This midterm has 5 questions on 6 pages, for a total of 50 points.

Duration: 50 minutes

- Read all the questions carefully before starting to work.
- Give complete arguments and explanations for all your calculations; answers without justifications will not be marked.
- Continue on the back of the previous page if you run out of space.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)

Last name:	Student No.:
------------	--------------

First name and all middle names:

Signature: _____

Question:	1	2	3	4	5	Total
Points:	12	8	8	12	10	50
Score:						

12 marks 1. Let

$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

(a) (8 marks) Does f have a limit at (0,0)? Explain your answer.

(b) (4 marks) Find $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$, or else explain why they do not exist.

8 marks 2. Find the equation of the tangent plane to the surface $z = 5x^2y - y^2$ at the point where x = -1, y = 3.

8 marks 3. Let $w = f(a_1x + a_2y + a_3z, b_1x + b_2y + b_3z)$, where $f : \mathbb{R}^2 \to \mathbb{R}$ has continuous first order partial derivatives. Prove that

$$c_1\frac{\partial w}{\partial x} + c_2\frac{\partial w}{\partial y} + c_3\frac{\partial w}{\partial z} = 0$$

for any vector (c_1, c_2, c_3) orthogonal to both (a_1, a_2, a_3) and (b_1, b_2, b_3) .

- 12 marks 4. The tangent plane to the graph of z = f(x, y) at (x, y) = (3, 4) has the equation x 6y 2z = 1.
 - (a) Find the directional derivative $D_{\mathbf{u}}f(3,4)$ if $\mathbf{u} = \frac{\sqrt{3}}{2}\mathbf{i} \frac{1}{2}\mathbf{j}$.

(b) Is there a unit vector **v** such that $D_{\mathbf{v}}f(3,4) = 4$? If yes, find it. If no, explain why.

10 marks

5. The equations

 $u = x^3 - y^2$ $v = 2xy^3$

define x, y implicitly as functions of u, v near x = -1, y = 1. Find $\frac{\partial x}{\partial u}$ and $\frac{\partial y}{\partial u}$ at x = -1, y = 1.

This page has been left blank for your workings and solutions.