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(1) Let A C Y C X and suppose that f : X — Y is a strong deformation retract.

@

Show that f, : TII(X, A) — II(Y, A) is an isomorphism of groupoids.

By definition of strong deformation retract, f o4 = Idy andio f ~4 Idx, so
there exists

H:IxX—>X
such that
H(0,z) = i(f(x)),
H(l,z)=x
H(t,a) =aifa € A.

To show that f, : II(X,A) — II(Y, A) is an isomorphism, we show that i, :
(Y, A) — II(X, A) is its inverse. f. X i, = Idy(y, a) follows immediately from
foi = Idy and functoriality. Thus we need only to show that fi oi. = Idr(x )
The objects of IT( X, A) are the elements of A and since i o f restricted to A is the
identity on A (by definition of strong deformation retract), f, o i, is the identity
on objects. So we need only show that for

[] € Mor(ag, a1),
N =ixofilyl = [io fonl,
i.e. we need to show that
Y 0,13 10 fo.
Let G : I x I — X be given by
G(s,t) = H(s,7(t)).
Then

so G is the required homotopy.

Consider the torus 72, with two points p,q € T? and the open cover {U,V}
depicted below:

Date: October 28, 2024.



MATH 426 HOMEWORK 3

/////////

.
-~

In the above picture, the sides are identified as usual and the open set U is given
by the light blue, northeasterly lined pattern. Similarly the open set V' is given by
the light red, northwesterly lined pattern.

Consider the paths given in the picture below:

a b
p q

L e d c A
a b

so that
a € Mor(p,p), b€ Mor(q,q), c€ Mor(q,p), de& Mor(p,q)

in I1(T?).
(a) Compute the groupoid II(U NV, {p, ¢}).
(b) Compute the groupoid II(U, {p, ¢}).
(¢) Compute the groupoid II(V, {p, ¢}).
(d) Use the Van Kampen theorem and the results of the previous parts to compute
the groupoid II( X, {p, ¢}).
(e) Find an explicit isomorphism of the group Mor(p, p) with Z x Z.

In each of the above (a)—(d), the objects of the groupoid will be the set {p, ¢} so
computing the groupoid amounts to giving a set of generators for the morphisms
and any non-trivial relations on the morphisms. You may wish to apply the results
of problem (1) and/or results we proved in class to justify your computations.

We will use our knowledge of the fundamental groupoid of the circle S' from
class. Namely, if 21,22 € S! are distinct points, then I1(St, {x1,x5}) is the
groupoid with objects {x1, 22 } and generated by the two morphisms ¢, ¥ € Mor(x1, x2)
given by the paths from z; to x2 going on opposite sides of the circle. As a
corollary, IT1(S*, {z1}) is the groupoid with one object {x1} and generated by the
morphism o € Mor(x1, 1) which we may take to be )1 o ¢.

(a) The open set U U V' is homeomorphic to a disjoint union of two copies
of (—¢,€) x S* where p and ¢ are in distinct copies. Each copy admits a strong
deformation retract onto {0} x S* and so by problem 1, we may identify II(U U
V., {p, ¢q}) as the union of two copies of the groupoid of a circle with one point,
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namely

(I
q

U UV Ap,q}) =4 »p

(b) The set U is clearly homeomorphic to (—¢, €) x S! where under the appro-
priate identifications, p and g are located at {— 5} x 1 and {5} x 1 respectively.
Let p’ be the point {—5} X x2 where 21,22 € S are distinct points and let y be
a path from ¢ to p’. We then get the following isomorphisms of groupoids:

(U, {p,q}) = LU, {p,p'}) = T(S", {21, 22})

where the second isomorphism is induced by the projection U — {—§} x S*
which is a deformation retract and the first isomorphism is given on objects by
p +— p, ¢ — p’ and on morphisms by composing with .

Since

(S {z1,22}) 2 o T
[}

we need to see how the morphisms a, b, and d get written in terms of ¢ and 1)
under the above isomorphisms. Consulting the diagram below

>
72

P
' b

AN
P d 4q

a b

we see that under the above groupoid isomorphisms we have
d— ~yod —¢
a— a 1Y log
bisyoboy s poaogp!
=¢oy lopog!
=¢oy .
It follows that d, a, and b generate I1(U, {p, ¢}) with one relation:
doa=¢op " top=bod.
So we conclude:
a b
e“ ., Q
p—4q

(U, {p,q}) = , doa=bod
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(c) By an argument parallel to the one for (b), we see that

i,n
p q

oV, {p,q}) = — , aoc=cob
(d) The groupoid
a b
nQ
P&——=4a aoc=cob, doa=bod
d

then satisfies the universal property for the diagram

U NV, {p,q}) — (U, {p,q})

| l

IV, {p,q}) — (X, {p,q})

and hence must be isomorphic to II( X, {p, ¢}
(e) Any morphism in the groupoid II(X, {p, ¢} must be a word in a,b, ¢, d.
Using the relation

b=c ltoaoc

we may reduce any word to a word in a, ¢, and d. Then if the morphism is in
Mor(p, p) and we have eliminated b using the relation, the resulting word must
contain ¢ and d only in the combinations cod or d~! o ¢™! = (co d)~*. Writing
x = co d we see that all morphisms in Mor(p, p) are words in a and x. But

aocc=cob=co(doaod™")
and so
aocod=codoa

which is a o x = z o a and so by commuting, any word in a and = can be uniquely

written in the form a* o ! for (k,1) € Z x Z. We conclude that
(k1) — a* o 2!

is an isomorphism of the group Z x Z with Mor(p, p).
(3) (a) LetG = (z,y|zyz = yay) andlet H = (a,b|a® = b*). Show that G = H.

We define a homomorphism f : H — G by

fla) =zy, f(b)=ryxr =yzy.

This is well defined since

f(a®) = (zy)® = ayayry = (zyz)(yay) = (zyx)® = F(0%).
We define g : G — H by

Qbfl

g(z) =a®b™", g(y) =ba"".
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This is well defined since
g(zyz) = (a®*b"Hba H(a*b™ ) =a*b "t =% =0
g(yzy) = (ba™Ha*b" (ba™') = b.

Moreover g and f are inverses of each other:

9(f(a)) = g(zy) = a’b"'ba™" =a
=g

g9(f (b)) = g(eyz) = b

(b) Let G = (z,y | xy* = y*z,ya® = 23y). Prove that G is the trivial group.

We note that the first relation can be rewritten as zy?z~! = y3 which by

raising both sides to the power k implies

e SV LR L P

—1

for any z € Z. Similarly, the second relation is yz2?y~! = 2% which implies

ya2hy=l = g3k g2k — =18k,
Therefore we have
28 = yaty~?
— yaby =l = 2aly 2
20 = (e YPa) et (@ ly~3e)
2 = 2 Yyaty 3

= $9 — y3x4y73
o’ =y (yaty )y
IQ — y2x6y72

a¥ = y(yaSy Nyt
20 = yady~!
=y la% = 2
26 — 29
= 2% =1.

1 3

But then the relation y22y~! = 23 = 1 implies that 22 = 1 and then 22 = x
which implies 2 = 1. Finally z = 1 and the relation zy?> = 33z implies
y? = y3 which implies y = 1. Since we’ve proved that 2 = y = 1 and they
generate GG, G is trivial.

(4) Compute the fundamental group of R? — B, the complement of the Borromean
Rings:
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Express your answer as a presentation of a group with generators and relations
where your generators should be p, g, b corresponding to loops through the pink,
gray, and blue rings respectively. More precisely, consider the base point z( to be
above the picture and then the loops b, p, g should start at x, go to the tail of the
indicated arrow, follow along the arrow, and then return to .

Express your relations the form

[['a 'L ] =1

where recall that the commutator bracket [-, -] is defined by [z, y] = zyx~1y L.

We label the loops through the remaining overpasses by z, y, and z as in the
diagram. We then get Wirtinger relations for each of the six crossings, starting
with the pink-grey crossing on the right and proceeding counter-clockwise:

zg=gp = x=gpg "

1

y:=2z9 = Yy=z9z

ap=pb = z=pbp !
ry=yp = T=ypy '
yb=0bg = y=~bgb !
zr=xb = z=uxbr !

We use the first, third, and fifth of the equations above to write x, y, and 2 in terms
of p, b, and g. The remaining equations then become:

y=z92"

= bgb~ ' = (pbp~Hg(pb'p7")
= (pb~'p N )bg =g(pb~'p~")b
= [pb7 g =yglp,b7"]
= [pb 9l =1,
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z=ypy "

= gpg~' = (bgb~")p(bg~'b7")
= (bg~'b")gp =p(bg~ b7 ")g
= [bg 'lp=plb,g7"]
= by pl =1,

z=abr!
= pbp~' = (gpg~ bgp g™ ")
= (gp g~ )pb=1b(gp~ g ")p
= g,p7']b="blg,p7"]
= [gp7 "0 =1.
Therefore 1 (R3 — B) is the group with presentation:
(p:bg | lgp~'1,00 = (0,970 = [[p,07 '], 9] = 1)

We remark that only two of the three relations are necessary: one can derive
any one relation from the other two.



