MATHEMATICS 541, PROBLEM SET 1 Due on Wednesday, September 22

Write clearly and legibly, in complete sentences. You may discuss the homework with other students, but the final write-up must be your own. If your solution uses any results not introduced in class, state the result clearly and provide either a reference or a proof.

1. (Weierstrass approximation theorem) Let f be a continuous function on a closed and bounded interval $[a, b]$, with values in \mathbb{R}. Prove that f can be approximated by polynomials uniformly on $[a, b]$: for every $\epsilon>0$ there is a polynomial $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ with real coefficients such that $|f(x)-p(x)|<\epsilon$ for all $x \in[a, b]$. (Approximate f by trigonometric polynomials first, then approximate the trigonometric polynomials by polynomials.)
2. (Fejér's lemma) Prove that if $f \in L^{1}(\mathbb{T})$ and $g \in L^{\infty}(\mathbb{T})$, then

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) g(n x) d x=\widehat{f}(0) \widehat{g}(0)
$$

3. (Stein and Shakarchi, page 66) Let $D_{n}(x)=\sum_{n=-N}^{N} e^{2 \pi i n x}=\frac{\sin ((2 N+1) \pi x)}{\sin (\pi x)}$. Prove that

$$
\int_{0}^{1}\left|D_{N}(x)\right| d x \geq c \log N
$$

for some $c>0$. (Hint: Prove that $\left|D_{N}(x)\right| \geq c \frac{\sin ((2 N+1) \pi x)}{|x|}$, hence by changing variables

$$
\int_{0}^{1}\left|D_{N}(x)\right| d x \geq c \int_{\pi}^{N \pi} \frac{|\sin t|}{|t|} d t-C
$$

Split up the integral into integrals over $[k \pi,(k+1) \pi], k=1,2, \ldots$, and use that $\sum_{k=1}^{N}(1 / k) \geq c \log N$.)
4. Prove that for each $n \geq 1$ there is a continuous function f_{n} on \mathbb{T} such that $\left|f_{n}\right| \leq 1$, but $\left|S_{n}\left(f_{n}\right)(0)\right| \geq c^{\prime} \log n$, where S_{n} is the partial Fourier
$\operatorname{sum} S_{n}(f)=\sum_{k=-n}^{n} \widehat{f}(n) e^{2 \pi i n x}=f * D_{n}$. (Hint: Let

$$
g_{n}(x)=\operatorname{sgn} D_{n}(x)= \begin{cases}1 & \text { if } D_{n}(x)>0 \\ 0 & \text { if } D_{n}(x)=0 \\ -1 & \text { if } D_{n}(x)<0\end{cases}
$$

Check that g_{n} has the desired property except for the continuity. To fix that, approximate g_{n} by continuous functions.)

