

MATH 226 MIDTERM 1: SOLUTIONS

October 5, 2005

1. Find the closest distance between the sphere $(x - 3)^2 + (y - 1)^2 + (z - 2)^2 = 1$ and the plane $2x + y - 2z + 6 = 0$.

We first find the distance from the center of the sphere $P(3, 1, 2)$ to the plane. Using a formula from class/textbook, this is

$$\frac{2 \cdot 3 + 1 \cdot 1 - 2 \cdot 2 + 6}{\sqrt{4 + 1 + 4}} = \frac{9}{3} = 3.$$

(Alternatively, this distance can be found by picking a point Q in the plane and projecting \vec{PQ} onto the normal vector to the plane.) To get the distance from the closest point on the sphere to the plane, we subtract the radius of the sphere from this: $3 - 1 = 2$.

2. Find the parametric equation for the line which passes through the point $(2, 0, 0)$ and intersects the line $x = t, y = t + 1, z = 2t - 1$ at a right angle.

Let $P(t) = (t, t + 1, 2t - 1)$ be a point on the given line, and let Q be the point $(2, 0, 0)$. For the line through P and Q to be perpendicular to the given line, the vector $\vec{QP} = (t - 2, t + 1, 2t - 1)$ needs to be perpendicular to the direction vector $\mathbf{a} = (1, 1, 2)$ of that line:

$$0 = \mathbf{a} \cdot \vec{PQ} = (t - 2) + (t + 1) + 2(2t - 1) = 6t - 3, \quad t = \frac{1}{2}.$$

Hence P must be the point $(\frac{1}{2}, \frac{3}{2}, 0)$. The direction vector of the new line is parallel to $\vec{QP} = (-\frac{3}{2}, \frac{3}{2}, 0)$; take $(-1, 1, 0)$ to simplify the numbers. The new line has the parametric equation $(2, 0, 0) + t(-1, 1, 0)$, or equivalently $x = 2 - t, y = t, z = 0$.

(There is also an alternative solution which uses projections.)

3. Find the area of the triangle in \mathbb{R}^3 with vertices $(1, 0, 0), (4, 0, 1), (1, 2, -1)$.

Denote the vertices $(1, 0, 0), (4, 0, 1), (1, 2, -1)$ by P, Q, R . Then the area is $\frac{1}{2} \|\vec{PQ} \times \vec{PR}\|$. We compute:

$$\vec{PQ} \times \vec{PR} = (3, 0, 1) \times (0, 2, -1) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 0 & 1 \\ 0 & 2 & -1 \end{vmatrix} = -2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}.$$

Hence the area is $\frac{1}{2}\sqrt{4 + 9 + 36} = \frac{1}{2}\sqrt{49} = \frac{7}{2}$.

4. Consider the solid in \mathbb{R}^3 shown in the picture below (i.e. the upper half of the solid ball of radius 1 centered at $(0, 0, 1)$). Describe the solid in Cartesian, cylindrical, and spherical coordinates.

In Cartesian coordinates, the solid is described by

$$x^2 + y^2 + (z - 1)^2 \leq 1, \quad z \geq 1.$$

The first inequality describes the solid ball, and the second one says that we take its upper half. To convert this to cylindrical coordinates, we use that $x^2 + y^2 = r^2$:

$$r^2 + (z - 1)^2 \leq 1, \quad z \geq 1.$$

Finally, we convert this to spherical coordinates, using that $r = \rho \sin \phi$ and $z = \rho \cos \phi$. The first inequality becomes

$$(\rho \sin \phi)^2 + (\rho \cos \phi - 1)^2 \leq 1,$$

which simplifies to $\rho^2 \sin^2 \phi + \rho^2 \cos^2 \phi - 2\rho \cos \phi + 1 \leq 1$, $\rho^2 - 2\rho \cos \phi \leq 0$, $\rho - 2 \cos \phi \leq 0$. Together with the second inequality $z \geq 1$, we get

$$\rho - 2 \cos \phi \leq 0, \quad \rho \cos \phi \geq 1.$$

5. Decide whether each of the sets below is open, closed, or neither:

- (a) $\{(x, y) \in \mathbb{R}^2 : 0 \leq x < 1, 0 \leq y < 2\}$ – neither,
- (b) $\{(x, y) \in \mathbb{R}^2 : x + y < 2\}$ – open.

6. Let $f(x, y) = \sqrt{y - x^2}$.

- (a) Find the domain and range of f . Is f one-one? Is it onto?

Domain: $y \geq x^2$, range: $[0, \infty)$. f is not one-one, e.g. $f(x, y) = f(-x, y)$ for any x, y , neither is it onto, because the range of f is not all of \mathbf{R} .

- (b) Draw several level curves of $f(x, y)$, indicating the height c of each curve.

- (c) Sketch (roughly) the graph of $f(x, y)$.