This midterm has 4 questions on 5 pages, for a total of 50 points.

Duration: 50 minutes

- Read all the questions carefully before starting to work.
- Give complete arguments and explanations for all your calculations; answers without justifications will not be marked.
- Continue on the back of the previous page if you run out of space.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)

Last name: \qquad Student No.: \qquad

First name and all middle names: \qquad

Signature: \qquad

Question:	1	2	3	4	Total
Points:	16	10	14	10	50
Score:					

1. Let $f(x, y)=x \sin \left(x y^{2}\right)$.
(a) (8 marks) Find the equation of the tangent plane to the surface $z=f(x, y)$ at the point where $x=\pi, y=1$.

Solution:

We have $f_{1}(x, y)=\sin \left(x y^{2}\right)+x \cos \left(x y^{2}\right) \cdot y^{2}$ and $f_{2}(x, y)=x \cos \left(x y^{2}\right) \cdot 2 x y$, so that $f_{1}(\pi, 1)=\sin \pi+\pi \cos \pi \cdot 1=0-\pi=-\pi$ and $f_{2}(\pi, 1)=\pi \cos \pi \cdot 2 \pi=-2 \pi^{2}$. We also have $f(\pi, 1)=\pi \sin \pi=0$. Therefore the tangent plane is

$$
z=-\pi(x-\pi)-2 \pi^{2}(y-1)=-\pi x-2 \pi^{2} y+3 \pi^{2}
$$

(b) (4 marks) Find the directional derivative of f at $(\pi, 1)$ in the direction of the vector $\mathbf{v}=\mathbf{i}-3 \mathbf{j}$.

Solution: The unit vector in the direction of \mathbf{v} is $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{1}{\sqrt{10}} \mathbf{i}-\frac{3}{\sqrt{10}} \mathbf{i}$. From (a), we have $\nabla f(\pi, 1)=-\pi \mathbf{i}-2 \pi^{2} \mathbf{j}$. Therefore

$$
D_{\mathbf{u}} f(\pi, 1)=\nabla f(\pi, 1) \cdot \mathbf{u}=\frac{1}{\sqrt{10}}(-\pi)-\frac{3}{\sqrt{10}}\left(-2 \pi^{2}\right)=\frac{\pi}{\sqrt{10}}(6 \pi-1)
$$

(c) (4 marks) Find a vector \mathbf{w} in the $x y$-plane tangent to the level curve of f at $(\pi, 1)$. (The answer might not be unique. Any non-zero tangent vector will suffice.)

Solution:

The tangent vector should be perpendicular to $\nabla f(\pi, 1)=-\pi \mathbf{i}-2 \pi^{2} \mathbf{j}$. For example, we could take $\mathbf{w}=2 \pi^{2} \mathbf{i}-\pi \mathbf{j}$.
2. Suppose that a function $f(x, y)$ is defined everywhere in the plane and has continuous partial derivatives of all orders. Assume that $f(2,3)=2, f_{1}(2,3)=-1, f_{2}(2,3)=$ $4, f_{11}(2,3)=0, f_{12}(2,3)=f_{21}(2,3)=3, f_{22}(2,3)=1$, Find $\frac{\partial}{\partial x} f\left(2 x^{2}, x+y\right)$ and $\frac{\partial^{2}}{\partial x^{2}} f\left(2 x^{2}, x+y\right)$ at $x=1, y=2$.

Solution:

We start with

$$
\frac{\partial}{\partial x} f\left(2 x^{2}, x+y\right)=f_{1}\left(2 x^{2}, x+y\right) \cdot(4 x)+f_{2}\left(2 x^{2}, x+y\right) \cdot 1
$$

At $x=1, y=2$, we have $2 x^{2}=2, x+y=3$, and

$$
\left.\frac{\partial}{\partial x} f\left(2 x^{2}, x+y\right)\right|_{(x, y)=(1,2)}=f_{1}(2,3) \cdot 4+f_{2}(2,3) \cdot 1=-1 \cdot 4+4 \cdot 1=0
$$

Next, using Chain Rule again,

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial x^{2}} f\left(2 x^{2}, x+y\right)=\frac{\partial}{\partial x}\left(f_{1}\left(2 x^{2}, x+y\right) \cdot(4 x)\right)+\frac{\partial}{\partial x} f_{2}\left(2 x^{2}, x+y\right) \\
& \quad=\left(f_{11}\left(2 x^{2}, x+y\right) \cdot(4 x)+f_{21}\left(2 x^{2}, x+y\right) \cdot 1\right)(4 x)+f_{1}\left(2 x^{2}, x+y\right) \cdot 4 \\
& \quad+f_{21}\left(2 x^{2}, x+y\right) \cdot(4 x)+f_{22}\left(2 x^{2}, x+y\right) \cdot 1
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left.\frac{\partial^{2}}{\partial x^{2}} f\left(2 x^{2}, x+y\right)\right|_{(x, y)=(1,2)}=\left(f_{11}(2,3) \cdot 4+f_{21}(2,3)\right) \cdot 4 \\
& \quad+f_{1}(2,3) \cdot 4+f_{21}(2,3) \cdot 4+f_{22}(2,3) \\
& \quad=(0 \cdot 4+3) \cdot 4+(-1) \cdot 4+3 \cdot 4+1 \\
& \quad=12-4+12+1=21
\end{aligned}
$$

3. Let

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

(a) (6 marks) Is f continuous at $(0,0)$? Prove your answer.

Solution:

For all $(x, y) \neq(0,0)$, we have

$$
\left\lvert\, f\left(x, y\left|=\left|\frac{x^{3}}{x^{2}+y^{2}}\right|=|x| \cdot\right| \frac{x^{2}}{x^{2}+y^{2}}|\leq|x| .\right.\right.
$$

Since $|x| \rightarrow 0$ as $(x, y) \rightarrow(0,0)$, we also have $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0=f(0,0)$. Therefore f is continuous at $(0,0)$.
(b) (8 marks) Is it differentiable at $(0,0)$? Prove your answer.

Solution:

We have $f(x, 0)=x$ for all $x \in \mathbb{R}$ and $f(0, y)=0$ for all $y \in \mathbb{R}$, so that $f_{1}(0,0)=1$ and $f_{2}(0,0)=0$. Therefore the linear approximation to $f(x, y)$ at $(0,0)$, if it exists, is $L(x, y)=f(0,0)+f_{1}(0,0) x+f_{2}(0,0) y=x$.
For f to be differentiable at $(0,0)$, we need

$$
\begin{equation*}
\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-L(x, y)}{\sqrt{x^{2}+y^{2}}}=0 \tag{1}
\end{equation*}
$$

We have

$$
f(x, y)-L(x, y)=\frac{x^{3}}{x^{2}+y^{2}}-x=\frac{x^{3}-x^{3}-x y^{2}}{x^{2}+y^{2}}=\frac{x y^{2}}{x^{2}+y^{2}} .
$$

Therefore the limit in (1) is

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}
$$

But this limit is not 0 (in fact, the limit does not exist). For example, if we let $x>0, y=x$, and then take $x \rightarrow 0$, then we get

$$
\lim _{x \rightarrow 0} \frac{x^{3}}{\left(2 x^{2}\right)^{3 / 2}}=\lim _{x \rightarrow 0} \frac{x^{3}}{2^{3 / 2} x^{3}}=\lim _{x \rightarrow 0} \frac{1}{2^{3 / 2}}=2^{-3 / 2} \neq 0
$$

10 marks 4. A surface is given by the equation $e^{x}(y+1)-e^{y} z=\left(e^{z}-1\right) x$.
(a) (2 marks) Prove that the point $P=(1,0,1)$ lies on the surface.

Solution: We just check that $(1,0,1)$ satisfy the equation of the surface: $e^{1}(0+$ 1) $-e^{0} \cdot 1=\left(e^{1}-1\right) \cdot 1, e-1=e-1$, which is true.
(b) (8 marks) Explain why this equation defines z as a function of x and y in a neighbourhood of P. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at P.

Solution:

We can rewrite the equation of the surface as $F(x, y, z)=0$, where $F(x, y, z)=$ $e^{x}(y+1)-e^{y} z-\left(e^{z}-1\right) x$. Then F has continuous partial derivatives of all orders, and

$$
\begin{aligned}
& F_{x}(x, y, z)=e^{x}(y+1)-\left(e^{z}-1\right) \\
& F_{y}(x, y, z)=e^{x}-e^{y} z \\
& F_{z}(x, y, z)=-e^{y}-e^{z} x
\end{aligned}
$$

So

$$
\begin{aligned}
& F_{x}(1,0,1)=e^{1}(0+1)-\left(e^{1}-1\right)=1 \\
& F_{y}(1,0,1)=e^{1}-e^{0} \cdot 1=e-1 \\
& F_{z}(1,0,1)=-e^{0}-e^{1} \cdot 1=-1-e
\end{aligned}
$$

Since $F_{z}(1,0,1) \neq 0$, the equation defines z as a function of x, y in a neighbourhood of P, and we have at P

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}(1,0,1)}{F_{z}(1,0,1)}=\frac{1}{e+1}, \quad \frac{\partial z}{\partial y}=-\frac{F_{y}(1,0,1)}{F_{z}(1,0,1)}=\frac{e-1}{e+1} .
$$

