
MATH 426 HOMEWORK 1 SOLUTIONS

(1) Recall that if A ⊂ X then we define A (the closure of A) to be the smallest
closed set containing A. We define A◦ (the interior of A) to be the largest open
set contained in A. We define Ac (the complement of A) to be X −A. Show that
(a)

A◦ = {a ∈ X such that ∃ U open, a ∈ U ⊂ A}
A = {x ∈ X such that ∀ U open with x ∈ U , U ∩A 6= ∅}.

(b) A is open if and only if A = A◦; A is closed if and only if A = A.
(c) (A◦)

c
= Ac and

(
A
)c

= (Ac)
◦.

Solution:
(a) We first show

A◦ ⊂ {a ∈ X such that ∃ U open, a ∈ U ⊂ A}.
For a ∈ A◦, we may take U = A◦ which is open by definition and so a
satisfies the condition that there exists an open set U with a ∈ U ⊂ A.
We next show

A◦ ⊃ {a ∈ X such that ∃ U open, a ∈ U ⊂ A}.
Suppose there is an open set U such that a ∈ U ⊂ A. Since A◦ is by defi-
nition the largest open set contained entirely in A, and U ⊂ A, we conclude
that U ⊂ A◦. Thus a ∈ A◦.
Now we show that

A ⊂ {x ∈ X such that ∀ U open with x ∈ U , U ∩A 6= ∅}.
Suppose x ∈ A, and let U be an open set with x ∈ U . For contradiction
we assume that U ∩ A = ∅. Then A ⊂ U c and U c is closed. Then by the
definition of A, A ⊂ U c. Then x ∈ U and x ∈ A ⊂ U c, a contradiction.
Finally we show that

A ⊃ {x ∈ X such that ∀ U open with x ∈ U , U ∩A 6= ∅}.
We assume x satisfies the property that for all open U with x ∈ U , U∩A 6= ∅.
Suppose for contradiction that x 6∈ A. Then x ∈ Ac which is open since A is
closed by definition and so by the assumption on x we have that A

c ∩A 6= ∅.
This then implies that A is not a subset of A, but by definition A ⊂ A, a
contradition.

(b) Assume A is open, then A is automatically the largest open subset contained
in A so A◦ = A. Conversely assume A = A◦, then A is open by definition.
AssumeA is closed, sinceA is the smallest set that containsA and it is closed,
it is A. Conversely, assume that A = A, then A is closed by definition.
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(c) We show (A◦)c = Ac:

x ∈ (A◦)c ⇔ x 6∈ A◦ (then by the first part of (a))
⇔ ∀U open with x ∈ U,U 6⊂ A (then by the second part of (a))

⇔ x ∈ Ac

To show (A)c = (Ac)◦, we take the compliment of both sides of (A◦)c = Ac

and then replace A with Ac.

(2) A space X is called irreducible if X = F ∪ G wtih F and G closed implies that
either X = F or X = G. A Zariski space is a topological space such that every
descending chain of closed sets F1 ⊃ F2 ⊃ . . . is eventually constant. Show that
every Zariski space can be expressed as a finite union

X = Y1 ∪ Y2 ∪ · · · ∪ Yn
where Yi is closed and irreducible (in the subspace topology) and Yi 6⊂ Yj for
i 6= j. Show the decomposition is unique up to ordering.

Solution: We wish to show that X = F1 ∪ · · · ∪ FN is a finite union of
irreducible closed sets. Let S be the set of all closed subsets of X which cannot
be written as a finite union of irreducible closed sets. Note that S is partially
ordered by inclusion:

Z ≤ Z ′ ⇔ Z ⊂ Z ′.
Suppose for the sake of contradiction that S is non-empty. Then S has a least
element Z in the partial ordering since if not, we could find a non-stabilizing
sequence

X ⊂ Z1 ⊃ Z2 ⊃ . . .
Since Z cannot be written as a union of irreducibles, it is not irreducible itself and
so

Z = F ∪G
where F and G are closed and F,G 6= Z. Then since Z is a least element,
F,G 6∈ S and so they may be written as

F = F1 ∪ · · · ∪ Fn, G = G1 ∪ · · · ∪Gm
where Fi and Gj are irreducible. But then

Z = F1 ∪ · · · ∪ Fn ∪G1 ∪ · · · ∪Gm
contradicting Z ∈ S. Thus we conclude that S is empty and in particular we have

X = F1 ∪ · · · ∪ FN
with Fi irreducible. If any Fi ⊂ Fj we may remove Fi from the list and proceed
until Fi 6⊂ Fj for all i 6= j.

To prove uniqueness we suppose that

X = F1 ∪ · · · ∪ Fn
= G1 ∪ · · · ∪Gm
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with Fi and Gj irreducible. Then

Gi = Gi ∩ (F1 ∪ · · · ∪ Fn)
= (Gi ∩ F1) ∪ · · · ∪ (Gi ∩ Fn)

and by the irreducibility of Gi each Gi ∩ Fj = Gi or Gi ∩ Fj = ∅.

(3) Recall that a space X is connected if the only subsets which are both open and
closed are X and ∅. Recall that a space X is path connected if for all p, q ∈ X
there exists a map γ : [0, 1]→ X with γ(0) = p and γ(1) = q.
(a) Prove that X is not connected if and only if there exists a surjective map fom

X onto {0, 1}, the space with 2 elements and the discrete topology.
(b) Let X ⊂ R2 be given by

X = {0} × [−1, 1] ∪ {(x, sin 1

x
), x > 0}

with the subspace topology. Show thatX is connected but not path connected.
Solution: (a) Suppose there exists a surjective map

f : X → {0, 1}.

Then f−1(1) is not empty, nor is it X . But since {1} is open and closed and f
is continuous, f−1(1) is open and closed and is thus a component so X is not
connected. Conversely, suppose X is not connected so that

X = C0 ∪ C1

where C0 ∩ C1 = ∅, Ci 6= X or ∅, and Ci is both open and closed. Then define

f : X → {0, 1}

by f(x) = i if x ∈ Ci. Since f−1({i}) = Ci is open, f is continuous.
We note that (a) implies that the image of a connected space under a map is

connected. Indeed, if X is connected and f : X → Y is a map with f(X) discon-
nected, then there exists a surjective map g : f(X)→ {0, 1} and the composition
g ◦ f : X → {0, 1} is surjective and continuous contradicting the connectedness
of X .

We also note that an interval (closed or open) in R1 is connected since by
ordinary calculus (e.g. the mean value theorem) there does not exist a continuous
surjective map from an interval to {0, 1}.

(b) Let L = {0} × [−1, 1] and C = {(x, sin 1
x ), x > 0} and so

X = L ∪ C ⊂ R2

with the subspace topology. We note that C ≈ (0,∞) via projection onto the x-
axis and L ≈ [−1, 1] via inclusion in the y-axis and so L andC are each connected
spaces.
X is connected:
Suppose that X is not connected, then there exists a decomposition

X = V0 ∪ V1
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with V0 ∩ V1 = ∅, Vi not X or ∅, and Vi both open and closed. Then

L = (L ∩ V0) ∪ (L ∩ V1)
and since L is connected and each term in the above union is both open and closed,
we have that eitherL∩V0 orL∩V1 isL. Without loss of generality, we may assume
that L = L ∩ V0. By a similar argument with the connected space C we conclude
that C = C ∩ V1 so that

V0 = L and V1 = C

However, we get a contradiction since L is not open in X since every open set
of X containing (0, 0) ∈ L contains Bε(0, 0) ∩ X for some ε which necessarily
contains points of C. Thus X is connected.
X is not path connected:
Suppose that X were path connected. Then there exists a path

γ : [0, 1]→ X

such that γ(0) = (0, 0) ∈ L and γ(1) = ( 1π , 0) ∈ C. Since L is closed,

γ−1(L) ⊂ [0, 1]

is closed and thus contains its least upper bound b. Then the restriction of γ to
[b, 1] is a map (which we still call γ)

γ : [b, 1]→ X

such that γ(b) = (0, a) ∈ L and γ((b, 1]) ⊂ C. Let π : X → [0,∞) be the
projection onto the x-axis. Since [b, 1] is connected, the image of [b, 1] under the
composition π ◦ γ is connected and contains both 0 and 1

π and thus contains all
0 ≤ x ≤ 1

π . Thus γ([b, 1]) ⊂ X contains both (0, a) and points (x, sin 1
x ) with

0 < x ≤ 1
π . Since [b, 1] is compact and R2 (and henceX) is Hausdorff, γ([b, 1]) is

closed. We reach a contradiction by showing that γ([b, 1])c is not open. To that end
pick a′ 6= a with a′ ∈ [−1, 1] so that (0, a′) ∈ γ([b, 1])c. Then any open set in X
containing (0, a′) contains some ball Bε((0, a′))∩X . But then this ball intersects
γ([b, 1]) since we can find some 0 < δ < ε such that (δ, sin 1

δ ) ∈ Bε((0, a
′)). This

contradicts the openness of γ([b, 1])c.


