MATHEMATICS 541, PROBLEM SET 2 Due on Friday, October 8

Write clearly and legibly, in complete sentences. You may discuss the homework with other students, but the final write-up must be your own. If your solution uses any results not introduced in class, state the result clearly and provide either a reference or a proof.

- 1. (Stein-Shakarchi, pp. 65-66)
 - (a) You may have seen the proof that

$$\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$$

using complex analysis. Here you are asked to prove it using harmonic analysis: check that the function $\frac{1}{\sin(\pi x)} - \frac{1}{\pi x}$ is continuous on [0, 1], apply the Riemann-Lebesgue lemma, and use that $\int_0^1 D_N(t) dt = 1$.

(b) In the construction of a function with divergent Fourier series, we used that

$$f(x) = \sum_{0 < |n| < N} \frac{e^{2\pi i n x}}{n}$$

is bounded uniformly for all $x \in \mathbb{T}$ and $N \in \mathbb{N}$. Prove this. (Hint: prove first that $f(x) = 2\pi i \int_0^x (D_N(t) - 1) dt$, then use part (a).)

- 2. (Decay of Fourier coefficients.) Let $k \ge 1$ be an integer.
 - (a) Prove that if $f : \mathbb{T} \to \mathbb{C}$ is k times differentiable and $f^{(k-1)}$ is absolutely continuous, then $|\widehat{f}(n)| = o(n^{-k})$ as $n \to \infty$.
 - (b) (Katznelson, p.28) Prove that if f is a function $\mathbb{T} \to \mathbb{C}$ such that

$$\sum_{n=-\infty}^{\infty} |\widehat{f}(n)| \, |n|^{\ell} < \infty,$$

then f is ℓ -times continuously differentiable. Deduce that if $\widehat{f}(n) = O(|n|^{-k})$ for some k > 2, then f is (k-2)-times continuously differentiable.

3. (Stein-Shakarchi, page 123) Prove that for any $a \neq 0$, and σ with $0 < \sigma < 1$, the sequence $\{an^{\sigma}\}, n = 1, 2, \dots$, is equidistributed on \mathbb{T} . (Hint: Prove that for all $b \neq 0$,

$$\sum_{n=1}^{N} e^{2\pi i b n^{\sigma}} - \int_{1}^{N} e^{2\pi i b n^{\sigma}} = O\left(\sum_{n=1}^{N} n^{-1+\sigma}\right);$$

deduce that $\sum_{n=1}^{N} e^{2\pi i b n^{\sigma}} = O(N^{\sigma}) + O(N^{1-\sigma}).)$