

MATH 541 HOMEWORK 1

Due Friday, October 7, 2005

1. Let $\phi \in \mathcal{S}$, $\int \phi = 1$, and let $\phi^\epsilon = \epsilon^{-n} \phi(x/\epsilon)$. Prove the following (see Lemma 3.2, pp. 16-17, in the textbook):
 - (a) If $f : \mathbb{R}^n \rightarrow \mathbb{C}$ is continuous and $|f| \rightarrow 0$ at ∞ , then $\phi^\epsilon * f \rightarrow f$ uniformly as $\epsilon \rightarrow 0$.
 - (b) If $f \in L^p(\mathbb{R}^n)$, $1 \leq p < \infty$, then $\phi^\epsilon * f \rightarrow f$ in L^p as $\epsilon \rightarrow 0$.

Does (b) remain true when $p = \infty$? Explain why or why not.

2. This is another manifestation of the general principle that the decay of \hat{f} is related to the regularity of f .
 - (a) Suppose that $f, \hat{f} \in L^1(\mathbb{R})$, and that

$$|\hat{f}(\xi)| \leq C|\xi|^{-1-\alpha} \text{ for some } C > 0, 0 < \alpha < 1. \quad (1)$$

Prove that f satisfies the Hölder condition

$$|f(x+h) - f(x)| \leq M|h|^\alpha, \quad x, h \in \mathbb{R}, \quad (2)$$

for some constant M . (Hint: use the inversion formula.)

- (b) What exponent should replace $-1 - \alpha$ in (1) for the conclusion (2) to hold in \mathbb{R}^n ?
3. Let $f \in L^2(\mathbb{R})$, $\int |f|^2 = 1$. Prove that

$$\left(\int x^2 |f(x)|^2 dx \right) \left(\int \xi^2 |\hat{f}(\xi)|^2 d\xi \right) \geq (16\pi^2)^{-1}.$$

(Hint: integrate $\int |f|^2 = \int |f|^2 \cdot 1$ by parts and use Cauchy-Schwarz.) This is known as the *uncertainty principle*: in quantum mechanics, the two integrals are interpreted as “uncertainty of position” and “uncertainty of momentum”, respectively, of the quantum particle.