MATHEMATICS 541, PROBLEM SET 5
 Due on Friday, December 3

Write clearly and legibly, in complete sentences. You may discuss the homework with other students, but the final write-up must be your own. If your solution uses any results not introduced in class, state the result clearly and provide either a reference or a proof.

1. Prove that if $f \in \mathcal{S}(\mathbb{R})$ and $\int_{-\infty}^{\infty} f(x) d x=0$, then $H f \in L^{1}(\mathbb{R})$.
2. Here is an alternative proof of L^{p} boundedness of the Hilbert transform. The steps below outline the proof that H is bounded on $L^{p}(\mathbb{R})$ if $p=2^{k}$, $k=2,3, \ldots$ As in class, this implies by duality and interpolation that H is bounded on $L^{p}(\mathbb{R})$ for all $p \in(1, \infty)$.
(a) Prove that for all real-valued $f \in \mathcal{S}$ we have

$$
\begin{equation*}
(H f)^{2}=f^{2}+2 H(f \cdot H f) \tag{1}
\end{equation*}
$$

There are several ways to do this. One is as follows: let $f \in \mathcal{S}$ and $g=H f$, then $f g \in \mathcal{S}$ (prove it!). We have seen that there is a function $F(z)$, analytic in the upper half-plane, such that $F(x+i y) \rightarrow f(x)+i g(x)$ as $y \rightarrow 0$. Then the function $-i F^{2}(z)$ is also analytic in the upper half-plane and its limit as $y \rightarrow 0$ is $2 f g-i\left(f^{2}-g^{2}\right)$. What does this say about the Hilbert transform of $2 f g$?
(b) Deduce from (1) that if $\|H f\|_{p} \leq C_{p}\|f\|_{p}$, then

$$
\|H f\|_{2 p} \leq\left(C_{p}+\sqrt{C_{p}+1}\right)\|f\|_{2 p}
$$

3. End of term: 10 marks for free!
