## MATH 226 MIDTERM 1, FALL 2009: SOLUTIONS

1. Find the domain and the range of the function $\mathbf{f}(x, y)=\left(y, \frac{1}{x+y}, \sqrt{2 x+y}\right)$.

The domain is $\left\{(x, y) \in \mathbf{R}^{2}: x+y \neq 0,2 x+y \geq 0\right\}$. For the range, let $u, v, w$ be the coordinates in the target space, then $u=y, v=\frac{1}{x+y}, w=\sqrt{2 x+y}$. Thus $y=u, x+y=\frac{1}{v}, x=\frac{1}{v}-y=\frac{1}{v}-u$, and

$$
w=\sqrt{\frac{2}{v}-2 u+u}=\sqrt{\frac{2}{v}-u}
$$

Thus the range of the function is $\left\{(u, v, w) \in \mathbf{R}^{3}: w=\sqrt{\left.\frac{2}{v}-u\right\}}\right.$. (If you wish, you can now relabel the coordinates $u, v, w$ as $x, y, z$, then the range is $\left\{(x, y, z) \in \mathbf{R}^{3}: z=\sqrt{\frac{2}{y}-x}\right\}$.)
2. Find the parametric equation for the line which passes through the point $(4,5,-2)$ and is perpendicular to the plane with parametric equations $x=1+3 s-t, y=s+t, z=7+2 t$.
The plane is parallel to the vectors $(3,1,0)$ and $(-1,1,2)$, hence the direction vector $(A, B, C)$ of the line needs to be perpendicular to both of them. This leads to a system of equations $3 A+B=0$ and $-A+B+2 C=0$. From the first equation we have $B=-3 A$, and plugging this into the second one we get $-A-3 A+2 C=0, C=2 A$. Thus we may take $(A, B, C)=(1,-3,2)$. The equation of the line is $(x, y, z)=(4,5,-2)+t(1,-3,2)$, or $x=4+t, y=5-3 t, z=-2+2 t$.
3. A surface in $\mathbb{R}^{3}$ has the equation $\rho^{2}-4 \rho \sin \phi+3=0$ in spherical coordinates. Find its equation in cylindrical coordinates. Sketch the surface.
We have $r=\rho \sin \theta$ and $\rho^{2}=r^{2}+z^{2}$, hence our equation in cylindrical coordinates is $r^{2}+z^{2}-4 r+3=0$. To see what kind of a surface this is, we rewrite the equation as $(r-2)^{2}+z^{2}=1$. This is the torus obtained by rotating the circle $(x-2)^{2}+z^{3}=1$ in the $x z$-plane around the $z$-axis.
4. Evaluate the following limit, or explain why it fails to exist.

We rewrite the limit in polar coordinates:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y-x y^{3}}{x^{2}+y^{2}}=\lim _{r \rightarrow 0} \frac{r^{4}\left(\cos ^{3} \theta \sin \theta-\cos \theta \sin ^{3} \theta\right)}{r^{2}}=\lim _{r \rightarrow 0} r^{2}\left(\cos ^{3} \theta \sin \theta-\cos \theta \sin ^{3} \theta\right)
$$

This limit exists and is equal to 0 , because $r^{2} \rightarrow 0$ and $\cos ^{3} \theta \sin \theta-\cos \theta \sin ^{3} \theta$ ) is always between -2 and 2.
5. Let

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x^{3}-y^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

(a) Find $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$.

We have $f(x, 0)=\frac{x^{3}}{x^{2}}=x$ and $f(0, y)=\frac{-y^{3}}{y^{2}}=-y$, hence $\frac{\partial f}{\partial x}(0,0)=1$ and $\frac{\partial f}{\partial y}(0,0)=-1$.
(b) Is $f$ differentiable at $(0,0)$ ? Explain your answer.

For $f$ to be differentiable at $(0,0)$, we must have

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-h(x, y)}{\sqrt{x^{2}+y^{2}}}=0
$$

where $h(x, y)=f(0,0)+f_{x}(0,0) x+f_{y}(0,0) y=x-y$. We rewrite the above limit as

$$
\begin{gathered}
\lim _{(x, y) \rightarrow(0,0)} \frac{\frac{x^{3}-y^{3}}{x^{2}+y^{2}}-(x-y)}{\sqrt{x^{2}+y^{2}}} \\
=\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}-y^{3}-x^{3}-x y^{2}+x^{2} y+y^{3}}{\left(x^{2}+y^{2}\right)^{3 / 2}} \\
=\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y-x y^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}} .
\end{gathered}
$$

But if we let $x=-y$, then this limit is

$$
\lim _{y \rightarrow 0} \frac{2 y^{3}}{\left(2 y^{2}\right)^{3 / 2}}=\lim _{y \rightarrow 0} \frac{2 y^{3}}{2^{2 / 3} y^{3}}=2^{1 / 3}
$$

which is different from 0 . Hence $f$ fails to be differentiable at $(0,0)$.
6. Find all values of $(a, b)$ such that the tangent plane to the hyperboloid $z=4 x^{2}-y^{2}$ at $\left(a, b, 4 a^{2}-b^{2}\right)$ contains the line with parametric equations $x=t+1, y=2 t, z=-4 t+9$.
Let $f(x, y)=4 x^{2}-y^{2}$, then $f_{x}(a, b)=8 a$ and $f_{y}(a, b)=-2 b$. Hence the tangent plane at $\left(a, b, 4 a^{2}-b^{2}\right)$ has the equation

$$
z=4 a^{2}-b^{2}+8 a(x-a)-2 b(y-b)=8 a x-2 b y-4 a^{2}+b^{2} .
$$

This contains the line in question if all points on the line satisfy the equation of the plane, i.e. for all $t \in \mathbf{R}$ we must have

$$
-4 t+9=8 a(t+1)-2 b(2 t)-4 a^{2}+b^{2},(8 a-4 b+4) t+8 a-4 a^{2}+b^{2}-9=0
$$

Thus $8 a-4 b+4=0$, so that $b=2 a+1$. We also must have $0=8 a-4 a^{2}+b^{2}-9=8 a-4 a^{2}+(2 a+1)^{2}-9=$ $12 a-8$, so that $a=2 / 3$ and $b=7 / 3$.

