MATHEMATICS 542, PROBLEM SET 2
 Due on Monday, November 24, 2008

1. Find all functions $f: \mathbb{Z}_{N} \rightarrow \mathbb{C}$ such that $|f(x)| \leq 1$ for all x and
(a) $\|f\|_{U^{2}}=1$,
(b) $\|f\|_{U^{3}}=1$.
2. Prove that $\|f\|_{U^{2}} \leq\|f\|_{U^{3}} \leq\|f\|_{U^{4}} \leq \ldots$ for all $f: \mathbb{Z}_{N} \rightarrow \mathbb{C}$.
3. Prove that for every $f: \mathbb{Z}_{N} \rightarrow \mathbb{C}$ we have $\|f\|_{U^{3}}=\sqrt{N}\|\widehat{f}\|_{U^{3}}$.
4. Let $A, B, C \subset Z$, where Z is an abelian group, and let $G \subset A \times B$, $H \subset B \times C$ be such that $|G| \geq(1-\epsilon)|A||B|$ and $|H| \geq(1-\epsilon)|B||C|$ for some $\epsilon \in(0,1 / 4)$. Prove that there are subsets $A^{\prime} \subset A$ and $C^{\prime} \subset C$ such that $\left|A^{\prime}\right| \geq(1-\sqrt{\epsilon})|A|,\left|B^{\prime}\right| \geq(1-\sqrt{\epsilon})|B|$, and

$$
\left|A^{\prime}-C^{\prime}\right| \leq \frac{S T}{(1-2 \sqrt{\epsilon})|B|}
$$

where $S=|\{a-b:(a, b) \in G\}|, T=|\{b-c: \quad(b, c) \in H\}|$.
(Hint: Prove that there are at most $\sqrt{\epsilon}|B|$ elements b of B such that

$$
|\{a \in A:(a, b) \in G\}| \leq(1-\sqrt{\epsilon})|A|
$$

and similarly with A, B, G replaced by B, C, H.)
5. Recall the following version of Roth's theorem: if $f: \mathbb{Z}_{N} \rightarrow[0, M]$ is a function such that $\sum_{x \in \mathbb{Z}_{N}} f(x)=\delta N$, then

$$
\sum_{x, r} f(x) f(x+r) f(x+2 r) \geq c(M, \delta) N^{2}
$$

Use an example from an earlier part of the course to show that one cannot take $c(M, \delta)=M^{-k} c^{\prime}(\delta)$ for any k independent of M, δ.
6. (Bonus problem) Let $f: \mathbb{Z}_{N} \rightarrow \mathbb{C},|f(x)| \leq 1$ for all x, and let $f^{(r)}(x)=$ $f(x) \overline{f(x+r)}$. Suppose that $G=\left\{r:\left\|f^{(r)}\right\|_{U^{2}}=1\right\}$ has cardinality greater than $c N$ for some c close to 1 . Must f be as in 1(b)? If yes, how close to 1 does c need to be?

