This midterm has 5 questions on 5 pages, for a total of 50 points.

Duration: 50 minutes

- Read all the questions carefully before starting to work.
- Give complete arguments and explanations for all your calculations; answers without justifications will not be marked.
- Continue on the back of the previous page if you run out of space.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)

Last name:	Student No.:
------------	--------------

First name and all middle names:

Signature: _____

Question:	1	2	3	4	5	Total
Points:	12	8	8	12	10	50
Score:						

12 marks 1. Let

$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

(a) (8 marks) Does f have a limit at (0,0)? Explain your answer.

Solution:
Since
$$|x| \le \sqrt{x^2 + y^2}$$
 and $|y| \le \sqrt{x^2 + y^2}$, we have for all $(x, y) \ne (0, 0)$
$$\left|\frac{xy^3}{x^2 + y^2}\right| \le \frac{(x^2 + y^2)^2}{x^2 + y^2} = x^2 + y^2.$$

Since $x^2 + y^2 \to 0$ as $(x, y) \to (0, 0)$, the function has limit 0 at that point. (In terms of δ and ϵ , to ensure that $|f(x, y) - 0| < \delta$, it suffices if $x^2 + y^2 < \delta$, or equivalently, $\sqrt{x^2 + y^2} < \sqrt{\delta}$. Therefore we can take $\epsilon = \sqrt{\delta}$.)

(b) (4 marks) Find $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$, or else explain why they do not exist.

Solution: We have f(x,0) = 0 for all x and f(0,y) = 0 for all y, so that $f_x(0,0) = 0$ and $f_y(0,0) = 0$.

8 marks 2. Find the equation of the tangent plane to the surface $z = 5x^2y - y^2$ at the point where x = -1, y = 3.

Solution:

We have $\frac{\partial z}{\partial x} = 10xy$ and $\frac{\partial z}{\partial y} = 5x^2 - 2y$. Thus at (x, y) = (-1, 3), z = 15 - 9 = 6, $\frac{\partial z}{\partial x} = -30$, and $\frac{\partial z}{\partial y} = 5 - 6 = -1$. Thus the equation of the tangent plane is z = 6 - 30(x + 1) - (y - 3)

which simplifies to z = -30x - y - 21.

8 marks 3. Let $w = f(a_1x + a_2y + a_3z, b_1x + b_2y + b_3z)$, where $f : \mathbb{R}^2 \to \mathbb{R}$ has continuous first order partial derivatives. Prove that

$$c_1\frac{\partial w}{\partial x} + c_2\frac{\partial w}{\partial y} + c_3\frac{\partial w}{\partial z} = 0$$

for any vector (c_1, c_2, c_3) orthogonal to both (a_1, a_2, a_3) and (b_1, b_2, b_3) .

Solution:

We have w = f(u, v), where $u = a_1x + a_2y + a_3z$ and $v = b_1x + b_2y + b_3z$. By the Chain Rule,

$$c_{1}\frac{\partial w}{\partial x} + c_{2}\frac{\partial w}{\partial y} + c_{3}\frac{\partial w}{\partial z} = c_{1}(f_{u}a_{1} + f_{v}b_{1}) + c_{2}(f_{u}a_{2} + f_{v}b_{2}) + c_{3}(f_{u}a_{3} + f_{v}b_{3})$$
$$= (c_{1}a_{1} + c_{2}a_{2} + c_{3}a_{3})f_{u} + (c_{1}b_{1} + c_{2}b_{2} + c_{3}b_{3})f_{v} = (\mathbf{c} \cdot \mathbf{a})f_{u} + (\mathbf{c} \cdot \mathbf{b})f_{v} = 0.$$

- 12 marks 4. The tangent plane to the graph of z = f(x, y) at (x, y) = (3, 4) has the equation x 6y 2z = 1.
 - (a) Find the directional derivative $D_{\mathbf{u}}f(3,4)$ if $\mathbf{u} = \frac{\sqrt{3}}{2}\mathbf{i} \frac{1}{2}\mathbf{j}$.

Solution:

From the equation of the tangent plane, we have $\nabla f(3,4) = \langle 1/2, -3 \rangle$ so that

$$D_{\mathbf{u}}f(3,4) = \frac{1}{2} \cdot \frac{\sqrt{3}}{2} - 3(-\frac{1}{2}) = \frac{\sqrt{3}}{4} + \frac{3}{2}$$

(b) Is there a unit vector **v** such that $D_{\mathbf{v}}f(3,4) = 4$? If yes, find it. If no, explain why.

Solution: (3 marks)

The largest possible value of $D_{\mathbf{v}}f(3,4)$ is $|\nabla f(3,4)| = \sqrt{(1/2)^2 + 3^2} = \sqrt{9.25}$. This is less than 4 (since 9.25 < 16). Hence there is no such \mathbf{v} . 10 marks

5. The equations

 $u = x^3 - y^2$ $v = 2xy^3$

define x, y implicitly as functions of u, v near x = -1, y = 1. Find $\frac{\partial x}{\partial u}$ and $\frac{\partial y}{\partial u}$ at x = -1, y = 1.

Solution:

Differentiating the two equations with respect to u, we get

$$1 = 3x^{2}\frac{\partial x}{\partial u} - 2y\frac{\partial y}{\partial u}$$
$$0 = 2y^{3}\frac{\partial x}{\partial u} + 6xy^{2}\frac{\partial y}{\partial u}$$

so that

$$\begin{aligned} \frac{\partial x}{\partial u} &= \frac{\begin{vmatrix} 1 & -2y \\ 0 & 6xy^2 \end{vmatrix}}{\begin{vmatrix} 3x^2 & -2y \\ 2y^3 & 6xy^2 \end{vmatrix}} = \frac{6xy^2}{18x^3y^2 + 4y^4} = \frac{3x}{9x^3 + 2y^2} \\ \frac{\partial y}{\partial u} &= \frac{\begin{vmatrix} 3x^2 & 1 \\ 2y^3 & 0 \end{vmatrix}}{\begin{vmatrix} 3x^2 & -2y \\ 2y^3 & 6xy^2 \end{vmatrix}} = \frac{-2y^3}{18x^3y^2 + 4y^4} = \frac{-y}{9x^3 + 2y^2} \end{aligned}$$

Thus at (x, y) = (-1, 1), we have

$$\frac{\partial x}{\partial u} = \frac{-3}{-9+2} = \frac{3}{7}, \quad \frac{\partial y}{\partial u} = \frac{-1}{-9+2} = -\frac{1}{7}$$