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Recall the standing assumption that all covering spaces are path-connected.

(1) The number of degree n covering spaces of S1 × S1 up to isomorphism is
equal to the sum of the divisors of n, namely∑

k|n

k

Proof. By the classification of covering spaces, the number of path-connected
degree n covering spaces of S1 × S1 is equal to the number of conjugacy
classes of index-n subgroups of π1(S1 × S1) ' Z × Z, so we will count
these conjugacy classes. Note that since Z×Z is Abelian, conjugacy classes
of subgroups of Z × Z are singletons, so we are simply counting index-n
subgroups of Z × Z. Let us give Z × Z the presentation 〈x, y|[x, y]〉, or
simply 〈x, y〉; we omit the commutator relation since all of the groups we
are working with in this problem are Abelian.

Lemma 1. Every subgroup H ⊂ Z×Z is isomorphic to 〈ax+ by, cx+ dy〉,
for some a, b, c, d ∈ Z. (Note that any or all of a, b, c, d may be 0).

Proof. Recall that subgroups of free Abelian groups are free Abelian, so
any subgroup H ⊂ Z × Z is isomorphic to Zr, for some r ∈ N. We only
need to show that r ≤ 2. Consider the short exact sequence

0 Zr Z2 Z2/H 0,ι

where H is the image ι(Zr). Using the standard bases for Zr and Z2, the
injective homomorphism ι is represented by a 2 × r matrix with integer
entries. We may consider it as a matrix with entries in Q. This matrix
also represents an injective homomorphism, but this is now a map of vector
spaces (check these two statements!)1, therefore r ≤ 2. �

We call

(
a c
b d

)
the presentation matrix of the group 〈ax+by, cx+dy〉.

Lemma 2. Two matrices P1, P2 ∈ Mat2(Z) are presentation matrices of
the same group H ⊂ Z×Z if and only if there exists T ∈ GL2(Z) such that

P1T = P2.
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1For those who know these words: we are using the left-exactness of the functor −⊗ Q. It is,

in fact, also right-exact.
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Proof. That 〈a1x + b1y, c1x + d1y〉 = 〈a2x + b2y, c2x + d2y〉 means that
a2x + b2y is a Z-linear combination of a1x + b1y and c1x + d1y, i.e. that
there are integers α, β such that

a2x+ b2y = α(a1x+ b1y) + β(c1x+ d1y).

Analogously for c2x+ d2y, we can find integers γ, δ so that(
a1 c1
b1 d1

)(
α γ
β δ

)
=

(
a2 c2
b2 d2

)
Let T =

(
α γ
β δ

)
. By expressing the a1x + b1y and c1x + d1y in terms

of the second set of generators, we obtain T−1, showing that T ∈ GL2(Z).
Conversely, if there is a matrix T ∈ GL2(Z) such that P1T = P2, then

clearly, the generators using the first presentation are transformed into new
generators of the same group H. �

Lemma 3. Let P =

(
a c
b d

)
. There exists T ∈ GL2(Z) such that

(∗) PT =

(
det(P )
(a,c) 0

η (a, c)

)
,

where (a, c) denotes the gcd of a and c, and η ∈ {0, 1, . . . , (a, c)− 1}.

Proof. The matrix on the right-hand side of (∗) can be obtained from P by
a sequence of column operations. �

Lemma 4. Let H ⊂ Z× Z be a subgroup and P a presentation matrix for
H. If the index [Z× Z : H] is finite, then it is equal to |det(P )|.

Proof. Let H have a presentation matrix of the form (∗). Then, by the
previous lemma, we can think of H as being generated by the elements
det(P )
(a,c) x+ηy and (a, c)y. Thinking of Z×Z as a lattice in R2, we may draw

the generators of H as vectors, as in the figure below.
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If we assume that [Z × Z : H] is finite, then the two generators of H
are linearly independent and the parallelogram that they span has non-zero
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area. We leave as exercises the following two claims. Claim 1: the cosets
in Z × Z/H correspond to the integer lattice points contained inside the
parallelogram spanned by the generators of H, together with half of the
points contained in the interiors of the sides of the parallelogram, together
with the lattice point (0, 0). Claim 2: the count of lattice points in claim
1 is precisely |det(P )|. The previous figure should help with proving the
claims. �

We can now finish the argument. Every index-n subgroup H ⊂ Z × Z
has a presentation matrix P that looks like the right-hand side of equation
(∗) and, moreover, this presentation matrix is unique. This proves that the
collection of index-n subgroups are in bijective correspondence with the
collection of matrices of the above form, so we just need to count these
matrices. For every divisor k of n, there are k matrices(

n
k 0
∗ k

)
with ∗ ∈ {0, 1, . . . , k − 1}. Thus there are

∑
k|n k subgroups of index n in

Z× Z. �

(2) List all of the path-connected degree 2 and degree 3 covering spaces of
X = S1 ∨ S1 and compute their groups of deck transformations.

Solution. Here is a lemma we will use over and over again. For its proof,
see Hatcher’s discussion of covering spaces of X in §1.3.

Lemma 5. Let Γ be an oriented graph with edges labelled a and b. If Γ
has 4 edge ends incident to every vertex2 and at every vertex precisely one
of the edge ends carries each different label and orientation, then there is a
covering map Γ→ X.

Note that a degree n covering space of X is a 4-valent graph (as in the
above lemma) with precisely n vertices. Listing these is not something one
wants to do by hand for n much larger than 2. The following are all of
the degree 2 (path-connected) covering spaces of X. All three covers have
group of deck transformations isomorphic to Z/2Z.

The case of degree 3 covers is more complicated. We wish to list 4-valent
graphs with 3 vertices. Taking a hint from the degree 2 case, we can start
by listing the possibly disconnected degree 3 covers of one of the two circles
in the wedge X, for example the red one. There are, up to isomorphism, 3
such covers, listed below.

There is a similar set of possibly-disconnected covers of the other S1

that forms the wedge X (the blue circle). By the lemma mentionned at
the beginning of this solution, we can form a degree 3 covering space by
taking a degree 3 covering space of the red S1 and degree 3 covering space
of the blue S1, and identifying their vertices pairwise. We claim that figure
3 contains the complete list of the isomorphism classes of degree 3 covering
spaces of X.

Let us sketch a proof of the claim and then indicate what the group of

deck transformation is for each Xi → X. Let p : X̂ → X be a connected

2I call this a 4-valent graph; it is also known as a 4-regular graph.
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Figure 1. The degree 2 covers of X.
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Figure 2. The degree 3 not-necessarily-connected covers of S1
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Figure 3. The degree 3 covers of X.

covering space and let S1
r be the red circle in X, and S1

b , the blue one. We
will argue by cases.
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(a) Suppose first that p−1(S1
r ) has three connected components. Then,

since X̂ is connected, it must be that p−1(S1
b ) is connected. Therefore,

up to orientation, X̂ = X1. There are no choices of orientation on the
red edges and there are two choices of orientation on the blue edges

(remember that each vertex of X̂ needs to have one incoming and one
outgoing blue edge). It is not hard to see that the two choices yield
isomorphic covering spaces.

(b) Suppose next that p−1(S1
r ) has two connected components. Then

p−1(S1
b ) can have either one or two connected components. If p−1(S1

b )

is connected, then, up to isomorphism, X̂ = X3. If instead p−1(S1
b )

has two components, then X̂ = X5, up to isomorphism. This may
be a little surprising, but you can convince yourself that the following
isomorphisms of covering spaces can be defined.

- ·O
Co ~

- S
L L

CoCo ~ Q

Figure 4. Two isomorphisms of covering spaces.

(c) Finally, if p−1(S1
r ) is connected, p−1(S1

b ) can have any number of con-
nected components, so we have to consider subcases.

(i) If p−1(S1
b ) has three components, then we are in the same case

as (a), but with colours reversed, so X̂ = X2.
(ii) If p−1(S1

b ) has two components, then we are in the same case as

in (b), so X̂ = X3 or X̂ = X4.

(iii) If p−1(S1
b ) is connected, then X̂ is either X6 or X7. Surprisingly,

there is no isomorphism X6 ' X7. Indeed, the closed path that
is the concatenation of both loops in X lifts to a closed path in
X6, but not in X7.

Finally, we need to compute the groups of deck transformations. Let
Di denote the group of deck transformations of Xi → X. We have

(i) D1 ' D2 ' Z/3Z. Proof: the generator of the group of deck
transformations of p−1(S1

b ) (rotation by π/3) also generates D1,
rotate the connected cover of S1

b and carry the red petals around.
Similarly for D2.

(ii) D3 ' D4 ' D5 ' 1. Proof: since there is at most one self loop
of a given colour, any deck transformation must fix a vertex that
has a self-loop, hence must fix the whole covering space.
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(iii) D6 ' D7 ' Z/3Z. Proof: similar to the one for D1. Visually,
one may redraw the covering space symmetrically, to see the
deck transformations as rotations in R2.

�

(3) Let G be a path-connected, locally path-connected topological group with
basepoint the identity element e ∈ G, multiplication m : G × G → G and

inverse i : G → G, and let G̃
p−→ G be a covering space, with a chosen

basepoint ẽ ∈ p−1(e). There is a unique group structure on G̃ with identity
element ẽ such that p is a group homomorphism.

Proof. The niceties of topological groups are contained in the following
lemma. Note that we use the isomorphism

π1(X × Y, x× y) ' π1(X,x)× π1(Y ),

where (X,x) and (Y, y) are arbitrary pointed topological spaces.

Lemma 6. The map

m∗ : π1(G, e)× π1(G, e)→ π1(G, e)

coincides with the group operation in π1(G, e). Moreover, π1(G, e) is an
Abelian group.

Proof. This is known as the Eckmann-Hilton argument. Let us denote
m∗([γ], [δ]) by [γ] · [δ], and let us use ∗ to denote the group operation in
π1(G, e) (induced from path concatenation). The first observation is that
the homotopy class of the constant path at e is the identity element with
respect to both ∗ and ·. Let us abuse notation and call this constant path e.
The second observation is the following distributivity identity, which holds
for all loops α, β, γ, δ in G based at e:

(α ∗ β) · (γ ∗ δ) = (α · β) ∗ (γ · δ).

This is immediate from the definitions of the two operations: both the left-
and the right-hand sides of the above equation are the path given by

t 7→

{
α(2t) · γ(2t) if 0 ≤ t ≤ 1/2

β(2t− 1) · δ(2t− 1) if 1/2 ≤ t ≤ 1

Now we can run the Eckmann-Hilton argument. Let [α], [β] ∈ π1(G, e). We
have

[α] · [β] = ([α] ∗ [e]) · ([e] ∗ [β]) = ([α] · [e]) ∗ ([e] · [β]) = [α] ∗ [β],

which shows that the two group operations are equal. We also have

[α] · [β] = ([e] ∗ [α]) · ([β] ∗ [e]) = [β] ∗ [α],

which shows that the operation is commutative and completes the proof of
the lemma. �

Corollary 6.1. The induced map i∗ : π1(G, e)→ π1(G, e) is given by [γ] 7→
[γ]−1, where we mean the inverse with respect to the concatenation group
operation on π1(G, e).

https://tinyurl.com/2rd9fr6a
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Let us now construct the the multiplication and inversion maps m̃ : G̃×
G̃ → G̃ and ĩ : G̃ → G̃ that provide G̃ with its group structure. Consider
the following diagram:

G̃ G̃

G G

p

ĩ

p

i

Propositions 1.33 and 1.34 in Hatcher tell us that there exists a unique lift

ĩ : G̃ → G̃ of i that fixes ẽ and makes the above diagram commute if and
only if

(i) (ip)∗(π1(G̃, ẽ) ⊂ p∗(π1(G̃, ẽ).

It follows from the previous corollary that the inclusion (i) holds: the iso-
morphism i∗ is simply the map that takes every group element to its inverse,

so it preserves subgroups of π1(G, e); in particular, it preserves p∗(π1(G̃, ẽ).

This shows the existence and uniqueness of the map ĩ : G̃→ G̃.

To define the multiplication m̃ : G̃× G̃→ G̃, consider the diagram

G̃× G̃ G̃

G×G G

p×p

m̃

p

m

To obtain m̃ as a lift, we need to argue the inclusion

(ii) (m ◦ p× p)∗π1(G̃× G̃, ẽ× ẽ) ⊂ p∗π1(G̃, ẽ).

Arguing as for (i), (p×p)∗(π1(G̃×G̃, ẽ×ẽ) is a subgroup of π1(G×G, e×e) '
π1(G, e) × π1(G, e), so it is preserved by multiplication. This proves the
inclusion (ii) and the existence of the unique lift m̃.

Thus we have produced a continuous binary operation m̃ and a continu-

ous function ĩ on G̃ that should give G̃ the structure of a topological group
with identity ẽ. We need to check that the group axioms are satisfied for

the tuple (̃(G), m̃, ĩ, ẽ), in other words we need to check

(a) (Identity) For all a ∈ G̃, we have

m̃(ẽ, a) = m̃(a, ẽ) = a.

(b) (Inversion) For all a ∈ G̃, we have

m̃(a, ĩ(a)) = m̃(̃i(a), a) = ẽ.

(c) (Associativity) For all a, b, c ∈ G̃, we have

m̃(m̃(a, b), c) = m̃(a, m̃(b, c)).

Assuming that G̃ is indeed a group, the commutative diagrams defining
m̃ and ĩ immediately prove that p is a group homomorphism (check this).
Thus, all we have left is to check the axioms (a), (b), (c). The only tool
we need is proposition 1.34 from Hatcher, which says that lifts to covering
spaces that agree at a point are equal at all points. We will show how the
argument works for proving (c), and sketch the proofs of (a) and (b).
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(c) Consider the following diagram

G̃× G̃× G̃ G̃

G×G×G G

m̃◦(m̃×id)

m̃◦(id×m̃)
p×p×p p

m◦(m×id)

We can check that the two maps at the top of the diagram are both

lifts of the map (p × p × p) ◦ m ◦ (m × id) : G̃ × G̃ × G̃ → G̃: let

g̃1, g̃2, g̃3 ∈ G̃ and let gi = p(g̃i), for i = 1, 2, 3. Then we have

p(m̃(g̃1, m̃(g̃2, g̃3)) = m(p(g̃1), p(m̃(g̃2, g̃3)))

= m(g1,m(p(g̃2), p(g̃3))

= m(g1,m(g2, g3)).

Similarly,

p(m̃(m̃(g̃1, g̃2), g̃3)) = m(m(g1, g2), g3) = m(g1,m(g2, g3)).

Moreover, the two maps at the top of the diagram agree at ẽ, since
m̃(ẽ, ẽ) = ẽ. Therefore, by the uniqueness of lifts, the two maps are
equal, so we have

m̃(a, m̃(b, c)) = m̃(m̃(a, b), c),

for all a, b, c ∈ G̃, as was to be proved.
(a) To prove (a), consider the diagram

G̃ G̃

G G

m̃(ẽ,−)

id

p p

id

(b) To prove (b), consider the diagram

G̃ G̃× G̃ G̃

G G

(id,̃i)

ẽ

p

m̃

p

id

where the topmost map is the constant map at ẽ, and argue that the
composite m̃ ◦ (id× ĩ) agrees with ẽ.

�

(4) Construct the covering space of X = S1 ∨ S1 that corresponds to the
commutator subgroup [π1(X), π1(X)] ⊂ π1(X).

Proof. Let S1 be the unit complex numbers, with basepoint 1 and consider
X ⊂ S1 × S1 to be the set

{(x, y) ∈ S1 × S1 : x = 1 or y = 1}.
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We claim that the covering space corresponding to the commutator sub-
group is the space

X̂ := {(x, n) : x ∈ R, n ∈ Z} ∪ {(m, y) : m ∈ Z, y ∈ R} ⊂ R2,

which we call the integer lattice grid in R2. A covering space is not a

covering space without a covering map, so let us define p : X̂ → X as the
restriction of the universal covering map R2 → S1 × S1, which is given by

(x, y) 7→ (ei2πx, ei2πy).

Note that the above map restricted to X̂ does indeed land in X ⊂ S1×S1,
since one of the two coordinates in (x, y) is an integer, so one of ei2πx or
ei2πy is equal to 1.

The restriction of a covering map is a covering map, so p : X̂ → X is
a covering space, so all we need in order to prove the claim is to show

that X̂ is indeed the covering space that corresponds to the commutator
subgroup. This is equivalent to showing that the group of deck transfor-
mations is F2/[F2, F2] = Z × Z. This is clear, since deck transformations
are determined by the image of a single point, and the group Z × Z act-
ing by translations on R2 preserves the integer lattice grid and commutes
with the projection, and, moreover, the orbit of the point (0, 0) is Z × Z,
so we can map (0, 0) to any other vertex in the integer lattice grid. This

completes the proof that the group of deck transformations of X̂ → X is
indeed Z× Z. �


