This midterm has 5 questions on 5 pages, for a total of 50 points.

Duration: 50 minutes

- Read all the questions carefully before starting to work.
- Give complete arguments and explanations for all your calculations; answers without justifications will not be marked.
- Continue on the back of the previous page if you run out of space.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)

Last name: \qquad Student No.:

First name and all middle names: \qquad

Signature: \qquad

Question:	1	2	3	4	5	Total
Points:	12	8	8	12	10	50
Score:						

1. Let

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x y^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

(a) (8 marks) Does f have a limit at $(0,0)$? Explain your answer.

Solution:

Since $|x| \leq \sqrt{x^{2}+y^{2}}$ and $|y| \leq \sqrt{x^{2}+y^{2}}$, we have for all $(x, y) \neq(0,0)$

$$
\left|\frac{x y^{3}}{x^{2}+y^{2}}\right| \leq \frac{\left(x^{2}+y^{2}\right)^{2}}{x^{2}+y^{2}}=x^{2}+y^{2} .
$$

Since $x^{2}+y^{2} \rightarrow 0$ as $(x, y) \rightarrow(0,0)$, the function has limit 0 at that point. (In terms of δ and ϵ, to ensure that $|f(x, y)-0|<\delta$, it suffices if $x^{2}+y^{2}<\delta$, or equivalently, $\sqrt{x^{2}+y^{2}}<\sqrt{\delta}$. Therefore we can take $\epsilon=\sqrt{\delta}$.)
(b) (4 marks) Find $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$, or else explain why they do not exist.

Solution: We have $f(x, 0)=0$ for all x and $f(0, y)=0$ for all y, so that $f_{x}(0,0)=0$ and $f_{y}(0,0)=0$.

8 marks
2. Find the equation of the tangent plane to the surface $z=5 x^{2} y-y^{2}$ at the point where $x=-1, y=3$.

Solution:

We have $\frac{\partial z}{\partial x}=10 x y$ and $\frac{\partial z}{\partial y}=5 x^{2}-2 y$. Thus at $(x, y)=(-1,3), z=15-9=6$, $\frac{\partial z}{\partial x}=-30$, and $\frac{\partial z}{\partial y}=5-6=-1$. Thus the equation of the tangent plane is

$$
z=6-30(x+1)-(y-3)
$$

which simplifies to $z=-30 x-y-21$.

8 marks

3. Let $w=f\left(a_{1} x+a_{2} y+a_{3} z, b_{1} x+b_{2} y+b_{3} z\right)$, where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ has continuous first order partial derivatives. Prove that

$$
c_{1} \frac{\partial w}{\partial x}+c_{2} \frac{\partial w}{\partial y}+c_{3} \frac{\partial w}{\partial z}=0
$$

for any vector $\left(c_{1}, c_{2}, c_{3}\right)$ orthogonal to both $\left(a_{1}, a_{2}, a_{3}\right)$ and $\left(b_{1}, b_{2}, b_{3}\right)$.

Solution:

We have $w=f(u, v)$, where $u=a_{1} x+a_{2} y+a_{3} z$ and $v=b_{1} x+b_{2} y+b_{3} z$. By the Chain Rule,

$$
\begin{aligned}
& c_{1} \frac{\partial w}{\partial x}+c_{2} \frac{\partial w}{\partial y}+c_{3} \frac{\partial w}{\partial z}=c_{1}\left(f_{u} a_{1}+f_{v} b_{1}\right)+c_{2}\left(f_{u} a_{2}+f_{v} b_{2}\right)+c_{3}\left(f_{u} a_{3}+f_{v} b_{3}\right) \\
& =\left(c_{1} a_{1}+c_{2} a_{2}+c_{3} a_{3}\right) f_{u}+\left(c_{1} b_{1}+c_{2} b_{2}+c_{3} b_{3}\right) f_{v}=(\mathbf{c} \cdot \mathbf{a}) f_{u}+(\mathbf{c} \cdot \mathbf{b}) f_{v}=0
\end{aligned}
$$

12 marks 4. The tangent plane to the graph of $z=f(x, y)$ at $(x, y)=(3,4)$ has the equation $x-6 y-$ $2 z=1$.
(a) Find the directional derivative $D_{\mathbf{u}} f(3,4)$ if $\mathbf{u}=\frac{\sqrt{3}}{2} \mathbf{i}-\frac{1}{2} \mathbf{j}$.

Solution:

From the equation of the tangent plane, we have $\nabla f(3,4)=\langle 1 / 2,-3\rangle$ so that

$$
D_{\mathbf{u}} f(3,4)=\frac{1}{2} \cdot \frac{\sqrt{3}}{2}-3\left(-\frac{1}{2}\right)=\frac{\sqrt{3}}{4}+\frac{3}{2} .
$$

(b) Is there a unit vector \mathbf{v} such that $D_{\mathbf{v}} f(3,4)=4$? If yes, find it. If no, explain why.

Solution: (3 marks)
The largest possible value of $D_{\mathbf{v}} f(3,4)$ is $|\nabla f(3,4)|=\sqrt{(1 / 2)^{2}+3^{2}}=\sqrt{9.25}$. This is less than 4 (since $9.25<16$). Hence there is no such \mathbf{v}.
5. The equations

$$
\begin{aligned}
u & =x^{3}-y^{2} \\
v & =2 x y^{3}
\end{aligned}
$$

define x, y implicitly as functions of u, v near $x=-1, y=1$. Find $\frac{\partial x}{\partial u}$ and $\frac{\partial y}{\partial u}$ at $x=-1$, $y=1$.

Solution:

Differentiating the two equations with respect to u, we get

$$
\begin{aligned}
& 1=3 x^{2} \frac{\partial x}{\partial u}-2 y \frac{\partial y}{\partial u} \\
& 0=2 y^{3} \frac{\partial x}{\partial u}+6 x y^{2} \frac{\partial y}{\partial u}
\end{aligned}
$$

so that

$$
\begin{aligned}
& \frac{\partial x}{\partial u}=\frac{\left|\begin{array}{cc}
1 & -2 y \\
0 & 6 x y^{2}
\end{array}\right|}{\left|\begin{array}{cc}
3 x^{2} & -2 y \\
2 y^{3} & 6 x y^{2}
\end{array}\right|}=\frac{6 x y^{2}}{18 x^{3} y^{2}+4 y^{4}}=\frac{3 x}{9 x^{3}+2 y^{2}} \\
& \frac{\partial y}{\partial u}=\frac{\left|\begin{array}{ll}
3 x^{2} & 1 \\
2 y^{3} & 0
\end{array}\right|}{\left|\begin{array}{ll}
3 x^{2} & -2 y \\
2 y^{3} & 6 x y^{2}
\end{array}\right|}=\frac{-2 y^{3}}{18 x^{3} y^{2}+4 y^{4}}=\frac{-y}{9 x^{3}+2 y^{2}}
\end{aligned}
$$

Thus at $(x, y)=(-1,1)$, we have

$$
\frac{\partial x}{\partial u}=\frac{-3}{-9+2}=\frac{3}{7}, \quad \frac{\partial y}{\partial u}=\frac{-1}{-9+2}=-\frac{1}{7} .
$$

