MATH 426 HOMEWORK 4

(1) Prove that the number of degree d covering spaces (up to isomorphism) of the 2-torus $S^1\times S^1$ is given by

$$\sigma(d) = \sum_{k|d} k,$$

the sum of divisors of d.

- (2) Let $X = S^1 \vee S^1$. In this problem, I will ask you to draw several things and you are allowed to include a pdf picture produced by hand or on a tablet instead of using tikz or some other native LaTeX to make the pictures.
 - (a) Draw a picture of all degree two covers of X and determine the group of deck transformations of each cover. How many are there?
 - (b) Draw a picture of all degree three covers of X and determine the group of deck transformations of each cover. How many are there?
- (3) We say that G is a topological group if G is a topological space and a group and the maps m : G × G → G and i : G → G given by multiplication m(g, h) = gh and inverse i(g) = g⁻¹ are continuous. Let e ∈ G be the identity element and suppose that p : G̃ → G is a covering space. Let ẽ ∈ G̃ be a point with p(ẽ) = e. Prove that there exists a unique group structure on G̃ with identity element ẽ making G̃ into a topological group and making p : G̃ → G a group homomorphism.
- (4) Let $X = S^1 \vee S^1$ as in problem (1) and let $x_0 \in X$ be the point where the two circles are attached. As we know from class $\pi_1(X, x_0)$ is the free group on two generators. Construct the covering space $p : \widetilde{X} \to X$ corresponding to the commutator subgroup $[\pi_1(X, x_0), \pi_1(X, x_0)] \subset \pi_1(X, x_0)$ and describe the group of deck transformations of \widetilde{X} .