MATHEMATICS 542, PROBLEM SET 1 Due on Friday, 17 October 2008

- 1. Prove that the number of k-tuples of integers a_1, \ldots, a_k such that $1 \le a_1 \le a_2 \le \cdots \le a_k \le n$ is equal to $\binom{n+k-1}{k}$.
- 2. Let $A \subset \mathbb{Z}_N$, $|A| \leq \frac{1}{10} \log N$. Prove that there is a $\xi \neq 0$ such that $|\widehat{A}(\xi)| \geq |A|/(2N)$.
- 3. Prove that for every C > 0 there is a N = N(C) such that if $A \subset \mathbb{Z}$, |A| = N and $|A + A| \leq CN$, then A contains a non-trivial 3-term arithmetic progression.
- 4. Let $A \subset \mathbb{Z}_N$, $|A| = \delta N$. Prove that 3A contains a (mod N) arithmetic progression of length N^c for some c depending only on δ .
- 5. Let N be prime, $A \subset \mathbb{Z}_N$, |A| > N/2. Suppose that $\phi : A \to B$, $B \subset \mathbb{Z}_N$, is a Freiman 2-homomorphism. Must ϕ have the form $\phi(x) = ax + b$ for some $a, b \in \mathbb{Z}_N$? If yes, prove it; if no, give an example.
- 6. Modify Behrend's example to prove the following: it is possible to colour the integers $\{1, 2, ..., N\}$ using no more than $\exp(c\sqrt{\log N})$ colours (with c independent of N) so that there are no monochromatic 3-term arithmetic progressions.