MATH 426 HOMEWORK 3

- (1) Let $A \subset Y \subset X$ and suppose that $f : X \to Y$ is a strong deformation retract. Show that $f_* : \Pi(X, A) \to \Pi(Y, A)$ is an isomorphism of groupoids.
- (2) Consider the torus T^2 , with two points $p, q \in T^2$ and the open cover $\{U, V\}$ depicted below:

In the above picture, the sides are identified as usual and the open set U is given by the light blue, northeasterly lined pattern. Similarly the open set V is given by the light red, northwesterly lined pattern.

Consider the paths given in the picture below:

so that

 $a \in \operatorname{Mor}(p, p), \quad b \in \operatorname{Mor}(q, q), \quad c \in \operatorname{Mor}(q, p), \quad d \in \operatorname{Mor}(p, q)$

in $\Pi(T^2)$.

- (a) Compute the groupoid $\Pi(U \cap V, \{p, q\})$.
- (b) Compute the groupoid $\Pi(U, \{p, q\})$.
- (c) Compute the groupoid $\Pi(V, \{p, q\})$.
- (d) Use the Van Kampen theorem and the results of the previous parts to compute the groupoid $\Pi(X, \{p, q\})$.
- (e) Find an explicit isomorphism of the group Mor(p, p) with $\mathbb{Z} \times \mathbb{Z}$.

In each of the above (a)–(d), the objects of the groupoid will be the set $\{p, q\}$ so computing the groupoid amounts to giving a set of generators for the morphisms and any non-trivial relations on the morphisms. You may wish to apply the results of problem (1) and/or results we proved in class to justify your computations.

Date: October 6, 2024.

MATH 426 HOMEWORK 3

- (3) (a) Let G = ⟨x, y | xyx = yxy⟩ and let H = ⟨a, b | a³ = b²⟩. Show that G ≃ H.
 (b) Let G = ⟨x, y | xy² = y³x, yx² = x³y⟩. Prove that G is the trivial group.
- (4) Compute the fundamental group of $\mathbb{R}^3 B$, the complement of the Borromean Rings:

Express your answer as a presentation of a group with generators and relations where your generators should be p, g, b corresponding to loops through the pink, gray, and blue rings respectively. More precisely, consider the base point x_0 to be above the picture and then the loops b, p, g should start at x_0 , go to the tail of the indicated arrow, follow along the arrow, and then return to x_0 .

Express your relations the form

$$[[\cdot, \cdot], \cdot] = 1$$

where recall that the *commutator bracket* $[\cdot, \cdot]$ is defined by $[x, y] = xyx^{-1}y^{-1}$.

2