
Mathematics 226 Midterm 2 – November 3, 2014 Page 1 of 5

This midterm has 4 questions on 5 pages, for a total of 40 points.

Duration: 50 minutes

• Read all the questions carefully before starting to work.

• Give complete arguments and explanations for all your calculations; answers without
justifications will not be marked.

• Continue on the back of the previous page if you run out of space.

• This is a closed-book examination. None of the following are allowed: documents,
cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)

Full Name (Last, First, All middle names):

Student-No:

Signature:

Question: 1 2 3 4 Total

Points: 8 10 12 10 40

Score:
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1.8 marks The tangent plane to the graph of z = f(x, y) at (x, y) = (3, 4) has the equation x−6y−
2z = 1.

(a) Find the directional derivative Duf(3, 4) if u =

√
3

2
i− 1

2
j.

Solution: (3 marks for finding ∇f(3, 4), 2 marks for Duf(3, 4))

From the equation of the tangent plane, we have ∇f(3, 4) = 〈1/2,−3〉 so that

Duf(3, 4) =
1

2
·
√

3

2
− 3(−1

2
) =

√
3

4
+

3

2
.

(b) Is there a unit vector v such that Dvf(3, 4) = 4? If yes, find it. If no, explain why.

Solution: (3 marks)

The largest possible value of Dvf(3, 4) is |∇f(3, 4)| =
√

(1/2)2 + 32 =
√

9.25.
This is less than 4 (since 9.25 < 16). Hence there is no such v.
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2.10 marks The equations

u = x3 − y2

v = 2xy3

define x, y implicitly as functions of u, v near x = −1, y = 1.

(a) Find
∂x

∂u
and

∂y

∂u
near x = −1, y = 1.

Solution: (6 marks: 3 for setting up the equations, 3 for solving them. Plugging
in (x, y) = (−1, 1) is optional.)

Differentiating the two equations with respect to u, we get

1 = 3x2 ∂x

∂u
− 2y

∂y

∂u

0 = 2y3 ∂x

∂u
+ 6xy2 ∂y

∂u

so that

∂x

∂u
=

∣∣∣∣1 −2y
0 6xy2

∣∣∣∣∣∣∣∣3x2 −2y
2y3 6xy2

∣∣∣∣ =
6xy2

18x3y2 + 4y4
=

3x

9x3 + 2y2

∂y

∂u
=

∣∣∣∣3x2 1
2y3 0

∣∣∣∣∣∣∣∣3x2 −2y
2y3 6xy2

∣∣∣∣ =
−2y3

18x3y2 + 4y4
=

−y

9x3 + 2y2

Thus at (x, y) = (−1, 1), we have

∂x

∂u
=

−3

−9 + 2
=

3

7
,

∂y

∂u
=

−1

−9 + 2
=

1

7
.

(b) If z = cos(3x − y2), find
∂z

∂u
near x = −1, y = 1.

Solution: (4 marks. Plugging in (−1, 1) or simplifying is not necessary for full
credit.)

We have
∂z

∂u
= −3 sin(3x − y2)

∂x

∂u
+ 2y sin(3x − y2)

∂y

∂u

= −3 sin(3x − y2)
3x

9x3 + 2y2
+ 2y sin(3x − y2) =

−y

9x3 + 2y2

so that at (x, y) = (−1, 1),

∂z

∂u
= −3 sin(−4) · 3

7
+ 2 sin(−4) · 1

7
= sin(4)
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3.12 marks Let F (x, y) = xf(x + y) + yg(x + y), where f, g are real-valued functions of one variable
whose all derivatives are continuous.

(a) Prove that F (x, y) satisfies the equation Fxx(x, y) − 2Fxy(x, y) + Fyy(x, y) = 0 for
all x, y.

(b) Find the second order Taylor polynomial of F at the point (0, 0) in terms of the
derivatives of f, g at 0.

Solution:

(a) (6 marks: 1 for each derivative below, 1 for checking the equation)

Fx(x, y) = f(x + y) + xf ′(x + y) + yg′(x + y)

Fy(x, y) = xf ′(x + y) + g(x + y) + yg′(x + y)

Fxx(x, y) = xf ′′(x + y) + 2f ′(x + y) + yg′′(x + y)

Fxy(x, y) = f ′(x + y) + xf ′′(x + y) + g′(x + y) + yg′′(x + y)

Fyy(x, y) = xf ′′(x + y) + 2g′(x + y) + yg′′(x + y)

so that, with all derivatives evaluated at x + y,

Fxx−2Fxy+Fyy = (xf ′′+2f ′+yg′′)+(xf ′′+2g′+yg′′)−2(f ′+xf ′′+g′+yg′′) = 0.

(b) (6 marks: 2 for the derivatives, 4 for using the correct formula for the Taylor
polynomial)

At (0, 0), we have F (0, 0) = 0 and

Fx(0, 0) = f(0), Fy(0, 0) = g(0),

Fxx(0, 0) = 2f ′(0), Fxy(0, 0) = f ′(0) + g′(0), Fyy(0, 0) = 2g′(0)

Thus

p2(x, y) = f(0)x + g(0)y + f ′(0)x2 + (f ′(0) + g′(0))xy + g′(0)y2
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4.10 marks Find all critical points of the function f(x, y) = e−y(x2 − y2) and classify them as local
minima, maxima, or saddle points.

Solution: (3 marks for finding both critical points, 3 for finding the second deriva-
tives, 2 for testing each point)

We have fx = 2xe−y and fy = −e−y(x2 − y2) − 2ye−y, For a critical point, we must
have fx = 0, so that x = 0. We also must have fy = 0, so that e−y(y2 − 2y) = 0,
y = 0 or y = 2. Thus there are two critical points (0, 0) and (0, 2).

Next, we have
fxx = 2e−y

fxy = −2xe−y

fyy = e−y(x2 − y2) + 2ye−y + 2ye−y − 2e−y = e−y(x2 − y2 + 4y − 2)

• At (0, 0), fxx = 2 > 0, and

det(H) =

∣∣∣∣2 0
0 −2

∣∣∣∣ = −4 < 0

so that at this point we have a saddle point.

• At (0, 2), fxx = 2e−2 > 0, and

det(H) =

∣∣∣∣2e−2 0
0 2e−2

∣∣∣∣ = 4e−4 > 0

so that here we have a local minimum.
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