MATHEMATICS 541, PROBLEM SET 2 Due on Friday, October 8

Write clearly and legibly, in complete sentences. You may discuss the homework with other students, but the final write-up must be your own. If your solution uses any results not introduced in class, state the result clearly and provide either a reference or a proof.

1. (Stein-Shakarchi, pp. 65-66)
(a) You may have seen the proof that

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}
$$

using complex analysis. Here you are asked to prove it using harmonic analysis: check that the function $\frac{1}{\sin (\pi x)}-\frac{1}{\pi x}$ is continuous on $[0,1]$, apply the Riemann-Lebesgue lemma, and use that $\int_{0}^{1} D_{N}(t) d t=1$.
(b) In the construction of a function with divergent Fourier series, we used that

$$
f(x)=\sum_{0<|n|<N} \frac{e^{2 \pi i n x}}{n}
$$

is bounded uniformly for all $x \in \mathbb{T}$ and $N \in \mathbb{N}$. Prove this. (Hint: prove first that $f(x)=2 \pi i \int_{0}^{x}\left(D_{N}(t)-1\right) d t$, then use part (a).)
2. (Decay of Fourier coefficients.) Let $k \geq 1$ be an integer.
(a) Prove that if $f: \mathbb{T} \rightarrow \mathbb{C}$ is k times differentiable and $f^{(k-1)}$ is absolutely continuous, then $|\widehat{f}(n)|=o\left(n^{-k}\right)$ as $n \rightarrow \infty$.
(b) (Katznelson, p.28) Prove that if f is a function $\mathbb{T} \rightarrow \mathbb{C}$ such that

$$
\sum_{n=-\infty}^{\infty}|\widehat{f}(n)||n|^{\ell}<\infty
$$

then f is ℓ-times continuously differentiable. Deduce that if $\widehat{f}(n)=$ $O\left(|n|^{-k}\right)$ for some $k>2$, then f is $(k-2)$-times continuously differentiable.
3. (Stein-Shakarchi, page 123) Prove that for any $a \neq 0$, and σ with $0<\sigma<1$, the sequence $\left\{a n^{\sigma}\right\}, n=1,2, \ldots$, is equidistributed on \mathbb{T}. (Hint: Prove that for all $b \neq 0$,

$$
\sum_{n=1}^{N} e^{2 \pi i b n^{\sigma}}-\int_{1}^{N} e^{2 \pi i b n^{\sigma}}=O\left(\sum_{n=1}^{N} n^{-1+\sigma}\right)
$$

deduce that $\sum_{n=1}^{N} e^{2 \pi i b n^{\sigma}}=O\left(N^{\sigma}\right)+O\left(N^{1-\sigma}\right)$.)

