This midterm has 5 questions on $\mathbf{6}$ pages, for a total of 50 points.

Duration: 50 minutes

- Read all the questions carefully before starting to work.
- Give complete arguments and explanations for all your calculations; answers without justifications will not be marked.
- Continue on the back of the previous page if you run out of space.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)

Last name: \qquad Student No.:

First name and all middle names: \qquad

Signature: \qquad

Question:	1	2	3	4	5	Total
Points:	12	8	8	12	10	50
Score:						

12 marks 1. Let

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x y^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

(a) (8 marks) Does f have a limit at $(0,0)$? Explain your answer.
(b) (4 marks) Find $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$, or else explain why they do not exist.

8 marks
2. Find the equation of the tangent plane to the surface $z=5 x^{2} y-y^{2}$ at the point where $x=-1, y=3$.

8 marks 3. Let $w=f\left(a_{1} x+a_{2} y+a_{3} z, b_{1} x+b_{2} y+b_{3} z\right)$, where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ has continuous first order partial derivatives. Prove that

$$
c_{1} \frac{\partial w}{\partial x}+c_{2} \frac{\partial w}{\partial y}+c_{3} \frac{\partial w}{\partial z}=0
$$

for any vector $\left(c_{1}, c_{2}, c_{3}\right)$ orthogonal to both $\left(a_{1}, a_{2}, a_{3}\right)$ and $\left(b_{1}, b_{2}, b_{3}\right)$.

12 marks 4. The tangent plane to the graph of $z=f(x, y)$ at $(x, y)=(3,4)$ has the equation $x-6 y-$ $2 z=1$.
(a) Find the directional derivative $D_{\mathbf{u}} f(3,4)$ if $\mathbf{u}=\frac{\sqrt{3}}{2} \mathbf{i}-\frac{1}{2} \mathbf{j}$.
(b) Is there a unit vector \mathbf{v} such that $D_{\mathbf{v}} f(3,4)=4$? If yes, find it. If no, explain why.

10 marks 5. The equations

$$
\begin{aligned}
& u=x^{3}-y^{2} \\
& v=2 x y^{3}
\end{aligned}
$$

define x, y implicitly as functions of u, v near $x=-1, y=1$. Find $\frac{\partial x}{\partial u}$ and $\frac{\partial y}{\partial u}$ at $x=-1$, $y=1$.

This page has been left blank for your workings and solutions.

