MATHEMATICS 542, PROBLEM SET 1

Due on Friday, 17 October 2008

1. Prove that the number of k-tuples of integers a_{1}, \ldots, a_{k} such that $1 \leq$ $a_{1} \leq a_{2} \leq \cdots \leq a_{k} \leq n$ is equal to $\binom{n+k-1}{k}$.
2. Let $A \subset \mathbb{Z}_{N},|A| \leq \frac{1}{10} \log N$. Prove that there is a $\xi \neq 0$ such that $|\widehat{A}(\xi)| \geq|A| /(2 N)$.
3. Prove that for every $C>0$ there is a $N=N(C)$ such that if $A \subset \mathbb{Z}$, $|A|=N$ and $|A+A| \leq C N$, then A contains a non-trivial 3 -term arithmetic progression.
4. Let $A \subset \mathbb{Z}_{N},|A|=\delta N$. Prove that $3 A$ contains a $(\bmod N)$ arithmetic progression of length N^{c} for some c depending only on δ.
5. Let N be prime, $A \subset \mathbb{Z}_{N},|A|>N / 2$. Suppose that $\phi: A \rightarrow B$, $B \subset \mathbb{Z}_{N}$, is a Freiman 2-homomorphism. Must ϕ have the form $\phi(x)=$ $a x+b$ for some $a, b \in \mathbb{Z}_{N}$? If yes, prove it; if no, give an example.
6. Modify Behrend's example to prove the following: it is possible to colour the integers $\{1,2, \ldots, N\}$ using no more than $\exp (c \sqrt{\log N})$ colours (with c independent of N) so that there are no monochromatic 3 -term arithmetic progressions.
