
The ¯rst two sections of this chapter provides a very brief introduction to the terminology of
linear programming, how a problem is represented and solved by the computer, and how the
techniques of sensitivity analysis can provide useful information in addition to the solution of
the problem. The last section deals with how to formulate linear programming models to deal
with practical problems.

Tableaus and Solutions

We will use the example problem from Chapter 1:

maximize 20x1 + 30x2 + 15x3

subject to

1:5x1 + x2 +x3· 100
x1 + 2x2 +x3· 100

x1 ¸ 0; x2 ¸ 0; x3 ¸ 0

This will go through a number of transformations. First of all, the inequalities are transformed
into equalities by the use of slack variables: for each inequality constraint there is a slack
variable, which expresses the di®erence between the two sides. We will use the names m1 and
m2 for the slack variables. LINEAR will call them `SLACK M1' and `SLACK M2', corresponding
to the names of the constraints. When you refer to them from the keyboard, you may if you
wish omit `SLACK' and just use the name of the constraint. The objective (call it p) can also be
written as an equality:

p = 20 x1 +30x2 +15x3

m1 = 100¡1:5x1¡ x2¡ x3

m2 = 100¡ x1¡ 2 x2¡ x3

The objective p in some ways plays the role of a variable, although it is not generally referred
to as a variable. Note that the equations above express the objective and the two variables m1

and m2 in terms of the other variables x1, x2 and x3. The variables m1 and m2, which are
expressed in terms of the other variables, are called basic variables. The variables x1, x2 and
x3 are called nonbasic variables. A set of equations such as these is called a dictionary.

A tableau represents these equations using an array of numbers. First put all the variables on
the left side of the equations:

p ¡ 20 x1¡ 30x2¡ 15 x3 = 0
m1 + 1:5x1 + x2 + x3 = 100
m2 + x1 + 2 x2 + x3 = 100

Now, instead of writing down the names of the variables in each equation, just write down the
numbers in an array, and label the columns of the array by the variables. There are two ways
to do this. In the explicit basis format, every variable, basic or nonbasic, has its column:

x1 x2 x3 m1 m2 p

¡20 ¡30 ¡15 0 0 1 0

1.5 1 1 1 0 0 100
1 2 1 0 1 0 100

The p column is almost always omitted when a tableau is written down, because it will never
change. The column of constant terms is usually not labelled, and is separated by a vertical
line from the rest of the tableau. This manual will refer to it as the \right-hand-side", or RHS,
column.
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In the implicit basis format, only the nonbasic variables label columns, while the objective
and basic variables label rows:

x1 x2 x3

p ¡20 ¡30 ¡15 0

m1 1:5 1 1 100
m2 1 2 1 100

The implicit basis format has the advantages of being more compact, and making it more obvious
which are the basic variables. This is the format that LINEAR uses.

² To see LINEAR's version of the tableau, load the problem EXAMPLE1.PRB and use the
commands `Tableau Show tableau All columns All rows'.

Our example involves maximizing the objective. If p was to be minimized instead, the signs in
the objective row would all be changed: in e®ect we would be minimizing p by maximizing ¡p.
The objective row would still be labelled by p, although it would really represent ¡p.

Conventions di®er: some people put the RHS column on the left instead of the right, and
some people put the objective row on the bottom instead of the top. This is unlikely to cause
confusion, because of the lines separating the RHS column and the objective row from the rest
of the tableau. Some people also use the opposite signs in the objective row.

A set of values for the variables and objective that satis¯es the equations of the tableau is
called a solution. Solutions can be obtained by arbitrarily prescribing values for the nonbasic
variables, and letting the tableau equations give the values of the objective and basic variables.
For example, if you took

x1 = 50, x2 = 100 and x3 = ¡100

you would get
p = 2500, m1 = 25 and m2 = ¡50

But even though we call it a solution, this does not satisfy all the requirements of the problem.
Two of these requirements are violated: x3 is negative (violating the requirement that the
variables all be ¸ 0), and also m2 is negative (which means that the corresponding inequality is
violated). A feasible solution of the problem must have all the variables (decision and slack)
¸ 0: it would represent a possible production plan for the factory, satisfying all the constraints.
For example, you could take

x1 = x2 = x3 = 0

and get a feasible solution with

p = 0 and m1 = m2 = 100

This solution would have the factory producing nothing! It is feasible because none of the
constraints force the factory to produce anything. But the management would hope it is not
optimal, i.e. there should be a feasible solution with a larger value of p. An optimal solution
is a feasible solution with the best possible value of the objective among all feasible solutions.
There might be many optimal solutions (all with the same value of the objective), or no optimal
solutions. There are two ways that a problem could have no optimal solutions.

| There may be no feasible solutions. We say the problem is infeasible;

| There may be feasible solutions with arbitrarily large values (positive for a maximization
problem, or negative for minimization) of the objective. We say the problem is unbounded.
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In any tableau, the solution obtained by setting all the nonbasic variables to 0 is called a basic
solution. The values of the basic variables and objective are then found in the RHS column of
the tableau. In the example above we have a basic feasible solution, but basic solutions are
not always feasible.

² To see the values of the basic variables and objective in the basic solution for the current tableau,
use the command `Val V

x1 + 2x2 + x3 ¸ 100

the equation for m2 in the dictionary would have been

m2 = ¡100 + x1 + 2x2 + x3

A bit more of a change would be necessary to allow an `=' constraint such as

x1 + 2x2 + x3 = 100

We would still write
m2 = 100¡ x1 ¡ 2x2 ¡ x3

but this time, in order for a solution to be feasible, we would need not just m2 ¸ 0 but m2 = 0.
The variable corresponding to an `=' constraint is called an arti¯cial variable (LINEAR would
call this arti¯cial variable `ARTIF M2'). In order for a solution to be feasible, all the arti¯cial
variables must be 0 while all the other variables must be ¸ 0.

² In the `Show tableau' command, LINEAR designates arti¯cial variables with a *.

The choice of which variables are basic and which are nonbasic is to some extent arbitrary: we
could perhaps express some other set of variables in terms of the variables not in the set, getting
a new but equivalent tableau. For example, suppose we wanted to make x2 into a basic variable.
By turning the third equation of the tableau around, we could express x2 in terms of x1, m2

and x3:
x2 = 50¡ 0:5x1 ¡ 0:5m2 ¡ 0:5x3

This expression for x2 could then be substituted into the other equations:

p¡ 20x1 ¡ 30(50¡ 0:5x1 ¡ 0:5m2 ¡ 0:5x3)¡ 15x3 = 0

m1 + 1:5x1 + (50¡ 0:5x1 ¡ 0:5m2 ¡ 0:5x3) + x3 = 100

Simplifying these, and including the expression for x2, we get a new tableau, in which m1 and
x2 are the basic variables.

x1 m2 x3

p ¡5 15 0 1500

m1 1 ¡0.5 0.5 50
x2 0.5 0.5 0.5 50

We say that x2 has entered the basis, and m2 has left the basis. The operation that we
performed is called pivoting. The new tableau is equivalent to the old one, in the sense that
any solution of one tableau is also a solution of the other. However, the basic solutions obtained
from these tableaus by setting the nonbasic variables to 0 are di®erent: the new basic solution
is x1 = 0, x2 = 50, x3 = 0, m1 = 50, m2 = 50, p = 1500. This happens to be a feasible solution
again, and better than the ¯rst (since it has a larger p).
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² To perform this pivot with LINEAR, use the commands `Tableau Do pivot', enter `x2'
as \entering variable", and enter `m2' as \leaving variable." You can use `Tableau Show
tableau All columns All rows' again to see the new tableau. Note that LINEAR's tableau
is rearranged a bit from the one above: LINEAR shows the rows and columns in their original
order, with decision variables before slack variables.

However, this is still not the optimal solution. According to the new tableau, if you increased
x1, keeping the other nonbasic variables at 0, p would increase. This is because the entry in the
p row and x1 column is negative. On the other hand, if all the entries in the p row for columns
labelled by non-arti¯cial variables were ¸ 0, there would be no way to increase the value of p
by changing the nonbasic variables. This is how an optimal solution is recognized.

From a conceptual point of view it is useful to think of pivoting in terms of substitution in the
tableau equations. In practice, it is more e±cient to work directly with the numbers in the
tableau. See Appendix A for the procedure actually used.

The Simplex Method of linear programming involves repeatedly performing pivot operations,
each time \improving" the basic solution, until either an optimal solution is obtained or it is
clear that there is none. It can be proven that if there is an optimal solution, there is one that
is basic, and the Simplex Method can ¯nd it.

LINEAR's version of the Simplex Method involves three phases:

Phase 0 removes arti¯cial variables from the basis.

Phase 1 ¯nds a basic feasible solution.

Phase 2 ¯nds an optimal solution.

The details of the method are presented in Appendix A.

² To have LINEAR solve the problem, use the command `Solve'. If you prefer to experiment with
di®erent pivots, `Tableau Get candidates' will display some possible choices for each pivot,
and allow you to choose among them.

For detailed information on the `Tableau', `Values' and `Solve' commands, see Chapter 5.

Sensitivity analysis

Sensitivity analysis tells what would happen to the optimal solution if small changes were made
in the problem. It can help you answer questions such as:

| what would be the e®ect of changes in prices?

| what should we be willing to pay for additional amounts of resources?

| how could we increase the production of a certain item?

The most important sources of such information are the shadow prices, sometimes called
reduced costs or dual variables. These are the numbers in the objective row of the tableau
for the optimal solution.

² To see the shadow prices for the current tableau, use the command `Values Shadow prices'.
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The shadow price of a nonbasic variable represents

(1) the cost per unit of small increases in that variable

(2) in the case of a slack or artificial variable, the maximum amount per unit that
one would pay for relaxing the constraint by a small amount, or the penalty
per unit for tightening the constraint by a small amount

(3) the change in the contribution of that variable to the objective that would
make it enter the optimal solution

I will illustrate these points using the following tableau, which gives the optimal solution of our
example: x1 = 50, x2 = 25, x3 = 0, m1 = 0, m2 = 0, p = 1750.

² To follow the discussion using LINEAR, load the problem EXAMPLE1.PRB and use the
command `Solve'.

m1 m2 x3

p 5 12.5 2.5 1750

x1 1 ¡0.5 0.5 50
x2 ¡0.5 0.75 0.25 25

(1) According to the tableau, the shadow price of the nonbasic variable x3 is 2:5. If instead of
following the optimal solution you insisted on having x3 at some positive value t, the best
possible value for p would be 1750 ¡ 2:5t. The tableau also says how this could be arranged,
because it expresses the basic variables in terms of the nonbasic ones. Keeping m1 and m2 at 0
and letting x3 = t, you would have x1 = 50¡ 0:5t and x2 = 25¡ 0:25t. Of course this could not
go on forever | it would only be feasible as long as t · 100. That is why I referred to the cost
of \small" increases in the variable.

² In LINEAR, the `Analyze' command will give you this information. Enter `x3' in response
to `Name of variable or constraint', and then choose `As parameter'. The results are as
follows:

Analysis of parameter X3

X3 is nonbasic: shadow price 2.5000

parameter interval: -infinity 100.0000

PROFIT values: +infinity 1500.0000

Thus the shadow price is 2:5, which works for t up to 100. It would also work for negative
values of t all the way to ¡1 (ignoring the requirement that x3 itself must not be negative).
At t = 100 the pro¯t value would be $1500. To see how the basic variables would depend on t
in this interval, choose `Values'. This shows their values at the endpoints of the interval and

the coe±cient of t (¡0:5 for x1 and ¡0:25 for x2). Use Esc to return to the main menu.
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(2) Consider m2, which has a shadow price of 12.5 in our tableau. The variable m2 represents
unused time on machine M2, in hours per week. This variable is nonbasic, so all the available
time on machine M2 is being used. By (1), the cost per unit of increasing m2 is 12.5. Thus if
you were unable to use the full 100 hours of M2 time in a week, the loss would be $12.50 per
hour. On the other hand, if more than 100 hours were available, you would gain $12.50 for each
extra hour. This would correspond to allowing m2 to become negative (for one of the decision
variables xi, this would not be a realistic possibility). According to the tableau, for each extra
hour of M2 time you would produce 0.5 less units of P1 and 0.75 more units of P2 . This would
hold true for values of m2 between -100 and 33 1/3, i.e. if there were anywhere between 66 2/3
and 200 hours of M2 time available. Thus you should be willing to pay up to $12.50 per hour
for up to 100 hours of extra time on machine M2.

² Use `Analyze' with `m2' and `Rhs'. You are shown

RHS analysis for M2

RHS is 100.0000

M2 is binding: shadow price 12.5000

RHS interval: 66.6667 200.0000

PROFIT values: 1333.3333 3000.0000

`Values' will show how the values of x1 and x2 would depend on the amount of M2 time

available in this interval. Use Esc to return to the main menu.

One question often causes confusion: is the shadow price the maximum price to pay for additional
amounts of a resource (e.g. M2 time), or the maximum additional price beyond what is
paid now? The answer depends on how the objective function was set up. The shadow price
represents a price beyond what is included in the coe±cients of the objective function. If the
price now paid per unit of the resource was included in the objective function, then the shadow
price represents an additional price beyond this amount. If the cost of the resource (at current
available levels) was considered as a \¯xed cost" and not included in the objective function
coe±cients, then the shadow price represents a total price.

(3) In the current situation, small increases in x3 cost 2:5 per unit. If the coe±cient of x3 in the
objective increased, this might compensate for that cost. It would take an additional contribution
of 2:5 per unit of x3 to compensate for the cost of increasing x3. Thus if the contribution of
product P3 to pro¯t were to increase by less than $2.50 per unit, the optimal solution would still
be unchanged. But if the contribution were to increase by more than $2.50 per unit, it would
become pro¯table to increase x3.

² Use `Analyze', `x3' and `Objective'. You are shown

Objective analysis for X3

PROFIT coefficient is 15.0000

X3 is nonbasic: shadow price 2.5000

Objective coefficient interval: -infinity 17.5000

The coe±cient of x3 in p is 15 in the original problem. This would have to increase by at least
2:5 to 17:5 to have any e®ect on the solution.

We have seen how the shadow prices provide information about nonbasic variables. We might
ask for analogous information about a basic variable.
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(1) How can we produce small changes in the value of a basic variable, and what
would be the cost per unit of doing so?

Since the tableau expresses the basic variables in terms of the nonbasic variables, the way to
change a basic variable is to increase one or more nonbasic ones. In fact, the best way is to
increase one nonbasic variable at a time.

Suppose in our example we wanted to increase the basic variable x2. According to the tableau,
increasing m1 by one unit will increase x2 by 0:5 units, while increasing m2 or x3 will decrease
x2. So it is m1 that should be increased. Now, according to the shadow price, one unit of
increase of m1 costs 5. To increase x2 by one unit would require increasing m1 by two units.
Thus the cost per unit of increasing x2 is 10 = 5=0:5. This method of increasing x2 could not go
on forever, because increasing m1 also decreases x1. Since x1 can not be negative, x2 can only
be increased in this way by at most 25 units.

Next suppose we wanted instead to decrease x2. This time there is a choice of m2 or x3 to
increase. Increasing m2 would cost 12:5=0:75 = 16:667 per unit decrease of x2, while increasing
x3 would cost 2:5=0:25 = 10 per unit decrease of x2. Thus the cheapest way to decrease x2 is
to increase x3.

In general, then, the best way to increase or decrease a basic variable by a small amount is by
increasing a nonbasic variable, chosen so that the change is in the correct direction and the cost
per unit change of the basic variable is least. The amount of change possible by this method
is usually limited, because a basic variable might hit 0. It could happen that no nonbasic
variable would produce a change in the right direction, in which case the desired change would
be impossible.

² From the main menu, use `Analyze', `x2', `As parameter'.

Analysis of parameter X2

X2 is basic: value 25.0000

Shadow price for increase: 10.0000

Shadow price for decrease: 10.0000

To see how much x2 can be increased or decreased by these methods, and the e®ects on the
other variables, use `values Up' or `values Down'. Note that this lists x2 ¯rst, followed by the
objective, the nonbasic variable that would enter (here m1 or x3), and the other basic variables.

(2) What happens when a constraint with a basic slack variable is tightened or
relaxed by a small amount?

This is a very easy question to answer. Tightening the constraint simply reduces the value of
the slack variable, and relaxing the constraint increases it. The constraint may be relaxed by
any amount, or tightened by up to the current value of the slack variable, without changing
anything else.

Note that we are talking only of inequalities and slack variables, not equalities and arti¯cial
variables. This is because normally the arti¯cial variables will all be nonbasic in the optimal
solution.
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² If the right-hand-side of the second constraint were 250, `Analyze', `m2', `Rhs' would produce

RHS analysis for M2

RHS is 250.0000

M2 is not binding

RHS interval: 200.0000 +infinity

Here the slack variable m2 is basic, with a value of 50. This means that 50 hours of available
M2 time are unused. The amount of M2 time available could drop by up to 50 (to 200 from
250), with no changes except in the value of m2. Since the other variables are not changing, in
this situation `Values' will show only one set of numbers.

(3) What happens when the coefficient of a basic variable in the objective changes?

The same general principle that applied in the nonbasic case applies here. In order to make
increasing or decreasing a variable pro¯table, the variable's coe±cient in the objective must
be increased or decreased by the per-unit cost of such a change as found in (1). A change in
coe±cient by less than these amounts will leave the optimal solution unchanged. The value of
the objective changes, because the same amount of the basic variable contributes a di®erent
amount to the objective.

Another way to look at this situation is to consider the changes in the shadow prices of the
nonbasic variables. According to the tableau, x2 = 25 + 0:5m1 ¡ 0:75m2 ¡ 0:25x3. By adding t
to the coe±cient of x2 in the pro¯t, i.e. adding tx2 to p = 1750 ¡ 5m1 ¡ 12:5m2 ¡ 2:5x3, the
pro¯t becomes

p0 =(1750 + 25t)¡ (5¡ 0:5t)m1

¡ (12:5 + 0:75t)m2 ¡ (2:5 + 0:25t)x3

Thus the shadow prices of m1, m2 and x3 are changed to 5¡ 0:5t, 12:5 + 0:75t and 2:5 + 0:25t
respectively. The solution will still be optimal if none of these shadow prices are negative, i.e.
if ¡10 · t · 10. Note that this agrees with the costs found in (1) for increasing and decreasing
x2. Since the contribution of x2 to the pro¯t in the original problem is 30, that contribution
can vary between 20 and 40 without changing the optimal solution.

² From the main menu, use `Analyze', `x2', `Objective'.

Objective analysis for X2

PROFIT coefficient is 30.0000

X2 is basic: value 25.0000

Objective coefficient interval: 20.0000 40.0000

PROFIT values: 1500.0000 2000.0000

Now `Shadow prices' will show how the shadow prices of the nonbasic variables would depend
on the contribution of x2 to the pro¯t, within this interval.

Dependence of shadow prices on contribution of X2

At contribution:

20.0000 40.0000 Coefficient

X3 0.0 5.0000 0.2500

M1 10.0000 0.0 -0.5000

M2 5.0000 20.0000 0.7500
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Parametric programming studies how the optimal solution depends on the value of an
adjustable parameter in the problem. The results of this section so far can be considered
as parametric programming. In (1) the variable we want to increase or decrease has really
become a parameter (a variable's value is found by solving the linear programming problem,
while a parameter's value is part of the statement of the problem). In (2) the right-hand-side
of the constraint, and in (3) the coe±cient of the variable in the objective, can be considered as
parameters.

Some other types of parameters can be dealt with using the techniques of sensitivity analysis.
First, consider a parameter that a®ects more than one entry in the RHS column of the tableau.
We might modify our example with such a parameter t as follows:

maximize 20x1 + 30x2 + 15x3

subject to

1:5x1 + x2 +x3· 100 + 2t
x1 + 2x2 +x3 · 100 + t

x1 ¸ 0; x2 ¸ 0; x3 ¸ 0

One way of dealing with this is to consider t as if it were a variable. However, since we don't
want to optimize its value, make it an arti¯cial variable, i.e. don't let it enter the basis. The
optimal tableau is like the previous one, but with a column for t inserted. You could get the t
column by adding ¡2 times the m1 column and ¡1 times the m2 column.

m1 m2 x3 t

p 5 12.5 2.5 ¡22.5 1750

x1 1 ¡0:5 0.5 ¡1.5 50
x2 ¡0:5 0:75 0.25 0.25 25

According to this tableau, the pro¯t is 1750 + 22:5t as long as the basic solution is feasible,
which is from t = ¡33:333 to t = 100.

² Use the command `Change Add Variable' to add a new variable to the problem. Enter `*t'
as the name of the new variable (the asterisk indicates that this is to be an arti¯cial variable).
Enter 0 as the contribution to PROFIT. Enter `m1' as a `Constraint involving T', and -2 as
the `Coefficient in M1.' Again you are asked for `Constraint involving T'; enter `m2' and

-1. Since these are all the constraints involving T, just press Ã the third time. `Tableau
Show tableau' will now show the tableau above. `Analyze', `t', `As parameter' presents the
following results:

Analysis of parameter T

T is nonbasic(artificial): shadow price -22.5000

parameter interval: -33.3333 100.0000

PROFIT values: 1000.0000 4000.0000

Another type of parameter a®ects several coe±cients in the objective. We might modify our
example with such a parameter s as follows:

maximize (20¡ s)x1 + (30¡ 2s)x2 + (15 + s)x3

subject to

1:5x1 + x2 +x3· 100
x1 + 2x2 +x3· 100

x1 ¸ 0; x2 ¸ 0; x3 ¸ 0
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The method of (3) could be used to deal with this, if we introduced a new variable de¯ned as
z = ¡x1¡ 2x2 + x3. Then the objective could be written as 20x1 + 30x2 + 15x3 + sz. We insert
a new row in the tableau, expressing z in terms of the nonbasic variables:

m1 m2 x3

p 5 12:5 2:5 1750

x1 1 ¡0.5 0.5 50
x2 ¡0.5 0.75 0.25 25
z ¡2 0 ¡1 -100

We ¯nd that the cost of small increases in z is 1:25, while z can not be decreased at all. Thus
the current solution is optimal for s in the range ¡1 to 1:25.

² There is a complication in doing this with LINEAR: unlike ordinary variables, z must be allowed
to be negative. One way to deal with this is to add a su±ciently large constant to z so that it
will always be positive. In this case 1000 should do the trick. Now if you added a new variable
z as in the last example, you would also have to add the constraint de¯ning z in terms of the
other variables. Instead, it is easier to treat z as the slack variable for an inequality constraint.
So use `Change Add Constraint' and enter the new constraint as

-x1 -2 x2 + x3 > -1000 [z];

Note that this de¯nes the slack variable z as ¡x1 ¡ 2x2 + x3 + 1000. `Tableau Show tableau'
will show the tableau as above, but with ¡100 replaced by 900 (because of the extra 1000 in
z). You may also have a column for t if you added it, but that is harmless. Now `Analyze', `z',
`Objective' will produce the following:

Objective analysis for SLACK Z

PROFIT coefficient is 0.0

Z is basic: value 900.0000

Objective coefficient interval: -infinity 1.2500

PROFIT values: -infinity 2875.0000

The pro¯t values must be adjusted for the extra 1000 in z. Thus the pro¯t at s = 1:25 is actually
2875¡ 1:25£ 1000 = 1625.

In each case so far, sensitivity analysis has provided information valid for parameter values within
certain intervals. It is also possible to see what happens outside these intervals. Usually what
happens is a pivoting operation. After the pivot, the new tableau describes the optimal solution
in a new interval adjacent to the old one. It sometimes happens, however, that there is no new
optimal solution: after leaving the interval, the problem becomes infeasible or unbounded. It
should also be noted that sometimes an \interval" can have zero length, and several pivots may
be necessary to get any real change. In any case, by moving from interval to interval we can
eventually work out the e®ects of all possible values of the parameter.

In the case of (1) or (2), a pivot is necessary when going outside the interval because otherwise
the basic solution would become infeasible, i.e. some variable would become negative. That
variable will leave the basis on this pivot. The variable entering the basis is chosen by the dual
simplex method (see Appendix A). In the case of (3), the variable entering the basis is the
one whose shadow price becomes negative, and the variable leaving the basis is chosen by the
primal simplex method.
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² In any of the examples discussed above, the `pivot Higher' and `pivot Lower' commands
perform the pivot and go to the next interval. For example, in the `Objective' analysis of
x2, where the objective coe±cient interval was from 20 to 40, `pivot Higher' will have the
following result:

Pivot: SLACK M1 enters, X1 leaves

X2 is basic: value 50.0000

Objective coefficient interval: 40.0000 +infinity

PROFIT values: 2000.0000 +infinity

Note that when you return to the main menu after having performed a pivot in `Analyze', the
(not solved) indicator comes on, to remind you that the current tableau may no longer be
optimal for the original problem. You should then use `Solve' before doing anything else.

See Chapter 5 for more detailed information on the `Analyze' command. Also described
there are the `Values Ranging' commands, which ¯nd the objective coe±cient intervals for
all decision variables or the RHS intervals for all constraints.

Modelling

The most di±cult and time-consuming aspect of linear programming lies in formulating a linear
programming model for a real-life situation. This is the one step that can not be automated,
and which can never have a complete set of instructions. This section can only provide a rough
guide and a few tips.

The ¯rst step in the modelling process usually consists of deciding the scope of the model |
what activities and time periods should be covered, and what level of detail should be used. It
is usually impossible to deal with all aspects of a real-life situation, so only those that are most
signi¯cant should be considered. Adding more details increases the size of the problem and the
di±culty of gathering the required data. It is often best to start with a simpler, less detailed
model, and use the insights gained from it in formulating and interpreting a more complicated
model. For example, before setting up a model involving many time periods, it may be useful
to see what happens in a model for a single time period.

The next steps consist of deciding on the variables, the objective and the constraints. There
is no single \best" order for doing these | it depends on the particular problem, and often
these steps are intertwined. Choose variables that make it easy to express the objective and
constraints. You should have a clear idea of the meaning of each variable and constraint. Give
them names that are easy to remember and recognize.

You should not put much e®ort into keeping the number of variables small, unless the problem
gets so big that it can't ¯t in the computer's memory. Your ¯rst priority should be human
convenience, not machine convenience. More variables can often make the problem easier to
formulate and modify, and the results easier to interpret. Suppose that some quantity Q that
plays a signi¯cant role in the problem can be expressed in terms of other variables. You might
be tempted to substitute this expression for Q wherever it appears. This temptation should
probably be resisted, especially if the expression is complicated. Instead, use Q as a variable,
with its expression in terms of other variables as a constraint. This will make it easier for a
human reader to understand your formulation. Moreover, since Q is a signi¯cant quantity in
the formulation, its value may be useful information to ¯nd in the solution. You may even want
to perform sensitivity analysis on it.
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In problems involving a °ow of materials between places or processes, it is often helpful to start
by drawing a diagram of the situation, with arrows representing the °ows. In general, each
arrow in the diagram may be represented by a variable.

Here are some common types of constraints:

| Resource availability. There is a limited amount of a certain resource which is required
by some activities. The usual form of this constraint is

P
j ajxj · b, where the variables xj

represent the amounts of activities using the resource, aj are the amounts of resource required
per unit of activity j, and b is the available amount of the resource. The constraints of the
example from Chapter 1 are of this type.

You may want to use a variable rather than a constant for the amount of the resource used, if
that quantity occurs elsewhere in the problem, or simply if you want to know the amount. Then
you would have

P
j ajxj = R where R is the variable for the resource, and R · b. In some cases

you might want to replace the `=' by `·', in a situation where it is possible to have a surplus of
the resource (and, presumably, to dispose of that surplus somehow).

| Process yields. The outputs of some process are expressed in terms of the amounts of inputs.
For example, suppose each ton of raw material A yields 0.1 tons of product C and 0.2 tons of
product D, while each ton of raw material B yields 0.3 tons of C and 0.4 of D. The appropriate
constraints are

C = 0:1A+ 0:3B

D = 0:2A+ 0:4B

A very common error in this situation is to write the constraints as

A = 0:1C + 0:2D

B = 0:3C + 0:4D
(wrong!)

by analogy with the resource availability constraints. It is important to understand the
distinction: the resource availability constraints show how the amounts of resources used depend
on the products produced, while the process yield constraints show how the amounts of products
produced depend on the raw materials used. The nature of the process determines which type
of constraint is appropriate. Thus in manufacturing chairs, each chair of a certain type requires
certain amounts of various materials (wood, fabric, etc.). This leads to resource availability
constraints. In re¯ning ores, on the other hand, the metal produced may come from various
ores, and the amounts of the di®erent types of ore used determine the quantities of various
metals produced. This leads to process yield constraints. In general, you will have resource
availability constraints when each output requires speci¯c quantities of inputs (independent of
other outputs), and process yield constraints when each input produces speci¯c quantities of
outputs (independent of other inputs).

| Material balance. This often arises in situations where some material is being produced by
some activities and consumed by others. The material balance constraint states that the total
amount produced is equal to the total amount consumed. If you draw a diagram representing
the °ow of the material, there will be a material balance constraint whenever several arrows
come together. Sometimes the material balance constraint may use `¸' rather than `=', if it is
possible to produce a surplus of the material (and dispose of it for free).

| Upper and lower bounds on variables or combinations of variables can come from various
sources: limited markets for products, contracts that must be ful¯lled, capacities of processes,
etc.
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| Blending. When two or more products are blended to produce a new product, in addition to
a process yield or material balance constraint there are often constraints involving the quality of
the blended product. For example, suppose product C is produced by blending products A and
B, and must be at most 50% (by weight) water, while A and B are respectively 30% and 60%
water. If A,B and C represent quantities measured by weight, the material balance constraint
will be A+B = C. Since water is not added or subtracted in the blending process, the amount
of water in the product will be :3A+ :6B, so that the quality constraint will be :3A+ :6B · :5C.

| Secondary objectives. Instead of a single objective, you may have several con°icting goals.
In this situation you may make one goal into the objective, and treat the others as constraints
(setting up minimum acceptable levels for each). Sensitivity analysis may be used to see how
the solution depends on those levels.

| Soft constraints. While some constraints are impossible to violate, others are not so absolute
| it is possible to get around them, but at some cost. For example, resource availabilities are
often of this type: only a certain amount is available under current conditions, but more could
be obtained if we were willing to pay enough. Thus it might be possible to replace a \hard"
constraint X · 5 by a \soft" constraint X · 5 + E. The new variable E, representing the
amount by which the original constraint is violated, will appear in the objective with a suitable
coe±cient, representing the cost per unit of violation.

| Convex and concave functions. In general, linear programming can only accommodate
linear functions, but there are special circumstances in which nonlinear functions may be
modelled. An example of this is provided by income tax, in which the amount of tax T is
a nonlinear function of taxable income I. This function is convex: the marginal tax rate, which
is the slope of the graph of T as a function of I, never decreases as I increases. Moreover, we
wish to pay as little tax as possible (other things being equal). The dependence of T on I may
be modelled by a collection of inequalities of the form T ¸ aI + b, one for each tax bracket.
In looking for the optimal solution, LINEAR will choose the least value of T allowed by these
inequalities, and that is the correct amount of tax.

A piecewise-linear convex function
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Another method that could be used if bounds for I were known is the following: Let (Ii; Ti)
be the corners of the I ¡ T graph in order of increasing I, where I0 · I · In. Introduce new
variables u0; : : : un with the three constraints

u0 + : : :+ un = 1

I0u0 + : : :+ Inun = I

T0u0 + : : :+ Tnun = T

These constraints say that (I; T ) is a convex combination of the corner points (Ii; Ti); again,
LINEAR will choose the least T for a given I. If I0 = T0 = 0 (as is usual with taxes), we can
omit u0 and write the constraints as

u1 + : : :+ un · 1

I1u1 + : : :+ Inun = I

T1u1 + : : :+ Tnun = T

In general, these methods can be used to model a convex function that is to be minimized, or a
concave function that is to be maximized. If the graph of the function does not consist of line
segments, it may be approximated by one that does.

Multiperiod models. Many problems involve activities taking place over some length of
time. The modeller must choose some de¯nite span of time, and divide it into a number of
periods. Usually there is a similar set of variables and constraints for each period, describing
what happens during the period. The di®erent periods are typically tied together by \inventory"
variables describing amounts carried over from one period to the next. There are \material
balance" constraints stating that the inventory at the start of a period, plus or minus amounts
added and subtracted during the period, equals the inventory at the start of the next period. If
the periods are not tied together in this or some other way, it would be simpler to treat them
as separate problems.

In problems involving money and time spans of a year or more, it is a good idea to use
discounting. This means that money today is worth more than the same dollar amount at
some time in the future. At a discount rate of r% per year, a cash transaction t years in the
future should be divided by (1 + r=100)t to obtain its true worth. A good choice for r is the
going interest rate. This applies to transactions that are not subject to in°ation. In the case of
amounts that can be expected to in°ate (e.g. sales or purchases where the price may rise over
time), you should instead use the \real" interest rate, i.e. the di®erence between the interest
rate and the in°ation rate.

Careful attention should be paid to what happens to the inventory variables at the end of the
last period. In most cases the end of the last period is only a \planning horizon", not the actual
end of the activities being modelled. Perhaps the worst choice is not to allow any ¯nal inventory
at all. This can cause quite unrealistic behavior in the last few periods, as inventories are forced
to decrease toward zero. If ¯nal inventories are allowed, but the objective function takes no
account of their worth, similar distortions can occur | there is no point in keeping costly items
that will soon be worthless. The best method might be to have the objective function include
a contribution from the ¯nal inventories. However, there may be some di±culty in choosing
numbers for these contributions. Another method would be to assign reasonable \targets" as
constraints for the ¯nal inventories. In either case, it is a good idea to use sensitivity analysis to
see how the choice of these objective contributions or targets a®ects the behavior of the model.
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Within a single period, activities are treated as if they all occurred at the same time, or perhaps
were evenly spread out through the period. These assumptions, if too far from reality, may
sometimes lead to serious inaccuracies in the model. For example, if expenditures occur near
the beginning of a month while income arrives at the end, reliance on a model that lumps
together all transactions during the month could create short-term cash °ow problems. The
remedy in this case could be to consider the income as belonging to the next month rather
than the current one. In other situations we might stipulate that only a certain percentage of a
quantity produced in a period is available for other activities during that period.

The inaccuracies caused by lumping together all activities during the same period, and the
possibility of improving the solution by making more frequent changes, are incentives to make
the periods as short as possible. Together with the desire to plan as far ahead as possible,
this increases the number of periods in the model. Unfortunately, the numbers of constraints
and variables are essentially proportional to the number of periods. This could lead to a linear
programming problem too large for LINEAR to handle (or even too large, or too expensive,
for a mainframe computer). You must try to obtain adequate accuracy while not allowing the
problem to get too large. Moreover, as the number of periods increases the accuracy of the data
often becomes suspect, so that little real advantage is obtained. This is particularly true when
trying to extend the planning horizon.

In many multi-period models, only the results for the ¯rst few periods are really important,
as these re°ect decisions that will be made now. This is fortunate, because the uncertainties
connected with the treatment of ¯nal inventories and inaccurate predictions about data for later
periods may have little e®ect on the ¯rst few periods of the model. Before the decisions involving
later periods are taken, the problem will be run again with updated data. In such circumstances,
it may be worthwhile to pay more attention to the details of the ¯rst few periods than those of
later periods. In particular, there is often no reason for all the periods to be of the same length.
By using shorter periods at the beginning and longer periods toward the end, it may be possible
to increase the accuracy of the early periods of the model while keeping the problem small.
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