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(1) Let A ⊂ Y ⊂ X and suppose that f : X → Y is a strong deformation retract.
Show that f∗ : Π(X,A)→ Π(Y,A) is an isomorphism of groupoids.

By definition of strong deformation retract, f ◦ i = IdY and i ◦ f 'A IdX , so
there exists

H : I ×X → X

such that

H(0, x) = i(f(x)),

H(1, x) = x

H(t, a) = a if a ∈ A.

To show that f∗ : Π(X,A) → Π(Y,A) is an isomorphism, we show that i∗ :
Π(Y,A)→ Π(X,A) is its inverse. f∗× i∗ = IdΠ(Y,A) follows immediately from
f ◦ i = IdY and functoriality. Thus we need only to show that f∗ ◦ i∗ = IdΠ(X,A).
The objects of Π(X,A) are the elements of A and since i ◦ f restricted to A is the
identity on A (by definition of strong deformation retract), f∗ ◦ i∗ is the identity
on objects. So we need only show that for

[γ] ∈ Mor(a0, a1),

[γ] = i∗ ◦ f∗[γ] = [i ◦ f ◦ γ],

i.e. we need to show that

γ '{0,1} i ◦ f ◦ γ.

Let G : I × I → X be given by

G(s, t) = H(s, γ(t)).

Then

G(0, t) = H(0, γ(t)) = i(f(γ(t)))

G(1, t) = H(1, γ(t)) = γ(t)

G(s, i) = H(s, γ(i)) = ai for i = 0, 1,

so G is the required homotopy.

(2) Consider the torus T 2, with two points p, q ∈ T 2 and the open cover {U, V }
depicted below:
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p q

In the above picture, the sides are identified as usual and the open set U is given
by the light blue, northeasterly lined pattern. Similarly the open set V is given by
the light red, northwesterly lined pattern.

Consider the paths given in the picture below:
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so that

a ∈ Mor(p, p), b ∈ Mor(q, q), c ∈ Mor(q, p), d ∈ Mor(p, q)

in Π(T 2).
(a) Compute the groupoid Π(U ∩ V, {p, q}).
(b) Compute the groupoid Π(U, {p, q}).
(c) Compute the groupoid Π(V, {p, q}).
(d) Use the Van Kampen theorem and the results of the previous parts to compute

the groupoid Π(X, {p, q}).
(e) Find an explicit isomorphism of the group Mor(p, p) with Z× Z.

In each of the above (a)–(d), the objects of the groupoid will be the set {p, q} so
computing the groupoid amounts to giving a set of generators for the morphisms
and any non-trivial relations on the morphisms. You may wish to apply the results
of problem (1) and/or results we proved in class to justify your computations.

We will use our knowledge of the fundamental groupoid of the circle S1 from
class. Namely, if x1, x2 ∈ S1 are distinct points, then Π(S1, {x1, x2}) is the
groupoid with objects {x1, x2} and generated by the two morphisms φ, ψ ∈ Mor(x1, x2)
given by the paths from x1 to x2 going on opposite sides of the circle. As a
corollary, Π(S1, {x1}) is the groupoid with one object {x1} and generated by the
morphism α ∈ Mor(x1, x1) which we may take to be ψ−1 ◦ φ.

(a) The open set U ∪ V is homeomorphic to a disjoint union of two copies
of (−ε, ε) × S1 where p and q are in distinct copies. Each copy admits a strong
deformation retract onto {0} × S1 and so by problem 1, we may identify Π(U ∪
V, {p, q}) as the union of two copies of the groupoid of a circle with one point,
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namely

Π(U ∪ V, {p, q}) ∼=

 p q

a b


(b) The set U is clearly homeomorphic to (−ε, ε)× S1 where under the appro-
priate identifications, p and q are located at {− ε

2}×x1 and { ε2}×x1 respectively.
Let p′ be the point {− ε

2} × x2 where x1, x2 ∈ S1 are distinct points and let γ be
a path from q to p′. We then get the following isomorphisms of groupoids:

Π(U, {p, q}) ∼= Π(U, {p, p′}) ∼= Π(S1, {x1, x2})

where the second isomorphism is induced by the projection U → {− ε
2} × S1

which is a deformation retract and the first isomorphism is given on objects by
p 7→ p, q 7→ p′ and on morphisms by composing with γ.

Since

Π(S1, {x1, x2}) ∼=

 x1 x2

ψ

φ


we need to see how the morphisms a, b, and d get written in terms of φ and ψ
under the above isomorphisms. Consulting the diagram below
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we see that under the above groupoid isomorphisms we have

d 7→ γ ◦ d 7→ φ

a 7→ a 7→ ψ−1 ◦ φ
b 7→ γ ◦ b ◦ γ−1 7→ φ ◦ a ◦ φ−1

= φ ◦ ψ−1 ◦ φ ◦ φ−1

= φ ◦ ψ−1.

It follows that d, a, and b generate Π(U, {p, q}) with one relation:

d ◦ a = φ ◦ ψ−1 ◦ φ = b ◦ d.

So we conclude:

Π(U, {p, q}) ∼=

 p q

a

d

b

, d ◦ a = b ◦ d
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(c) By an argument parallel to the one for (b), we see that

Π(V, {p, q}) ∼=

 p q

a

c

b

, a ◦ c = c ◦ b


(d) The groupoid p q

a

c

d

b

, a ◦ c = c ◦ b, d ◦ a = b ◦ d


then satisfies the universal property for the diagram

Π(U ∩ V, {p, q}) Π(U, {p, q})

Π(V, {p, q}) Π(X, {p, q})

and hence must be isomorphic to Π(X, {p, q}.
(e) Any morphism in the groupoid Π(X, {p, q} must be a word in a, b, c, d.

Using the relation
b = c−1 ◦ a ◦ c

we may reduce any word to a word in a, c, and d. Then if the morphism is in
Mor(p, p) and we have eliminated b using the relation, the resulting word must
contain c and d only in the combinations c ◦ d or d−1 ◦ c−1 = (c ◦ d)−1. Writing
x = c ◦ d we see that all morphisms in Mor(p, p) are words in a and x. But

a ◦ c = c ◦ b = c ◦ (d ◦ a ◦ d−1)

and so
a ◦ c ◦ d = c ◦ d ◦ a

which is a ◦x = x ◦ a and so by commuting, any word in a and x can be uniquely
written in the form ak ◦ xl for (k, l) ∈ Z× Z. We conclude that

(k, l) 7→ ak ◦ xl

is an isomorphism of the group Z× Z with Mor(p, p).

(3) (a) LetG = 〈x, y |xyx = yxy〉 and letH =
〈
a, b | a3 = b2

〉
. Show thatG ∼= H .

We define a homomorphism f : H → G by

f(a) = xy, f(b) = xyx = yxy.

This is well defined since

f(a3) = (xy)3 = xyxyxy = (xyx)(yxy) = (xyx)2 = f(b2).

We define g : G→ H by

g(x) = a2b−1, g(y) = ba−1.
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This is well defined since

g(xyx) = (a2b−1)ba−1(a2b−1) = a3b−1 = b2b−1 = b

g(yxy) = (ba−1)a2b−1(ba−1) = b.

Moreover g and f are inverses of each other:

g(f(a)) = g(xy) = a2b−1ba−1 = a

g(f(b)) = g(xyx) = b

(b) Let G =
〈
x, y |xy2 = y3x, yx2 = x3y

〉
. Prove that G is the trivial group.

We note that the first relation can be rewritten as xy2x−1 = y3 which by
raising both sides to the power k implies

xy2kx−1 = y3k, y2k = x−1y3kx

for any z ∈ Z. Similarly, the second relation is yx2y−1 = x3 which implies

yx2ky−1 = x3k, x2k = y−1x3ky.

Therefore we have

x6 = yx4y−1

⇒ yx6y−1 = y2x4y−2

x9 = (x−1y3x)x4(x−1y−3x)

x9 = x−1y3x4y−3x

⇒ x9 = y3x4y−3

x9 = y2(yx4y−1)y−2

x9 = y2x6y−2

x9 = y(yx6y−1)y−1

x9 = yx9y−1

⇒ y−1x9y = x9

x6 = x9

⇒ x3 = 1.

But then the relation yx2y−1 = x3 = 1 implies that x2 = 1 and then x2 = x3

which implies x = 1. Finally x = 1 and the relation xy2 = y3x implies
y2 = y3 which implies y = 1. Since we’ve proved that x = y = 1 and they
generate G, G is trivial.

(4) Compute the fundamental group of R3 − B, the complement of the Borromean
Rings:
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b

p

g

x

y

z

Express your answer as a presentation of a group with generators and relations
where your generators should be p, g, b corresponding to loops through the pink,
gray, and blue rings respectively. More precisely, consider the base point x0 to be
above the picture and then the loops b, p, g should start at x0, go to the tail of the
indicated arrow, follow along the arrow, and then return to x0.

Express your relations the form

[[·, ·], ·] = 1

where recall that the commutator bracket [·, ·] is defined by [x, y] = xyx−1y−1.

We label the loops through the remaining overpasses by x, y, and z as in the
diagram. We then get Wirtinger relations for each of the six crossings, starting
with the pink-grey crossing on the right and proceeding counter-clockwise:

xg = gp ⇒ x = gpg−1

yz = zg ⇒ y = zgz−1

zp = pb ⇒ z = pbp−1

xy = yp ⇒ x = ypy−1

yb = bg ⇒ y = bgb−1

zx = xb ⇒ z = xbx−1

We use the first, third, and fifth of the equations above to write x, y, and z in terms
of p, b, and g. The remaining equations then become:

y = zgz−1

⇒ bgb−1 = (pbp−1)g(pb−1p−1)

⇒ (pb−1p−1)bg = g(pb−1p−1)b

⇒ [p, b−1]g = g[p, b−1]

⇒ [[p, b−1], g] = 1,
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x = ypy−1

⇒ gpg−1 = (bgb−1)p(bg−1b−1)

⇒ (bg−1b−1)gp = p(bg−1b−1)g

⇒ [b, g−1]p = p[b, g−1]

⇒ [[b, g−1], p] = 1,

z = xbx−1

⇒ pbp−1 = (gpg−1)b(gp−1g−1)

⇒ (gp−1g−1)pb = b(gp−1g−1)p

⇒ [g, p−1]b = b[g, p−1]

⇒ [[g, p−1], b] = 1.

Therefore π1(R3 −B) is the group with presentation:〈
p, b, g | [[g, p−1], b] = [[b, g−1], p] = [[p, b−1], g] = 1

〉
We remark that only two of the three relations are necessary: one can derive

any one relation from the other two.


