This midterm has 4 questions on 5 pages, for a total of 50 points.

Duration: 50 minutes

- Read all the questions carefully before starting to work.
- Give complete arguments and explanations for all your calculations; answers without justifications will not be marked.
- Continue on the back of the previous page if you run out of space.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)

Last name:	Student No.:
------------	--------------

First name and all middle names:

Signature: _____

Question:	1	2	3	4	Total
Points:	16	10	14	10	50
Score:					

16 marks

(a) (8 marks) Find the equation of the tangent plane to the surface z = f(x, y) at the point where $x = \pi$, y = 1.

Solution:

1. Let $f(x, y) = x \sin(xy^2)$.

We have $f_1(x, y) = \sin(xy^2) + x\cos(xy^2) \cdot y^2$ and $f_2(x, y) = x\cos(xy^2) \cdot 2xy$, so that $f_1(\pi, 1) = \sin \pi + \pi \cos \pi \cdot 1 = 0 - \pi = -\pi$ and $f_2(\pi, 1) = \pi \cos \pi \cdot 2\pi = -2\pi^2$. We also have $f(\pi, 1) = \pi \sin \pi = 0$. Therefore the tangent plane is

$$z = -\pi(x - \pi) - 2\pi^2(y - 1) = -\pi x - 2\pi^2 y + 3\pi^2.$$

(b) (4 marks) Find the directional derivative of f at $(\pi, 1)$ in the direction of the vector $\mathbf{v} = \mathbf{i} - 3\mathbf{j}$.

Solution: The unit vector in the direction of \mathbf{v} is $\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{1}{\sqrt{10}}\mathbf{i} - \frac{3}{\sqrt{10}}\mathbf{i}$. From (a), we have $\nabla f(\pi, 1) = -\pi \mathbf{i} - 2\pi^2 \mathbf{j}$. Therefore $D_{\mathbf{u}}f(\pi, 1) = \nabla f(\pi, 1) \cdot \mathbf{u} = \frac{1}{\sqrt{10}}(-\pi) - \frac{3}{\sqrt{10}}(-2\pi^2) = \frac{\pi}{\sqrt{10}}(6\pi - 1)$

(c) (4 marks) Find a vector **w** in the *xy*-plane tangent to the level curve of f at $(\pi, 1)$. (The answer might not be unique. Any non-zero tangent vector will suffice.)

Solution:

The tangent vector should be perpendicular to $\nabla f(\pi, 1) = -\pi \mathbf{i} - 2\pi^2 \mathbf{j}$. For example, we could take $\mathbf{w} = 2\pi^2 \mathbf{i} - \pi \mathbf{j}$.

10 marks 2. Suppose that a function f(x, y) is defined everywhere in the plane and has continuous partial derivatives of all orders. Assume that f(2,3) = 2, $f_1(2,3) = -1$, $f_2(2,3) = 4$, $f_{11}(2,3) = 0$, $f_{12}(2,3) = f_{21}(2,3) = 3$, $f_{22}(2,3) = 1$, Find $\frac{\partial}{\partial x} f(2x^2, x+y)$ and $\frac{\partial^2}{\partial x^2} f(2x^2, x+y)$ at x = 1, y = 2.

Solution:

We start with

$$\frac{\partial}{\partial x}f(2x^2, x+y) = f_1(2x^2, x+y) \cdot (4x) + f_2(2x^2, x+y) \cdot 1.$$

At x = 1, y = 2, we have $2x^2 = 2, x + y = 3$, and

$$\frac{\partial}{\partial x}f(2x^2, x+y)\Big|_{(x,y)=(1,2)} = f_1(2,3)\cdot 4 + f_2(2,3)\cdot 1 = -1\cdot 4 + 4\cdot 1 = 0.$$

Next, using Chain Rule again,

$$\begin{aligned} \frac{\partial^2}{\partial x^2} f(2x^2, x+y) &= \frac{\partial}{\partial x} \Big(f_1(2x^2, x+y) \cdot (4x) \Big) + \frac{\partial}{\partial x} f_2(2x^2, x+y) \\ &= \Big(f_{11}(2x^2, x+y) \cdot (4x) + f_{21}(2x^2, x+y) \cdot 1 \Big) (4x) + f_1(2x^2, x+y) \cdot 4 \\ &+ f_{21}(2x^2, x+y) \cdot (4x) + f_{22}(2x^2, x+y) \cdot 1. \end{aligned}$$

Therefore

$$\frac{\partial^2}{\partial x^2} f(2x^2, x+y) \Big|_{(x,y)=(1,2)} = \left(f_{11}(2,3) \cdot 4 + f_{21}(2,3) \right) \cdot 4 + f_{1}(2,3) \cdot 4 + f_{21}(2,3) \cdot 4 + f_{22}(2,3) \\ = (0 \cdot 4 + 3) \cdot 4 + (-1) \cdot 4 + 3 \cdot 4 + 1 \\ = 12 - 4 + 12 + 1 = 21.$$

14 marks 3. Let

$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

(a) (6 marks) Is f continuous at (0,0)? Prove your answer.

Solution:

For all $(x, y) \neq (0, 0)$, we have

$$|f(x,y)| = \left|\frac{x^3}{x^2 + y^2}\right| = |x| \cdot \left|\frac{x^2}{x^2 + y^2}\right| \le |x|.$$

Since $|x| \to 0$ as $(x, y) \to (0, 0)$, we also have $\lim_{(x,y)\to(0,0)} f(x, y) = 0 = f(0, 0)$. Therefore f is continuous at (0, 0).

(b) (8 marks) Is it differentiable at (0,0)? Prove your answer.

Solution:

We have f(x,0) = x for all $x \in \mathbb{R}$ and f(0,y) = 0 for all $y \in \mathbb{R}$, so that $f_1(0,0) = 1$ and $f_2(0,0) = 0$. Therefore the linear approximation to f(x,y) at (0,0), if it exists, is $L(x,y) = f(0,0) + f_1(0,0)x + f_2(0,0)y = x$. For f to be differentiable at (0,0), we need

$$\lim_{(x,y)\to(0,0)}\frac{f(x,y)-L(x,y)}{\sqrt{x^2+y^2}} = 0.$$
 (1)

We have

$$f(x,y) - L(x,y) = \frac{x^3}{x^2 + y^2} - x = \frac{x^3 - x^3 - xy^2}{x^2 + y^2} = \frac{xy^2}{x^2 + y^2}$$

Therefore the limit in (1) is

$$\lim_{(x,y)\to(0,0)}\frac{xy^2}{(x^2+y^2)^{3/2}}.$$

But this limit is not 0 (in fact, the limit does not exist). For example, if we let x > 0, y = x, and then take $x \to 0$, then we get

$$\lim_{x \to 0} \frac{x^3}{(2x^2)^{3/2}} = \lim_{x \to 0} \frac{x^3}{2^{3/2}x^3} = \lim_{x \to 0} \frac{1}{2^{3/2}} = 2^{-3/2} \neq 0.$$

- 10 marks 4. A surface is given by the equation $e^x(y+1) e^y z = (e^z 1)x$.
 - (a) (2 marks) Prove that the point P = (1, 0, 1) lies on the surface.

Solution: We just check that (1, 0, 1) satisfy the equation of the surface: $e^1(0 + 1) - e^0 \cdot 1 = (e^1 - 1) \cdot 1$, e - 1 = e - 1, which is true.

(b) (8 marks) Explain why this equation defines z as a function of x and y in a neighbourhood of P. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at P.

Solution:

We can rewrite the equation of the surface as F(x, y, z) = 0, where $F(x, y, z) = e^x(y+1) - e^y z - (e^z - 1)x$. Then F has continuous partial derivatives of all orders, and

$$F_x(x, y, z) = e^x(y+1) - (e^z - 1)$$

$$F_y(x, y, z) = e^x - e^y z$$

$$F_z(x, y, z) = -e^y - e^z x$$

 So

$$F_x(1,0,1) = e^1(0+1) - (e^1 - 1) = 1$$

$$F_y(1,0,1) = e^1 - e^0 \cdot 1 = e - 1$$

$$F_z(1,0,1) = -e^0 - e^1 \cdot 1 = -1 - e$$

Since $F_z(1,0,1) \neq 0$, the equation defines z as a function of x, y in a neighbourhood of P, and we have at P

$$\frac{\partial z}{\partial x} = -\frac{F_x(1,0,1)}{F_z(1,0,1)} = \frac{1}{e+1}, \quad \frac{\partial z}{\partial y} = -\frac{F_y(1,0,1)}{F_z(1,0,1)} = \frac{e-1}{e+1}.$$