$.
(b) Does the function in (a) have a global maximum or minimum? Explain why or why not.

Since $f(x, y) \rightarrow \infty$ as $\|(x, y)\| \rightarrow \infty$, there is no global maximum, and the two local minima at $(\pm 1, \pm 1)$ are in fact global minima.
5. The plane $x+2 y+z=10$ intersects the paraboloid $z=x^{2}+y^{2}$ in an ellipse. Find the points on this ellipse which are nearest to and farthest from the origin.

We need to find the critical points of $f(x, y, z)=x^{2}+y^{2}+z^{2}$ subject to constraints $g_{1}(x, y, z)=x+2 y+z=10$ and $g_{2}(x, y, z)=x^{2}+y^{2}-z=0$. We use Lagrange multipliers. Since

$$
\nabla f=(2 x, 2 y, 2 z), \nabla g_{1}=(1,2,1), \nabla g_{2}=(2 x, 2 y,-1)
$$

the critical points must satisfy for some λ_{1}, λ_{2}

$$
2 x=\lambda_{1}+2 x \lambda_{2}, 2 y=2 \lambda_{1}+2 y \lambda_{2}, 2 z=\lambda_{1}-\lambda_{2}
$$

From the first two equations we have

$$
2 x\left(1-\lambda_{2}\right)=\lambda_{1}, 2 x\left(1-\lambda_{2}\right)=2 \lambda_{1}
$$

Thus either $y=2 x$, or else $1-\lambda_{2}=\lambda_{1}=0$. In the second case we would have $2 z=$ $0-1=-1$, which contradicts the fact that $z=x^{2}+y^{2}$ should be nonnegative. Therefore $y=2 x$. Plugging this into $g_{1}=10$ and $g_{2}=0$ we get

$$
x+4 x+z=5 x+z=10, x^{2}+4 x^{2}=5 x^{2}=z
$$

Hence $10=5 x+z=5 x+5 x^{2}, x^{2}+x-2=0, x=1$ or -2 . If $x=1$, then $y=2 x=2$ and $z=5 x^{2}=5$, and if $x=-2$ then $y=-4$ and $z=20$. Clearly, $(1,2,5)$ will minimize the distance to the origin, and $(-2,-4,20)$ will maximize it.
6. In each part of this problem, provide a precise definition of the word or phrase in boldface. Let

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x y}{\sqrt{x^{2}+y^{2}}}, & \text { if }(x, y) \neq(0,0) \\
0, & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

(a) Prove that f is continuous at $(0,0)$. (Hint: use polar coordinates.)
f is continuous at a if the limit $\lim _{(x, y) \rightarrow \mathbf{a}} f(x, y)$ exists and is equal to $f(\mathbf{a})$. Here $\mathbf{a}=(0,0)$. In polar coordinates $x=r \cos \theta, y=r \sin \theta$, we have

$$
f(x, y)=\frac{r^{2} \cos \theta \sin \theta}{r}=r \cos \theta \sin \theta
$$

Thus $-r \leq f(x, y) \leq r$. As $(x, y) \rightarrow 0, r \rightarrow 0$, hence $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0=f(0,0)$ as required.
(b) If \mathbf{u} is a unit vector, find the directional derivative $D_{\mathbf{u}} f(0,0)$ directly from the definition.

The directional derivative $D_{\mathbf{u}} f(\mathbf{a})$ is

$$
D_{\mathbf{u}} f(\mathbf{a})=\lim _{h \rightarrow 0} \frac{1}{h}(f(\mathbf{a}+h \mathbf{u})-f(\mathbf{a}))
$$

If $\mathbf{u}=\left(u_{1}, u_{2}\right)=(\cos \theta, \sin \theta)$ is a unit vector, then by the first part,

$$
D_{\mathbf{u}} f(0,0)=\lim _{h \rightarrow 0} \frac{1}{h}(f(h \cos \theta, h \sin \theta)-0)=\lim _{h \rightarrow 0} \frac{h \cos \theta \sin \theta}{h}=\cos \theta \sin \theta=u_{1} u_{2} .
$$

(c) Is f differentiable at $(0,0)$? Explain why or why not.
f is differentiable at (a, b) if f_{x} and f_{y} exist at (a, b) and if

$$
\lim _{(h, k) \rightarrow 0} \frac{1}{\|(h, k)\|}\left(f(a+h, b+k)-h f_{x}(a, b)-k f_{y}(a, b)\right)=0 .
$$

In this example, $f_{x}(0,0)=f_{y}(0,0)=0$, so differentiability of f at 0 would imply that $D_{\mathbf{u}} f(0,0)=0$ for any unit vector \mathbf{u}. But this is not the case, by (b). Hence f is not differentiable at $(0,0)$.
7. Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be a function of class C^{1} such that

$$
f(t \mathbf{x})=t^{a} f(\mathbf{x}) \text { for all } \mathbf{x} \in \mathbf{R}^{n}, t>0
$$

for some fixed $a \in \mathbf{R}$ (such functions are called homogeneous of degree a). Prove that

$$
\mathbf{x} \cdot \nabla f(\mathbf{x})=a f(\mathbf{x}) .
$$

(Hint: for fixed \mathbf{x}, differentiate $f(t \mathbf{x})$ with respect to t.)
Fix \mathbf{x}. On the one hand, we have by the Chain Rule

$$
\frac{d}{d t} f(t \mathbf{x})=x_{1} \frac{\partial f}{\partial x_{1}} f(t \mathbf{x})+\ldots+x_{n} \frac{\partial f}{\partial x_{n}} f(t \mathbf{x})=\mathbf{x} \cdot \nabla f(t \mathbf{x})
$$

on the other hand, using the homogeneity of f we also have

$$
\frac{d}{d t} f(t \mathbf{x})=\frac{d}{d t}\left(t^{a} f(\mathbf{x})\right)=a t^{a-1} f(\mathbf{x})
$$

Hence $\mathbf{x} \cdot \nabla f(t \mathbf{x})=a t^{a-1} f(\mathbf{x})$. Setting now $t=1$, we get $\mathbf{x} \cdot \nabla f(\mathbf{x})=a f(\mathbf{x})$, as required.
8. Evaluate the following integrals.
(a) $\iint_{D} 3 d A$, if D is the region bounded by the parabola $y^{2}-x-5=0$ and the line $x+2 y=3$.

We first find the points where the parabola intersects the line: if $x=y^{2}-5$ and $x+2 y=3$ then $y^{2}-5+2 y-3, y^{2}+2 y-8=0, y=2,-4$. It will be more convenient to integrate in x first (draw a picture!):

$$
\iint_{D} 3 d A=\int_{-4}^{2} \int_{y^{2}-5}^{3-2 y} 3 d x d y=\int_{-4}^{2} 3\left(3-2 y-y^{2}+5\right) d y
$$

$$
=3 \int_{-4}^{2}\left(-y^{2}-2 y+8\right) d y=\left.3\left(-\frac{y^{3}}{3}-y^{2}+8 y\right)\right|_{-4} ^{2}=108
$$

(b) $\int_{0}^{1} \int_{x^{2}}^{1} x^{3} \sin \left(y^{3}\right) d y d x=\int_{0}^{1} \int_{0}^{\sqrt{y}} x^{3} \sin \left(y^{3}\right) d x d y=\int_{0}^{1}\left(\left.\frac{x^{4}}{4} \sin \left(y^{3}\right)\right|_{x=0} ^{\sqrt{y}} d y\right.$

$$
=\int_{0}^{1} \frac{y^{2}}{4} \sin \left(y^{3}\right) d y=-\left.\frac{\cos \left(y^{3}\right)}{12}\right|_{0} ^{1}=\frac{-\cos (1)+1}{12} .
$$

9. Let R be the solid region in \mathbf{R}^{3} bounded by the planes $x=0, y=0, y=4-x$, and the surface $z=4-x^{2}$. Write $\iiint_{R} f(x, y, z) d V$ as iterated integrals where the order of integration is as indicated below (i.e. find the limits of integration).

Actually, this defines two unbounded regions in \mathbf{R}^{3}, one below the surface $z=4-x^{2}$, one above it. (I had intended to add the condition $z \geq 0$, but it was left out of the typed version by mistake.) For the region below the surface $z=4-x^{2}$, the solution is as indicated below.
(a)

$$
\int_{0}^{4} \int_{0}^{4-x} \int_{-\infty}^{4-x^{2}} f(x, y, z) d z d y d x
$$

(b)

$$
\begin{gathered}
\int_{-\infty}^{4} \int_{0}^{\min (4, \sqrt{4-z})} \int_{0}^{4-x} f(x, y, z) d y d x d z \\
=\int_{-\infty}^{-12} \int_{0}^{4} \int_{0}^{4-x} f(x, y, z) d y d x d z+\int_{-12}^{4} \int_{0}^{\sqrt{4-z}} \int_{0}^{4-x} f(x, y, z) d y d x d z
\end{gathered}
$$

