MATH 226 PRACTICE MIDTERM 2

This is probably a little bit longer than the actual midterm. I will not post the solutions, but I will discuss these questions in the review class on Monday, Nov. 2.

1. The tangent plane to the surface $z=f(x, y)$ at $(x, y)=(1,0)$ has the equation $3 x-y+z=2$. What is the directional derivative $D_{\mathbf{u}} f(1,0)$, if $\mathbf{u}=\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$?
2. A drop of water is sliding down a paraboloid $z=25-x^{2}-4 y^{2}$. The gravity is causing it to slide down as rapidly as possible. Let $(x(t), y(t), z(t))$ be the path of the drop. Prove that the $x-$ and y-coordinates of the drop satisfy the differential equation

$$
\frac{d y}{d x}=\frac{4 y}{x}
$$

whenever $x \neq 0$. (This equation can be solved to prove that $y=C x^{4}$.)
3. Let

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x y^{2}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

(a) Find $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$.
(b) Find the general formula for $D_{\mathbf{u}} f(0,0)$, where $\mathbf{u}=\left(u_{1}, u_{2}\right)$ is a unit vector, in terms of u_{1}, u_{2}.
(c) Is f differentiable at $(0,0)$? Why or why not?
4. Find the second order Taylor polynomial of the function $f(x, y)=$ $\sin x \cos (2 y)$ at $(\pi, \pi / 2)$.
5. Find the largest and smallest values of $f(x, y)=x^{2}-x y+y$ on the triangle $\{(x, y): x \geq 0, y \geq 0, x+y \leq 7\}$.

