MATH 426 HOMEWORK 1 SOLUTIONS

- (1) Recall that if $A \subset X$ then we define \overline{A} (the *closure* of A) to be the smallest closed set containing A . We define $A[°]$ (the *interior* of A) to be the largest open set contained in A. We define A^c (the *complement* of A) to be $X - A$. Show that (a)
	- $A^{\circ} = \{a \in X \text{ such that } \exists U \text{ open}, a \in U \subset A\}$

 $\overline{A} = \{x \in X \text{ such that } \forall U \text{ open with } x \in U, U \cap A \neq \emptyset \}.$

- (b) A is open if and only if $A = A^\circ$; A is closed if and only if $A = \overline{A}$.
- (c) $(A^{\circ})^c = \overline{A^c}$ and $(\overline{A})^c = (A^c)^{\circ}$.

Solution:

(a) We first show

 $A^{\circ} \subset \{a \in X \text{ such that } \exists U \text{ open}, a \in U \subset A\}.$

For $a \in A^{\circ}$, we may take $U = A^{\circ}$ which is open by definition and so a satisfies the condition that there exists an open set U with $a \in U \subset A$. We next show

 $A^{\circ} \supset \{a \in X \text{ such that } \exists U \text{ open}, a \in U \subset A\}.$

Suppose there is an open set U such that $a \in U \subset A$. Since A° is by definition the largest open set contained entirely in A, and $U \subset A$, we conclude that $U \subset A^\circ$. Thus $a \in A^\circ$.

Now we show that

 $\overline{A} \subset \{x \in X \text{ such that } \forall U \text{ open with } x \in U, U \cap A \neq \emptyset\}.$

Suppose $x \in \overline{A}$, and let U be an open set with $x \in U$. For contradiction we assume that $U \cap A = \emptyset$. Then $A \subset U^c$ and U^c is closed. Then by the definition of \overline{A} , $\overline{A} \subset U^c$. Then $x \in U$ and $x \in \overline{A} \subset U^c$, a contradiction.

Finally we show that

 $\overline{A} \supset \{x \in X \text{ such that } \forall U \text{ open with } x \in U, U \cap A \neq \emptyset\}.$

We assume x satisfies the property that for all open U with $x \in U, U \cap A \neq \emptyset$. Suppose for contradiction that $x \notin \overline{A}$. Then $x \in \overline{A}^c$ which is open since \overline{A} is closed by definition and so by the assumption on x we have that $\overline{A}^c \cap A \neq \emptyset$. This then implies that A is not a subset of \overline{A} , but by definition $A \subset \overline{A}$, a contradition.

(b) Assume A is open, then A is automatically the largest open subset contained in A so $A^\circ = A$. Conversely assume $A = A^\circ$, then A is open by definition. Assume A is closed, since A is the smallest set that contains A and it is closed, it is \overline{A} . Conversely, assume that $A = \overline{A}$, then A is closed by definition.

Date: September 27, 2023.

(c) We show $(A^{\circ})^c = \overline{A^c}$:

 $x \in (A^{\circ})^c \Leftrightarrow x \notin A^{\circ}$ (then by the first part of (a))

 $\Leftrightarrow \forall U$ open with $x \in U, U \not\subset A$ (then by the second part of (a)) $\Leftrightarrow x \in \overline{A^c}$

To show $(\overline{A})^c = (A^c)^\circ$, we take the compliment of both sides of $(A^\circ)^c = \overline{A^c}$ and then replace A with A^c .

(2) A space X is called *irreducible* if $X = F \cup G$ with F and G closed implies that either $X = F$ or $X = G$. A *Zariski space* is a topological space such that every descending chain of closed sets $F_1 \supset F_2 \supset \dots$ is eventually constant. Show that every Zariski space can be expressed as a finite union

$$
X = Y_1 \cup Y_2 \cup \dots \cup Y_n
$$

where Y_i is closed and irreducible (in the subspace topology) and $Y_i \not\subset Y_j$ for $i \neq j$. Show the decomposition is unique up to ordering.

Solution: We wish to show that $X = F_1 \cup \cdots \cup F_N$ is a finite union of irreducible closed sets. Let S be the set of all closed subsets of X which *cannot* be written as a finite union of irreducible closed sets. Note that S is partially ordered by inclusion:

$$
Z \leq Z' \Leftrightarrow Z \subset Z'.
$$

Suppose for the sake of contradiction that S is non-empty. Then S has a least element Z in the partial ordering since if not, we could find a non-stabilizing sequence

$$
X \subset Z_1 \supset Z_2 \supset \dots
$$

Since Z cannot be written as a union of irreducibles, it is not irreducible itself and so

$$
Z=F\cup G
$$

where F and G are closed and $F, G \neq Z$. Then since Z is a least element, $F, G \notin \mathcal{S}$ and so they may be written as

$$
F = F_1 \cup \dots \cup F_n, \quad G = G_1 \cup \dots \cup G_m
$$

where F_i and G_j are irreducible. But then

$$
Z = F_1 \cup \dots \cup F_n \cup G_1 \cup \dots \cup G_m
$$

contradicting $Z \in \mathcal{S}$. Thus we conclude that S is empty and in particular we have

$$
X = F_1 \cup \cdots \cup F_N
$$

with F_i irreducible. If any $F_i \subset F_j$ we may remove F_i from the list and proceed until $F_i \not\subset F_j$ for all $i \neq j$.

To prove uniqueness we suppose that

$$
X = F_1 \cup \dots \cup F_n
$$

$$
= G_1 \cup \dots \cup G_m
$$

with F_i and G_j irreducible. Then

$$
G_i = G_i \cap (F_1 \cup \dots \cup F_n)
$$

= $(G_i \cap F_1) \cup \dots \cup (G_i \cap F_n)$

and by the irreducibility of G_i each $G_i \cap F_j = G_i$ or $G_i \cap F_j = \emptyset$.

- (3) Recall that a space X is *connected* if the only subsets which are both open and closed are X and \emptyset . Recall that a space X is *path connected* if for all $p, q \in X$ there exists a map $\gamma : [0, 1] \to X$ with $\gamma(0) = p$ and $\gamma(1) = q$.
	- (a) Prove that X is not connected if and only if there exists a surjective map fom X onto $\{0, 1\}$, the space with 2 elements and the discrete topology.
	- (b) Let $X \subset \mathbb{R}^2$ be given by

$$
X = \{0\} \times [-1, 1] \cup \{(x, \sin \frac{1}{x}), x > 0\}
$$

with the subspace topology. Show that X is connected but not path connected. Solution: (a) Suppose there exists a surjective map

$$
f: X \to \{0, 1\}.
$$

Then $f^{-1}(1)$ is not empty, nor is it X. But since $\{1\}$ is open and closed and f is continuous, $f^{-1}(1)$ is open and closed and is thus a component so X is not connected. Conversely, suppose X is not connected so that

$$
X = C_0 \cup C_1
$$

where $C_0 \cap C_1 = \emptyset$, $C_i \neq X$ or \emptyset , and C_i is both open and closed. Then define

$$
f: X \to \{0, 1\}
$$

by $f(x) = i$ if $x \in C_i$. Since $f^{-1}(\{i\}) = C_i$ is open, f is continuous.

We note that (a) implies that the image of a connected space under a map is connected. Indeed, if X is connected and $f : X \to Y$ is a map with $f(X)$ disconnected, then there exists a surjective map $g : f(X) \to \{0, 1\}$ and the composition $g \circ f : X \to \{0, 1\}$ is surjective and continuous contradicting the connectedness of X.

We also note that an interval (closed or open) in \mathbb{R}^1 is connected since by ordinary calculus (e.g. the mean value theorem) there does not exist a continuous surjective map from an interval to $\{0, 1\}$.

(b) Let
$$
L = \{0\} \times [-1, 1]
$$
 and $C = \{(x, \sin \frac{1}{x}), x > 0\}$ and so

$$
X = L \cup C \subset \mathbb{R}^2
$$

with the subspace topology. We note that $C \approx (0, \infty)$ via projection onto the xaxis and $L \approx [-1, 1]$ via inclusion in the y-axis and so L and C are each connected spaces.

 X is connected:

Suppose that X is not connected, then there exists a decomposition

$$
X = V_0 \cup V_1
$$

with $V_0 \cap V_1 = \emptyset$, V_i not X or \emptyset , and V_i both open and closed. Then

$$
L = (L \cap V_0) \cup (L \cap V_1)
$$

and since L is connected and each term in the above union is both open and closed, we have that either $L \cap V_0$ or $L \cap V_1$ is L. Without loss of generality, we may assume that $L = L \cap V_0$. By a similar argument with the connected space C we conclude that $C = C \cap V_1$ so that

$$
V_0 = L \text{ and } V_1 = C
$$

However, we get a contradiction since L is not open in X since every open set of X containing $(0, 0) \in L$ contains $B_{\epsilon}(0, 0) \cap X$ for some ϵ which necessarily contains points of C. Thus X is connected.

X is not path connected:

Suppose that X were path connected. Then there exists a path

$$
\gamma : [0,1] \to X
$$

such that $\gamma(0) = (0,0) \in L$ and $\gamma(1) = (\frac{1}{\pi}, 0) \in C$. Since L is closed,

$$
\gamma^{-1}(L) \subset [0,1]
$$

is closed and thus contains its least upper bound b. Then the restriction of γ to [b, 1] is a map (which we still call γ)

$$
\gamma : [b, 1] \to X
$$

such that $\gamma(b) = (0, a) \in L$ and $\gamma((b, 1]) \subset C$. Let $\pi : X \to [0, \infty)$ be the projection onto the x-axis. Since $[b, 1]$ is connected, the image of $[b, 1]$ under the composition $\pi \circ \gamma$ is connected and contains both 0 and $\frac{1}{\pi}$ and thus contains all $0 \leq x \leq \frac{1}{\pi}$. Thus $\gamma([b,1]) \subset X$ contains both $(0, a)$ and points $(x, \sin \frac{1}{x})$ with $0 < x \leq \frac{1}{\pi}$. Since $[b, 1]$ is compact and \mathbb{R}^2 (and hence X) is Hausdorff, $\gamma([\tilde{b}, 1])$ is closed. We reach a contradiction by showing that $\gamma([b, 1])^c$ is not open. To that end pick $a' \neq a$ with $a' \in [-1, 1]$ so that $(0, a') \in \gamma([b, 1])^c$. Then any open set in X containing $(0, a')$ contains some ball $B_{\epsilon}((0, a')) \cap X$. But then this ball intersects $\gamma([b, 1])$ since we can find some $0 < \delta < \epsilon$ such that $(\delta, \sin \frac{1}{\delta}) \in B_{\epsilon}((0, a'))$. This contradicts the openness of $\gamma([b, 1])^c$.