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①
A theory of Gopakumar- Vafa invariants for orbifold Calabi-Yau threefold

joint work w/ 5. Pietromonaco

the story for ordinary CY3 's :

Let X be a Calabi-Yau threefold with Gromov-Witten potential :
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In 1998
, Gopakumar- Vafa defined curve counting invariants nglp) based

on counting BPS states and conjectured
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ngyp,

where nglp) c- 2- and for fixed p , nglp)-0 for all but finitely many

970 . ⑨ can be viewed as :

① A- universal multiple cover / degenerate contributions formula for GW

invariants
.

② A structure theorem for GW invariants : the set { nglrs)} contains
the same information as { { %, } in

-

a smaller
,
more efficient package.

③ A kind of sheaf map correspondence . In 2018
,
Maulik-Toda gave a

direct sheaf theoretic definition of ng /B) .



②
Example: • ✗ = Tot /0*47100*1-1 ) ) ( resolved conifold )

ng(d[P'3) = { / if 8--0 , D= /

0 otherwise

• ✗ is a local k3 surface ( Yan - Zaslow formula )
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KKV formula generalizes this to nglp) g≥o

◦
formula generalizes this to ✗= K3×E

.

GVfororb.it# Let * be an orbifold CY3 with stalky

locus Bc 7€ where &→ B is a 132%+1 gerbe over a smooth

curve B (so the singular space ✗ has transverse An singularities along B) .

Goat: Define GV theory in this setting .
Find the analog oof ⑧ and nglp)

Remarks : Our theory works for stocky locus having many components ,
with transverse type A singularities . Also makes sense for transverse ADE

singularities but evidence is much more spotty in DE cases
.



③
Let Hzlx)# be the semigroup of effective classes not represented by
a curve containing B as a component .

Let 81
,

- - -

, 8N be generators for the twisted sector of
N

H:b (E) = tix) ⑦ H°(B)
.

Then the GW potential is :
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Example familiar to some of you :

genus
0 curve C in a primitivewww.wn.nomqa?ndBI*F class B meeting 13 in P points .

Under idealized conditions
,
J
. Wise

proved that the contribution of C
to the GW potential is

⇐ 48m¥ in

9C MT
.
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in the specialization ✗= zCSC(%÷) = Écsc(E) = Isin ¥ = Zsin =/



The invariants ng /B) do not contain all the information of the GW potential . ③
We need more refined GV invariants:

Definiti.in/Conjectwe-:FintegersnglP;mi-.mn ) , finitely many non-zero for fixed

BE HdxF, such that if we write

F¥= £
QᵈB

a,p,g
d- (25m¥ )

""

0-d.gg/Xi---xn ) then

②
d.g. p

= £ nglpimi.mn/FTQmk(z,d...zud+, )
Mi - - - MN K=I

where % is the Kth elementary symmetric function and
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Ng(p; mi.mn ) is a virtual count of genus g
'

curves in the class p meeting &
in min points with "

weight
"

K C- {Ii;N } . The data { nglp;m,
-
-
- Mn )}

is equivalent to {4in:&;¥ }gp •

Examples ① Local teardrop : * = Total ( Ol-Po)⊕Otp• ))
, Po,p•E # (N-11,1 )

so Po is a Bayan, point. Johnson- Pandharipande - Tseng compute Fz .
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② Local orbifold 143 surface S with a single BZ/w+, point. ④

Assume Picts) is generated by curves not meeting the orbifold point ( these are

easy to find
, many examples with N≤ 17 ) .

Then orbifold Yan- Zaslow formula is :

theorem (assuming GWCRC,mNoP) no/f) = e( Hills
% " (s))

where 5 is the singular surface (!)

By a result of Gyewge - Nemethi - Szendroi
µ

generalizes in the obvious way
to orbi KKV and SHE
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For any ADE root system R with root lattice AR

④pins/g) = £
very

8
"""> wit . . - win /

wx=exp(É)V= Vil, -1 . _ . + Vnln

ei simple roots

Where does this all come from ? On sheaf side
,
7£ has extra derived

symmetries . This is partially responsible for the structure
. .



⑤
Sheaf side : ✗ ordinary CY3
- numerical K-theory

of sheaves supported
in dim ≤I

gX=Oto

2-% = & ptn.pl/)QPy " N≤,lX)= Not)⊕N, /×)
B. n
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Then the GV formula⊕ ⇔
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the fact that 2-% is invariant under yy
" (and hence can be written

in terms of 4) comes from the derived symmetry of D (Cohill)
given by Fi→RHom( F) dx) .

For orbiCY3 7C with transverse AN orbi locus
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Let W be the Weyl group of the An root lattice. (Baubles - Marina) There

is an action of W on D. (Cohtt) ) which leads to a corresponding

symmetry of ZIT? Namely

Coefopyn ( ZTE ) c- 2- [ Naw ]w



⑥
A fundamental theorem in representation theory (any root lattice )

2-[ Naw ]w= 2- [ § , ,
Ion ] §r=char( wk )

↑
fundamental weight.
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The GW version comes from this using DT CRC ( BCR)
,
MNOP
p ,

and GW CRC
q

lot's of cases by known in

Pandharipande -Pixton toric case

The above theorem/conjecture relies on some guesswork cheeked by examples

local orbi k3s and local orbi curves and sporadic other evidence give high

confidence in AN case
, especially Al . DE cases only real evidence

is local 1h3
.

Less confident above conjecture is correct.




